
Automatic Compositional Verification of Timed Systems

Shang-Wei Lin1, Yang Liu1, Jun Sun2, Jin Song Dong1, and Étienne André3

1 National University of Singapore
{tsllsw,tslliuya,dongjs.comp}@nus.edu.sg

2 Singapore University of Technology and Design
sunjun@sutd.edu.sg

3 LIPN, CNRS UMR 7030, Université Paris 13, France
Etienne.Andre@lipn.univ-paris13.fr

Abstract. Specification and verification of real-time systems are important re-
search topics with crucial applications; however, the so-called state space explo-
sion problem often prevents model checking to be used in practice for large sys-
tems. In this work, we present a self-contained toolkit to analyze real-time sys-
tems specified using event-recording automata (ERAs), which supports system
modeling, animated simulation and automatic compositional verification based
on learning techniques. To the best of our knowledge, it is the first tool support-
ing fully automatic compositional verification for timed systems. Experimental
results show that our tool outperforms the state-of-the-art timed model checkers.

1 Introduction

Ensuring the correctness of safety-critical systems with timing requirements is crucial
and challenging. Model checking is emerging as an effective verification method and
has been widely used for timed system. However, model checking suffers from the
infamous state space explosion problem, and the problem is even graver in timed model
checking because of the timed transitions.

To alleviate this problem, we proposed an automatic learning-based compositional
verification framework for timed systems. We focus on timed systems that are modeled
by event-recording automata (ERAs) [3], which is a determinizable class of timed au-
tomata. ERAs are as powerful as timed transition systems and are sufficiently expressive
to model many interesting timed systems. The proposed framework consists of a com-
positional verification based on the non-circular assume-guarantee (AG-NC) proof rule
and uses a learning algorithm, TL* [8], to automatically generate timed assumptions
for assume-guarantee reasoning (AGR).

Our engineering efforts realize the proposed techniques into a self-contained toolkit
for analyzing real-time systems, which is built as the ERA module (can be downloaded
at [1]) in the PAT model checker [9]. Fig. 1 shows the architecture of our tool, which
consists of four components, namely the editor, the parser, the simulator and verifiers.
The editor is featured with a powerful graphic drawing component that allows users to
design system models and specify properties by drawing ERAs. The editor also sup-
ports syntax highlighting, intellisense, and undo/redo functionality such that designers
can efficiently model the systems. The parser compiles both the system models and

Parser

Editor

ERA
Graphic
Drawing
Tool

Internal
Representation

Simulator

Simulator Graphic
Viewer

Counterexample

Compositional
Verifier

Monolithic
Verifier

Verifiers

Fig. 1. Architecture of the ERA Module in PAT

I0 I1 I2

input
[xa ≤ 1]

send
[xi ≤ 1]

ack

(a) INPUT

O0 O1 O2
send

output
[xs ≤ 1]

ack[xo ≤ 1]

(b) OUTPUT

P0 P1

input
[xo ≤ 5]

output
[xi ≤ 5]

(c) Property ϕ

Fig. 2. Models and property of the I/O system

the properties (in the form of ERAs) into internal representations for simulation and
verification. The simulator allows users to perform various simulation tasks on the in-
put model: complete state-space generation of selected model, automatic simulation
via random executions, user interactive simulation, trace replay and so on. Most im-
portantly, compositional verification is fully automated for properties specified using
ERAs. To the best of our knowledge, our tool is the first one supporting fully auto-
matic compositional verification for timed systems. Our tool also supports the tradi-
tional monolithic approach that generates the global state space based on zone abstrac-
tion. Users can choose to use either the monolithic or our compositional approach inside
the verification interface. If the verification result is false, counterexamples will be pro-
duced and can be visualized using the simulator. Experimental results (Section 3) show
that our tool of compositional verification for real-time systems outperforms traditional
timed monolithic approaches in many cases.

2 Compositional Verification of ERAs

An event-recording automaton (ERA) is a special case of timed automaton where each
event a on transitions is associated with a corresponding event-recording clock xa
recording the time elapsed since the last occurrence of event a. Each event-recording
clock xa is implicitly and automatically reset when a transition with event a is taken.

Fig. 2 gives an I/O system with two components, INPUT and OUTPUT, modeled by
ERAs. The pairs of event-recording clocks and the corresponding events are xi : input,
xs : send, xo : output, and xa : ack. The model of the INPUT component is shown in
Fig. 2 (a). It performs an input event within one time unit once it receives an ack event
from OUTPUT. Subsequently, it performs a send event to notify OUTPUT and waits
for another ack event from OUTPUT. The model of OUTPUT is shown in Fig. 2 (b),
which is similar to INPUT. The system property ϕ, as shown in Fig. 2 (c), is that input
and output events should alternate and the time difference between every two con-

Fig. 3. GUI of the PAT Model Checker

secutive events should not exceed five time units. Fig. 3 shows the INPUT component
modeled in PAT (the editor for drawing ERAs is heavily influenced by UPPAAL, one
of the most popular timed automata model checkers), where a double circle represents
the initial state and a state labeled with “A” represents an accepting state.

The flow of the proposed timed compositional verification is a two-phase process
using the TL∗ algorithm [8] to automatically learn the timed assumption needed by
AGR to prove or disprove the property. The first, untimed verification, phase constructs
the untimed assumption, and then the second, timed verification, phase refines the un-
timed assumption into timed one and concludes the verification result (interested read-
ers are referred to the technical report [2] for the detailed algorithm). In PAT, users
can choose to use either the compositional or monolithic approach to verify the timed
systems. After verification, PAT shows that the I/O system satisfies the property ϕ.

3 Experimental Results and Discussion

To show the feasibility and scalability of our tool, we present verification results of four
different applications, namely the CSS, GSS, FMS, and AIP systems, in Table 1. The
details of the four systems, their models, and the verified properties can be found in [1]
or in Appendix. The experimental results were obtained by running PAT on a Windows
7 machine with a 2.27 GHz Intel(R) Core(TM) i3 processor and 4 GB RAM. We also
compared our approach with the UPPAAL model checker; however, we do not list the
verification time of UPPAAL for verifying the AIP system because UPPAAL does not
support events on transitions such that the AIP system cannot be modeled in UPPAAL.
When the system size is small, compositional approach does not outperform monolithic
verification or UPPAAL because of the overhead of learning iterations; when the num-
ber of components increases, the learning iterations compensate for the large global
state space and compositional approach can reduce the verification time and the mem-
ory usage significantly. For the FMS-4 system, the monolithic approach and UPPAAL
cannot even finish the verification using 4 GB memory.

Table 1. Verification Results

Monolithic Compositional UPPAAL
System n |CΣ | |P 6|=| |L|max |δ|max Time Mem |L|max |δ|max Time Mem Time

|P | (secs) (MB) (secs) (MB) (secs)
CSS 3 6 0/6 11 20 0.03 0.16 19 50 0.06 0.77 0.05
GSS 3 3 2/3 29 46 0.03 0.13 56 107 0.03 0.69 0.06

FMS-1 5 3 1/3 193 514 0.03 1.18 60 138 0.03 0.89 0.08
FMS-2 10 6 3/6 76, 305 396, 789 40.71 114.08 1, 492 4, 952 0.66 6.60 2.05
FMS-3 11 6 5/7 201, 601 1, 300, 566 70.02 295.89 3, 150 16, 135 1.14 12.07 9.87
FMS-4 14 8 3/9 − − − ROM 26, 320 127, 656 51.02 41.41 ROM

AIP 10 4 5/10 104, 651 704, 110 78.05 149.68 2, 992 12, 971 1.90 7.39 N/A

n: # of components; |CΣ |: # of event-recording clocks; |P |: # of properties; |P 6|=|: # of vio-
lated properties; |L|max: # of visited locations during verification; |δ|max: # of visited tran-
sitions during verification; ROM: run out of memory

Discussion. AGR has been applied to model checking to alleviate the state space
explosion problem [5]. However, the construction of the assumptions for AGR usually
requires nontrivial creativity and experience, which limits the impact of AGR. Cobleigh
et al. [6] proposed a framework that generates the assumptions of components automati-
cally using the L∗ algorithm [4]. This work was a breakthrough of automating composi-
tional verification for untimed systems. Grinchtein et al. [7] proposed three algorithms
for learning ERAs; however, the time complexity of the algorithms depend exponen-
tially on the largest constant appearing in the time constraints. In [8], we proposed a
more efficient polynomial time algorithm, TL∗, for learning ERAs. Starting from 2010,
ERA module in PAT has come to a stable stage with solid testing. We successfully
applied it to verify real-time systems ranging from classical concurrent algorithms to
real world problems. In the future, we plan to use different techniques to generate the
assumptions and to extend the framework using other proof rules of AGR.

References

1. https://sites.google.com/site/shangweilin/era-pat.
2. https://sites.google.com/site/shangweilin/technical-reports.
3. R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: A determinizable class of timed

automata. Theoretical Computer Science, 211(1-2):253–273, 1999.
4. D. Angluin. Learning regular sets from queries and counterexamples. Information and Com-

putation, 75(2):87–106, 1987.
5. E. M. Clarke, D. E. Long, and M. K. L. Compositional model checking. In LICS 1989, pages

353–362, 1989.
6. J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. Learning assumptions for compo-

sitional verification. In TACAS, volume 2619 of LNCS, pages 331–346, 2003.
7. O. Grinchtein, B. Jonsson, and M. Leucker. Learning of event-recording automata. Theorec-

tical Computer Science, 411(47):4029–4054, 2010.
8. S. W. Lin, E. André, J. S. Dong, J. Sun, and Y. Liu. An efficient algorithm for learning event-

recording automata. In ATVA, volume 6996 of LNCS, pages 463–472, 2011.
9. J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards flexible verification under fairness. In

CAV, volume 5643 of LNCS, pages 709–714, 2009.

A Details of the Experiments

To show the feasibility and scalability of our tool with compositional timed verification,
we applied PAT with the ERA module on the following four applications.

– CSS. A client-server system consists of three components, namely one server and
two clients. A resource is to be shared by the two clients in a mutually exclusive
way. The server is responsible for synchronizing the use of the resource by the
two clients. Three properties requiring that two clients cannot access the resource
simultaneously and that each client can access the resource within two time units
after its request are verified.

– GSS. A gas station system consists of five components: one operator, one queue,
one pump, and two customers. Two customers can fill gas at this gas station. Three
properties requiring that customers should be served in order and that each cus-
tomer can start filling gas within three time units after his payment are verified.

– FMS. A flexible manufacturing system (FMS) produces blocks with a cylindrical
painted pin from raw blocks and raw pegs. It consists of fourteen devices: three con-
veyors, two mills, a lathe, a painting device, six robots, and an assembly machine.
The devices are connected through nine buffers, and the capacity of each buffer is
one part. We modeled the FMS system in a constructive way such that four ver-
sions of models have been obtained, namely FMS-1 (the simplest one), FMS-2 (the
medium one), FMS-3 (a complex one), and FMS-4 (the most complex one). Prop-
erties requiring that each buffer should not overflow or underflow and that output
of each buffer should be within three time units after its input are verified.

– AIP. The AIP manufacturing system produces two products from two types of
materials. It consists of ten components, namely an I/O station, three transport units,
two assembly stations, three external loops, and a central loop. Properties requiring
that the routes of the two types of materials should be opposite and that output of
each loop should be within three time units after its input are verified.

The details of the four systems, their models, and the verified properties can be
found in [1]. Tables 2 to 5 show the verification results of the four timed systems using
the proposed approach and traditional monolithic timed model checking that constructs
the timed global state space based on zone abstraction, respectively. For the FMS sys-
tem, we only show the FMS-4 verification results here because FMS 1-3 are subsystems
of FMS-4; however, they can still be found in [1]. Note that both the monolithic ver-
ification and our approach adopt on-the-fly technique, i.e., the verification generates a
counterexample without constructing the whole state space if the property is violated.
Thus, both monolithic verification and our compositional approach may find a coun-
terexample quickly if the property is violated. When the number of components in-
creases provided that the property is satisfied, our compositional approach outperform
monolithic one significantly. For the FMS system, monolithic approach cannot even
finish the verification process using 4G memory for the satisfied properties. We also
compared our approach with the UPPAAL model checker; however, we do not list the
verification time of UPPAAL for verifying the AIP system because UPPAAL does not
support events on transitions such that the AIP system cannot be modeled in UPPAAL.
We can also observe that our compositional approach outperforms UPPAAL.

Table 2. Verification Results of CCS

Monolithic Compositional UPPAAL
Spec |CΣ | Satisfied? |L|max |δ|max Time Mem |L|max |δ|max Time Mem Time

(secs) (MB) (secs) (MB) (secs)
1 6 YES 8 16 0.01 0.13 19 50 0.04 0.77 0.04
2 6 YES 11 20 0.01 0.16 12 21 0.01 0.47 0.04
3 6 YES 11 20 0.01 0.16 12 21 0.01 0.48 0.04

Total 0.03 0.06 0.12

Table 3. Verification Results of GSS

Monolithic Compositional UPPAAL
Spec |CΣ | Satisfied? |L|max |δ|max Time Mem |L|max |δ|max Time Mem Time

(secs) (MB) (secs) (MB) (secs)
1 3 NO 16 17 0.01 0.09 56 107 0.01 0.66 0.04
2 3 NO 17 19 0.01 0.11 56 107 0.01 0.69 0.05
3 3 YES 29 46 0.01 0.13 33 79 0.01 0.60 0.04

Total 0.03 0.03 0.13

Table 4. Verification Results of FMS-4

Monolithic Compositional UPPAAL
Spec |CΣ | Satisfied? |L|max |δ|max Time Mem |L|max |δ|max Time Mem Time

(secs) (MB) (secs) (MB) (secs)
1 8 YES − − − ROM 26, 320 127, 656 9.17 41.14 ROM
2 8 YES − − − ROM 26, 320 127, 656 9.13 41.04 ROM
3 8 NO 64 105 0.12 0.84 15 20 0.01 0.70 0.78
4 8 NO 100 182 0.03 1.33 24 35 0.01 0.68 ROM
5 8 YES − − − ROM 26, 320 127, 656 8.79 40.19 ROM
6 8 YES − − − ROM 26, 320 127, 656 9.03 41.00 ROM
7 8 YES − − − ROM 19, 440 101, 832 7.73 41.41 ROM
8 8 NO 118 244 0.02 0.31 24 35 0.01 0.52 0.06
9 8 YES − − − ROM 26, 320 127, 656 7.14 37.06 ROM

Total N/A 51.02 N/A

Table 5. Verification Results of AIP

Monolithic Compositional UPPAAL
Spec |CΣ | Satisfied? |L|max |δ|max Time Mem |L|max |δ|max Time Mem Time

(secs) (MB) (secs) (MB) (secs)
1 4 NO 137 382 0.02 0.25 224 709 0.02 1.69 −
2 4 NO 368 1, 173 0.04 3.39 524 1, 951 0.07 0.99 −
3 4 NO 651 2, 207 0.07 4.39 524 1, 951 0.09 2.32 −
4 4 NO 63 145 0.01 0.68 224 689 0.02 1.13 −
5 4 YES 104, 651 704, 110 17.19 149.68 2, 745 12, 861 0.34 5.86 −
6 4 YES 104, 651 704, 110 16.98 145.43 2, 745 12, 861 0.34 6.05 −
7 4 YES 86, 051 562, 682 13.41 120.28 2, 271 10, 267 0.26 6.14 −
8 4 YES 86, 051 563, 582 13.28 120.44 2, 253 10, 170 0.26 5.71 −
9 4 YES 104, 651 704, 110 17.04 145.73 2, 922 12, 971 0.49 7.39 −
10 4 NO 14 15 0.01 0.12 14 15 0.01 0.82 −

Total 78.05 1.90 N/A

