

Established in collaboration with MIT

Complexity of the Soundness Problem of Bounded Workflow Nets

GuanJun LIU, Jun SUN, Yang LIU, JinSong DONG

Singapore University of Technology and Design

National University of Singapore

Introduction to WF-nets and WF-nets with

reset arcs (reWF-nets)

- NP-hardness of the soundness problem of WF-nets
- PSPACE-hardness of the soundness problem of reWF-nets

Outline

Introduction to WF-nets and WF-nets with

reset arcs (reWF-nets)

NP-hardness of the soundness problem of

WF-nets

PSPACE-hardness of the soundness problem of reWF-nets

Introduction to WF-nets

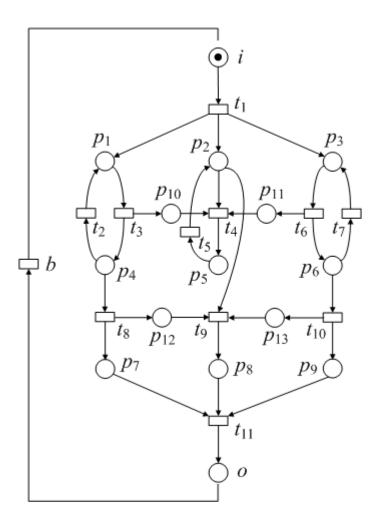
Definition (*WF-nets* [*Aalst et al*]): A net N = (P, T, F) is a workflow net (WF-net) if:

1. *N* has two special places $i \in P$ (source place) and $o \in P$ (sink place) such that $i = \emptyset$ and $o = \emptyset$; and

2. $N^{E} = (P, T \cup \{b\}, F \cup \{(b, i), (o, b)\})$ is strongly connected.

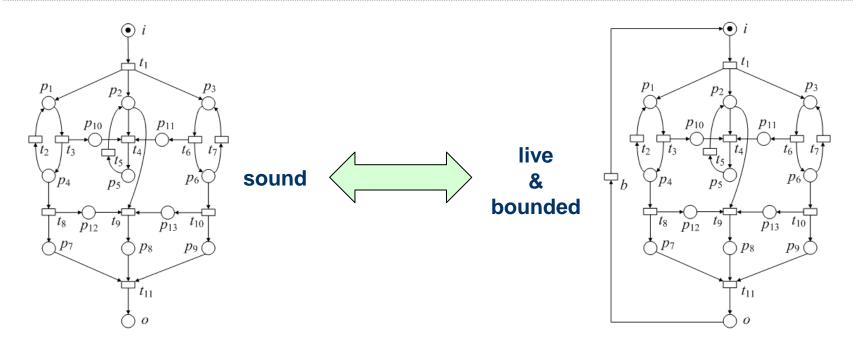
Definition (Soundness of WF-nets [Aalst et al]): A WF-net N = (P, T, F) is sound if: 1. $\forall M \in R(N, M_0)$: $M_d \in R(N, M)$; and 2. $\forall t \in T, \exists M \in R(N, M_0)$: $M[t\rangle$.

where $M_0 = i$ and $M_d = o$.



Introduction to WF-nets

Theorem (*[Aalst et al]*): Let N = (P, T, F) be a WF-net, $N^E = (P, T \cup \{b\}, F \cup \{(b, i), (o, b)\})$, and $M_0 = i$. Then, N is sound if and only if (N^E, M_0) is live and bounded.



Corollary: Let N = (P, T, F) be a WF-net, and $(N^E, M_0) = (P, T \cup \{b\}, F \cup \{(b, i), (o, b)\}, i)$ be bounded. Then, N is sound if and only if (N^E, M_0) is live.

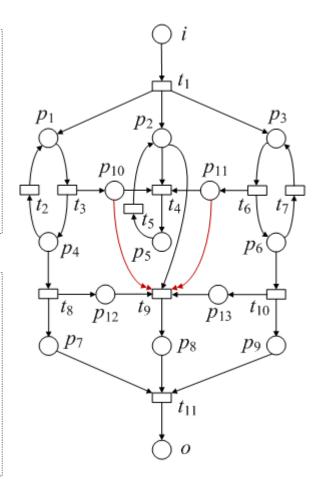
Introduction to reWF-nets

Definition (*reWF-nets* [*Aalst et al*]): A 4-tuple N = (P, T, F, R) is a workflow net with reset arcs (reWF-net) if:

1. (*P*, *T*, *F*) is a WF-net; and

2. $R \subseteq [P \setminus \{o\} \times T]$ is the set of reset arcs.

Definition: Transition *t* is **enabled** at *M* if $\forall p \in t$: M(p) > 0. **Firing** an enabled transition *t* produces a new marking *M'* such that M(p) = 0 if $p \in t$; M'(p) = M(p) - 1 if $p \in t \land p \in t \setminus t^*$; M'(p) = M(p) + 1 if $p \in t \land p \in t^* \setminus t^*$; and M'(p) = M(p) otherwise.



Introduction to reWF-nets

Definition (*Soundness of reWF-nets* [*Aalst et al*]): An reWF-net N = (P, T, F, R) is sound if:

1. $\forall M \in R(N, M_0)$: $M_d \in R(N, M)$; and

2. $\forall t \in T, \exists M \in R(N, M_0): M[t\rangle$.

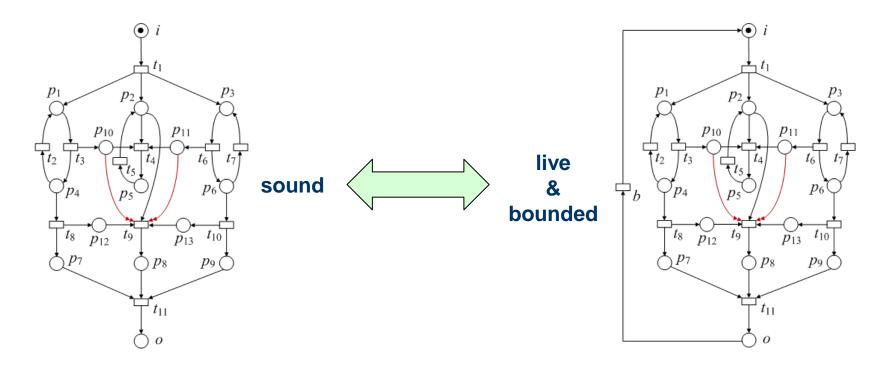
where $M_0 = i$ and $M_d = o$.

Theorem (*[Aalst et al]*): The soundness problem of reWF-nets is undecidable.

If the trivial extension of an reWF-net, $(N^E, M_0) = (P, T \cup \{b\}, F \cup \{(b, i), (o, b)\}, R, i)$, is bounded, then its soundness problem is decidable by its reachability graph.

Introduction to reWF-nets

Theorem : Let N = (P, T, F, R) be an reWF-net, and $(N^E, M_0) = (P, T \cup \{b\}, F \cup \{(b, i), (o, b)\}, R, i)$ be bounded. Then, N is sound if and only if (N^E, M_0) is live. (note: "only if" is proven by [Aalst])



Introduction to WF-nets and WF-nets with

reset arcs (reWF-nets)

NP-hardness of the soundness problem of

WF-nets

PSPACE-hardness of the soundness problem of reWF-nets

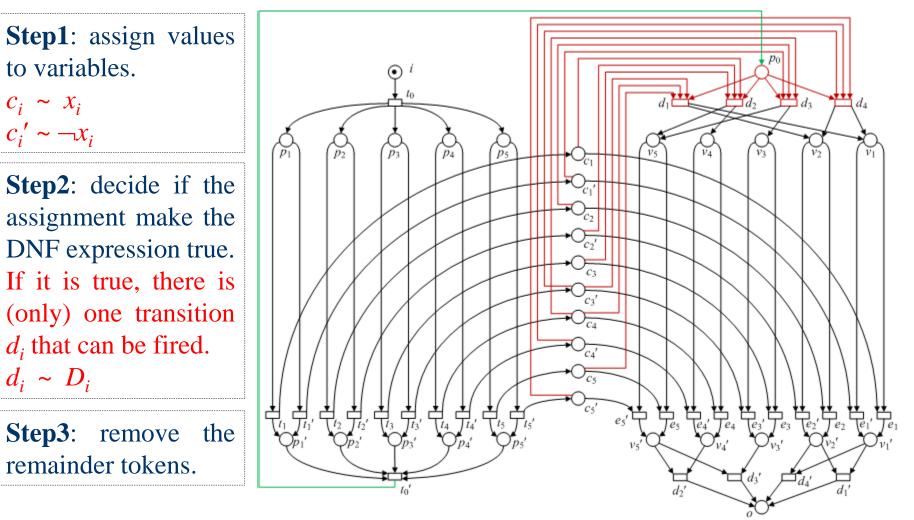
NP-hardness of soundness of WF-nets

For each expression of disjunctive normal form (DNF) in which each term has three literals,

$$H = D_1 \vee D_2 \vee \dots \vee D_m = (l_{1,1} \wedge l_{1,2} \wedge l_{1,3}) \vee (l_{2,1} \wedge l_{2,2} \wedge l_{2,3}) \vee \dots \vee (l_{m,1} \wedge l_{m,2} \wedge l_{m,3})$$

we can construct a WF-nets (in polynomial time) by which we can compute if the value of the DNF expression is true.

NP-hardness of soundness of WF-nets



 $H = (\neg x_3 \land x_4 \land x_5) \lor (x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_4) \lor (\neg x_3 \land \neg x_4 \land \neg x_5)$

NP-hardness of soundness of WF-nets

Lemma: The trivial extension of the constructed WF-net is live if and only if H = 1 for each assignment of variables.

Lemma: The trivial extension of the constructed WF-net is bounded at the initial marking $M_0 = i$.

Theorem: The problem of soundness of WF-nets is co-NP-hard.

Introduction to WF-nets and WF-nets with

reset (reWF-nets)

NP-hardness of the soundness problem of

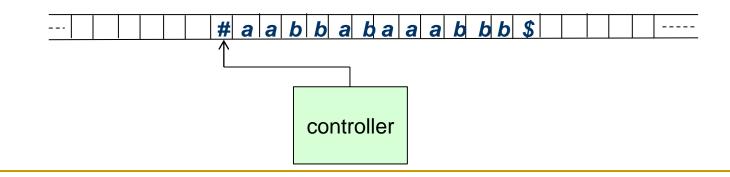
WF-nets

PSPACE-hardness of the soundness problem of reWF-nets

For each Linear Bounded Automata (LBA) with an input string, we can always construct an reWF-net (in polynomial time) by which we can decide whether the LBA accepts this input string.

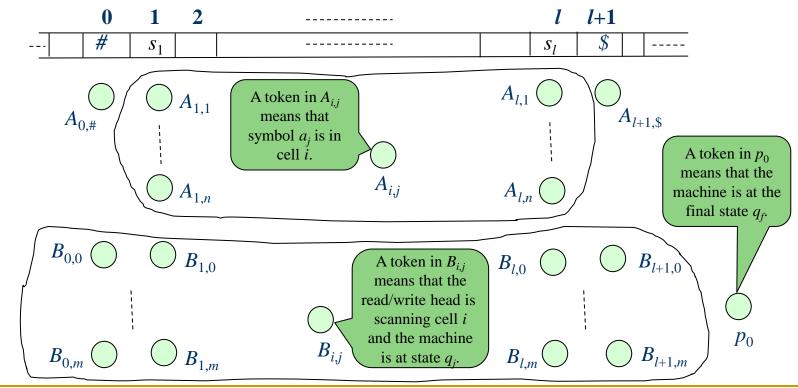
$$\begin{split} & \Omega = (Q, \Gamma, \Sigma, \Delta, q_0, q_f, \#, \$) \\ & - Q = \{q_0, q_1, ..., q_m, q_f\} \\ & - \Gamma = \{a_1, ..., a_n\} \\ & - \Sigma \subseteq \Gamma \\ & - \Delta \subseteq Q \times \Gamma \times \{R, L\} \times Q \times \Gamma \\ & - \# \\ & - \$ \end{split}$$

set of states, initial state q_0 , final state q_f tape alphabet input alphabet set of transitions left bound symbol right bound symbol

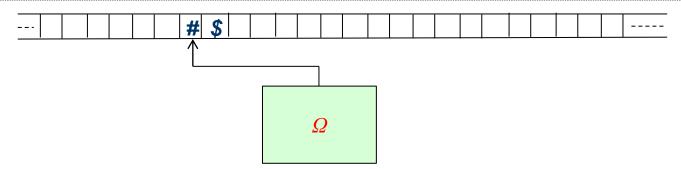


Step1: use places to represent the tape information, machine state, and read/write head position.

Let $Q = \{q_0, q_1, ..., q_m, q_f\}, m \ge 0, \Gamma = \{a_1, a_2, ..., a_n\}, n > 0, |S| = l$, and cells storing #S\$ be labelled 0, 1, ..., l, and l+1, respectively.



$$\begin{split} & \mathcal{Q} = (Q, \ \varGamma, \ \varSigma, \ \varDelta, \ q_0, \ q_f, \ \#, \ \$) \\ & - \ Q = \{q_0, \ q_1, \ q_2, \ q_3, \ q_f\} \\ & - \ \varGamma = \{a, \ b, \ X\} \\ & - \ \varSigma = \{a, \ b\} \\ & - \ \varDelta = \{(q_0, \ \#, \ R, \ q_1, \ \#), \ (q_1, \ \$, \ L, \ q_f, \ \$), \ (q_1, \ X, \ R, \ q_1, \ X), \ (q_1, \ a, \ R, \ q_2, \ X), \\ & \quad (q_2, \ a, \ R, \ q_2, \ a), \ (q_2, \ X, \ R, \ q_2, \ X), \ (q_2, \ b, \ L, \ q_3, \ X), \ (q_3, \ a, \ L, \ q_3, \ a), \\ & \quad (q_3, \ X, \ L, \ q_3, \ X), \ (q_3, \ \#, \ R, \ q_1, \ \#) \} \end{split}$$

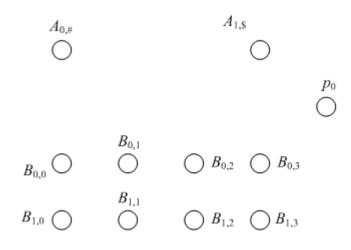


For example: the above LBA with the empty string as its input.

Note: the LBA produce the language $\{a^{i_1}b^{i_1}a^{i_2}b^{i_2}...a^{i_m}b^{i_m} | i_1, i_2, ..., i_m, m \in \mathbb{N}\}$

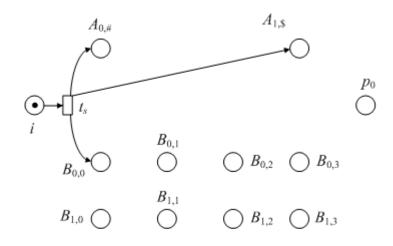
$$\begin{split} & \Omega = (Q, \ \Gamma, \ \Sigma, \ \Delta, \ q_0, \ q_f, \ \#, \ \$) \\ & - \ Q = \{q_0, \ q_1, \ q_2, \ q_3, \ q_f\} \\ & - \ \Gamma = \{a, \ b, \ X\} \\ & - \ \Sigma = \{a, \ b\} \\ & - \ \Delta = \{(q_0, \ \#, \ R, \ q_1, \ \#), \ (q_1, \ \$, \ L, \ q_f, \ \$), \ (q_1, \ X, \ R, \ q_1, \ X), \ (q_1, \ a, \ R, \ q_2, \ X), \\ & \quad (q_2, \ a, \ R, \ q_2, \ a), \ (q_2, \ X, \ R, \ q_2, \ X), \ (q_2, \ b, \ L, \ q_3, \ X), \ (q_3, \ a, \ L, \ q_3, \ A), \ (q_3, \ X, \ L, \ q_3, \ X), \ (q_3, \ \#, \ R, \ q_1, \ \#) \} \end{split}$$

Step1:useplacestorepresenttapeinformation,machinestate,& read/writehead position.



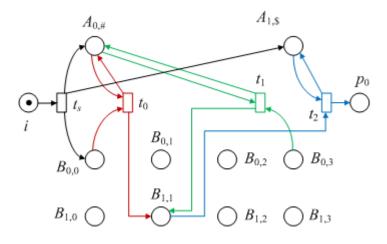
$$\begin{split} & \Omega = (Q, \ \Gamma, \ \Sigma, \ \Delta, \ q_0, \ q_f, \ \#, \ \$) \\ & - \ Q = \{q_0, \ q_1, \ q_2, \ q_3, \ q_f\} \\ & - \ \Gamma = \{a, \ b, \ X\} \\ & - \ \Sigma = \{a, \ b\} \\ & - \ \Delta = \{(q_0, \ \#, \ R, \ q_1, \ \#), \ (q_1, \ \$, \ L, \ q_f, \ \$), \ (q_1, \ X, \ R, \ q_1, \ X), \ (q_1, \ a, \ R, \ q_2, \ X), \\ & \quad (q_2, \ a, \ R, \ q_2, \ a), \ (q_2, \ X, \ R, \ q_2, \ X), \ (q_2, \ b, \ L, \ q_3, \ X), \ (q_3, \ a, \ L, \ q_3, \ A), \\ & \quad (q_3, \ X, \ L, \ q_3, \ X), \ (q_3, \ \#, \ R, \ q_1, \ \#) \} \end{split}$$

Step2: use a net transition to produce the machine's initial configuration.



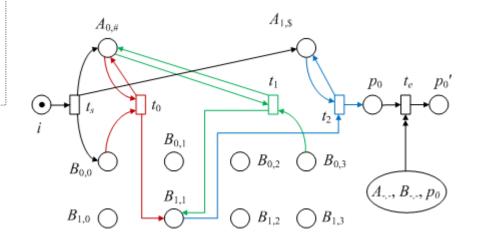
$$\begin{split} & \mathcal{Q} = (Q, \, \Gamma, \, \Sigma, \, \Delta, \, q_0, \, q_f, \, \#, \, \$) \\ & - \, Q = \{q_0, \, q_1, \, q_2, \, q_3, \, q_f\} \\ & - \, \Gamma = \{a, \, b, \, X\} \\ & - \, \Sigma = \{a, \, b\} \\ & - \, \Delta = \{(q_0, \, \#, \, R, \, q_1, \, \#), \, (q_1, \, \$, \, L, \, q_f, \, \$), \, (q_1, \, X, \, R, \, q_1, \, X), \, (q_1, \, a, \, R, \, q_2, \, X), \\ & \quad (q_2, \, a, \, R, \, q_2, \, a), \, (q_2, \, X, \, R, \, q_2, \, X), \, (q_2, \, b, \, L, \, q_3, \, X), \, (q_3, \, a, \, L, \, q_3, \, a), \\ & \quad (q_3, \, X, \, L, \, q_3, \, X), \, (q_3, \, \#, \, R, \, q_1, \, \#)\} \end{split}$$

Step3: use **net transitions** to model machine transitions.



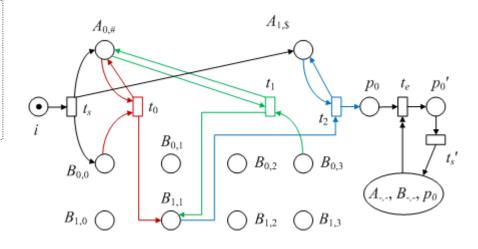
$$\begin{split} & \mathcal{Q} = (Q, \ \Gamma, \ \Sigma, \ \Delta, \ q_0, \ q_f, \ \#, \ \$) \\ & - \ Q = \{q_0, \ q_1, \ q_2, \ q_3, \ q_f\} \\ & - \ \Gamma = \{a, \ b, \ X\} \\ & - \ \Sigma = \{a, \ b\} \\ & - \ \Delta = \{(q_0, \ \#, \ R, \ q_1, \ \#), \ (q_1, \ \$, \ L, \ q_f, \ \$), \ (q_1, \ X, \ R, \ q_1, \ X), \ (q_1, \ a, \ R, \ q_2, \ X), \\ & (q_2, \ a, \ R, \ q_2, \ a), \ (q_2, \ X, \ R, \ q_2, \ X), \ (q_2, \ b, \ L, \ q_3, \ X), \ (q_3, \ A, \ L, \ q_3, \ X), \ (q_3, \ \#, \ R, \ q_1, \ \#) \} \end{split}$$

Step4: use a net transition, associating with reset arcs, to remove remainder tokens.



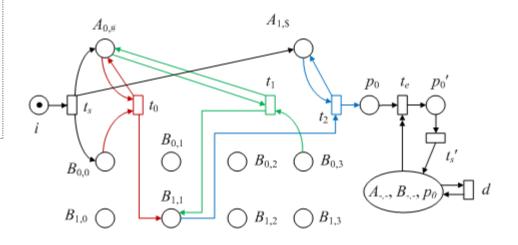
$$\begin{split} & \Omega = (Q, \ \Gamma, \ \Sigma, \ \Delta, \ q_0, \ q_f, \ \#, \ \$) \\ & - \ Q = \{q_0, \ q_1, \ q_2, \ q_3, \ q_f\} \\ & - \ \Gamma = \{a, \ b, \ X\} \\ & - \ \Sigma = \{a, \ b\} \\ & - \ \Delta = \{(q_0, \ \#, \ R, \ q_1, \ \#), \ (q_1, \ \$, \ L, \ q_f, \ \$), \ (q_1, \ X, \ R, \ q_1, \ X), \ (q_1, \ a, \ R, \ q_2, \ X), \\ & (q_2, \ a, \ R, \ q_2, \ a), \ (q_2, \ X, \ R, \ q_2, \ X), \ (q_2, \ b, \ L, \ q_3, \ X), \ (q_3, \ a, \ L, \ q_3, \ A), \ (q_3, \ X, \ L, \ q_3, \ X), \ (q_3, \ \#, \ R, \ q_1, \ \#) \} \end{split}$$

Step5: use a net transition to input tokens in order to make each net transition have a friable right.



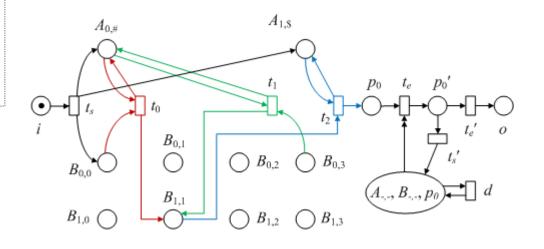
$$\begin{split} & \Omega = (Q, \ \Gamma, \ \Sigma, \ \Delta, \ q_0, \ q_f, \ \#, \ \$) \\ & - \ Q = \{q_0, \ q_1, \ q_2, \ q_3, \ q_f\} \\ & - \ \Gamma = \{a, \ b, \ X\} \\ & - \ \Sigma = \{a, \ b\} \\ & - \ \Delta = \{(q_0, \ \#, \ R, \ q_1, \ \#), \ (q_1, \ \$, \ L, \ q_f, \ \$), \ (q_1, \ X, \ R, \ q_1, \ X), \ (q_1, \ a, \ R, \ q_2, \ X), \\ & (q_2, \ a, \ R, \ q_2, \ a), \ (q_2, \ X, \ R, \ q_2, \ X), \ (q_2, \ b, \ L, \ q_3, \ X), \ (q_3, \ a, \ L, \ q_3, \ a), \\ & (q_3, \ X, \ L, \ q_3, \ X), \ (q_3, \ \#, \ R, \ q_1, \ \#) \} \end{split}$$

Step6: use a net transition to connect with each place by a self-loop in order to make the net be strongly connected.



$$\begin{split} & \Omega = (Q, \ \Gamma, \ \Sigma, \ \Delta, \ q_0, \ q_f, \ \#, \ \$) \\ & - \ Q = \{q_0, \ q_1, \ q_2, \ q_3, \ q_f\} \\ & - \ \Gamma = \{a, \ b, \ X\} \\ & - \ \Sigma = \{a, \ b\} \\ & - \ \Delta = \{(q_0, \ \#, \ R, \ q_1, \ \#), \ (q_1, \ \$, \ L, \ q_f, \ \$), \ (q_1, \ X, \ R, \ q_1, \ X), \ (q_1, \ a, \ R, \ q_2, \ X), \\ & (q_2, \ a, \ R, \ q_2, \ a), \ (q_2, \ X, \ R, \ q_2, \ X), \ (q_2, \ b, \ L, \ q_3, \ X), \ (q_3, \ a, \ L, \ q_3, \ a), \\ & (q_3, \ X, \ L, \ q_3, \ X), \ (q_3, \ \#, \ R, \ q_1, \ \#) \} \end{split}$$

Step7: finally, use a **net** transition to finish the whole computation.



Lemma: The LBA accepts the input string iff the trivial extention of the constructed reWF-net is live.

Lemma: The trivial extention of the constructed reWF-net is bounded.

Theorem: The soundness problem of reWF-nets is PSPACE-hard.

Thanks !