PAT – Process Analysis Toolkit – Performance Evaluation Report
Date: Monday, February 11, 2008 
Version: PAT 1.1.2

Machine: SOCCF-SE-004 Windows XP running on an Intel Pentium 4 3.0G CPU with 1 GB memory.

Remarks: SAT-based bounded model checker must be fine-tuned before evaluation. Note that we are actively profiling and fine-tuning PAT and thus the experiment results may vary day-to-day.  
In this report, we present a number of experiments on using PAT (i.e., the explicit model checker PAT-Exp and the bounded model checker PAT-SAT) to verify a variety of system models. 

Experiment #1: the classic dining philosopher example

· The following parameters are varying: 

· N: the number of the dining philosophers; of value 2 – 100. This is to demonstrate how large a system the verifiers can handle. The following is the model without event-based fairness,
P(i) = get.i.(i+1)%N -> get.i.i -> eat.i -> put.i.(i+1)%N -> put.i.i -> think.i -> P(i);

F(x) = get.x.x -> put.x.x -> F(x) [] get.(x-1)%N.x -> put.(x-1)%N.x -> F(x);

Phils() = ||x:{0..N-1}@(P(x)||F(x));

· hasFair: whether the model is embedded with event-based fairness. This is to demonstrate whether the verifiers can handle fairness enhanced systems. The following is the model with partial event-based fairness (just enough to guarantee non-starvation),

P(i) = wl(get.i.(i+1)%N) -> get.i.i -> eat.i -> put.i.(i+1)%N -> put.i.i -> think.i -> P(i);

F(x) = get.x.x -> wl(put.x.x) -> F(x) [] get.(x-1)%N.x -> wl(put.(x-1)%N.x) -> F(x);

Phils() = ||x:{0..N-1}@(P(x)||F(x));

· partialFair: whether the model is embedded with only sufficient fairness to make the non-starvation property true or else all events are fair. This is to demonstrate whether the verifiers can handle large number of fairness constraints. The following is the model with all event-based fairness,

P(i) = wl(get.i.(i+1)%N) -> wl(get.i.i) -> wl(eat.i) -> wl(put.i.(i+1)%N) -> wl(put.i.i) -> wl(think.i) -> P(i);

F(x) = wl(get.x.x) -> wl(put.x.x) -> F(x) [] wl(get.(x-1)%N.x) -> wl(put.(x-1)%N.x) -> F(x);

Phils() = ||x:{0..N-1}@(P(x)||F(x));

· The following are the properties to verify:

· A: deadlock-freeness, i.e., whether a deadlock is reachable.
· B: []<>eat.0, i.e., whether the first philosopher can always eat.
· C: []<>eat.0 && []<>eat.1 && … && []<>eat.(n-1), i.e., non-starvation. 
· The following are experiment results for PAT-Exp:

· Remarks: In the presence of counterexamples, the algorithm produces one rather quickly. However, because of our way of modeling, i.e., almost all events are synchronized, partial order reduction helps little. Thus, it takes considerably long to answer “yes”. 
	Setting
	Property
	Result
	5
	6
	7
	8
	9
	10
	20
	40
	80
	160

	hasFair = false, partialFair = false
	A
	No
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1
	0.2
	1.2
	8.2

	Same above 
	B
	No
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1
	0.4

	Same above 
	C
	No
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1
	0.2
	0.3
	* 

	hasFair = true, partialFair = true 
	B
	Yes
	0.7
	3.0
	12.6
	57.2
	372
	-
	-
	-
	-
	-

	Same above 
	C
	Yes
	2.7
	14.8
	72.7
	418.7
	-
	-
	-
	-
	-
	-

	hasFair = true, partialFair = false 
	B
	Yes
	0.9
	4.2
	17.7
	74.5
	-
	-
	-
	-
	-
	-

	Same above  
	C
	Yes
	2.7
	14.8
	76
	409.0
	-
	-
	-
	-
	-
	-



* take considerably long to produce the Buchi automaton.
· The following are experiment results for PAT-SAT:

· Remarks: To be performed.

Experiment #2: the classic bridge crossing puzzle
· The following parameters are varying: 

· N: the number of minutes used for all soldiers to cross the bridge. The following is the model,
Man1 = 0; Man2 = 0; Man3 = 0; Man4 = 0; time = 0; 

ThisSide() = [time < N+1 && Man1 == 0 && Man2 == 0]go12{Man1 = 1; Man2= 1; time = time+2;} -> ThatSide()



[] [time < N+1 && Man1 == 0 && Man3 == 0]go13{Man1 = 1; Man3= 1; time = time+5;} -> ThatSide()



[] [time < N+1 && Man1 == 0 && Man4 == 0]go14{Man1 = 1; Man4= 1; time = time+10;} -> ThatSide()



[] [time < N+1 && Man2 == 0 && Man3 == 0]go23{Man2 = 1; Man3= 1; time = time+5;} -> ThatSide()



[] [time < N+1 && Man2 == 0 && Man4 == 0]go24{Man2 = 1; Man4= 1; time = time+10;} -> ThatSide()



[] [time < N+1 && Man3 == 0 && Man4 == 0]go34{Man3 = 1; Man4= 1; time = time+10;} -> ThatSide()



[] [time < N+1 && Man1 == 0]go1{Man1 = 1; time = time+1;} -> ThatSide()



[] [time < N+1 && Man2 == 0]go2{Man2 = 1; time = time+2;} -> ThatSide()



[] [time < N+1 && Man3 == 0]go3{Man3 = 1; time = time+5;} -> ThatSide()



[] [time < N+1 && Man4 == 0]go4{Man4 = 1; time = time+10;} -> ThatSide();

ThatSide() = [time < N+1 && Man1 == 1 && Man2 == 1]back12{Man1 = 0; Man2 = 0; time = time+2;} -> ThisSide()



[] [time < N+1 && Man1 == 1 && Man3 == 1]back13{Man1 = 0; Man3 = 0; time = time+5;} -> ThisSide()



[] [time < N+1 && Man1 == 1 && Man4 == 1]back14{Man1 = 0; Man4 = 0; time = time+10;} -> ThisSide()



[] [time < N+1 && Man2 == 1 && Man3 == 1]back23{Man2 = 0; Man3 = 0; time = time+5;} -> ThisSide()



[] [time < N+1 && Man2 == 1 && Man4 == 1]back24{Man2 = 0; Man4 = 0; time = time+10;} -> ThisSide()



[] [time < N+1 && Man3 == 1 && Man4 == 1]back34{Man3 = 0; Man4 = 0; time = time+10;} -> ThisSide()



[] [time < N+1 && Man1 == 1]back1{Man1 = 0; time = time+1;} -> ThisSide()



[] [time < N+1 && Man2 == 1]back2{Man2 = 0; time = time+2;} -> ThisSide()



[] [time < N+1 && Man3 == 1]back3{Man3 = 0; time = time+5;} -> ThisSide()



[] [time < N+1 && Man4 == 1]back4{Man4 = 0; time = time+10;} -> ThisSide();

· The following are the properties to verify:

· reachability: all soldiers may cross the bridge within N minutes. 

· The following are experiment results:

· Remarks: the experiments on PAT-SAT are yet to be performed.  
	N
	16
	17
	20
	50
	100

	PAT-Exp
	0.1
	0.1
	0.1
	0.1
	0.1

	PAT-SAT
	-
	-
	-
	-
	-

	result
	No
	Yes
	Yes
	Yes
	Yes


 Experiment #3: the Milner’s cyclic scheduler
· The following parameters are varying: 

· N: the number of processes. The following is the model without event-based fairness,
start()=(bang->Stop);

cycle(x) = ([x==0]((bang->(a.0->((work.0->( init.1->cycle(0)))[]( init.1->(work.0->cycle(0)))))))



[] (init.x->(a.x->((work.x->(init.(x+1)%N->cycle(x)))[](init.(x+1)%N->(work.x->cycle(x)))))));

aMilnerScheduler() = start() || (||x:{0..N-1}@cycle(x));

· hasFair: whether the model is enriched with event-based fairness. The following is the model with event-based fairness.
start()=(bang->Stop);

cycle(x) = ([x==0]((bang->(a.0->((work.0->(wl(init.1)->cycle(0)))[](wl(init.1)->(work.0->cycle(0)))))))



[] (init.x->(a.x->((work.x->(wl(init.(x+1)%N)->cycle(x)))[](wl(init.(x+1)%N)->(work.x->cycle(x)))))));

aMilnerScheduler() = start() || (||x:{0..N-1}@cycle(x));

· The following are the properties to verify:

· A: Deadlock-freeness
· B: []<>work0
· The following are experiment results using PAT-Exp: 

· Remarks: The embedded fairness constraints have little impact on the partial order reduction, and therefore the reduction remains optimally effective for this example. Note that fairness constraints have no effect on deadlock-freeness checking. Note that without partial order reduction, 20 processes would cause state space explosion. 
	Setting\N
	Property
	Result
	10
	20
	40
	80
	160
	200

	hasFair = false
	A
	Yes
	0.1
	0.1
	0.1
	0.4
	1.9
	3.6

	hasFair = false
	B
	Yes
	0.1
	0.3
	1.1
	5.0
	25
	43.0

	hasFair = true
	B
	Yes
	0.1
	0.3
	0.8
	3.0
	13.4
	21.8*


*fairness constraints may help prune states early.
· The experiments on PAT-SAT are skipped for two reasons.  SAT-based model checking at current stage is mainly for falsification. Identifying a reasonable bound threshold is non-trivial under event-based fairness. We shall research into this part in the future.   

Experiment #4: the classic Readers/Writers problem.

· The following parameters are varying: 

· N: the number of processes. The following is the model without event-based fairness,
Reader()=startread->stopread->Reader();

Writer()=startwrite->stopwrite->Writer();

Reading(x)=(startread->Reading(x+1))[] (stopread->Reading(x-1) <<x>1>> Controller());

Controller()=((startread->Reading(1))[]((stopread->(error->Controller()))[](startwrite->Writing())));

Writing()=((stopwrite->Controller())[](stopread->(error->Writing())));

aReadersWriters()=(Controller() ||(|||x:{0..N}@Reader()) ||(|||x:{0..N}@Writer()));

· hasFair: whether the model is enriched with event-based fairness.

Reader()=(startread->(wl(stopread)->Reader()));

Writer()=(startwrite->(wl(stopwrite)->Writer()));

Reading(x)=(startread->Reading(x+1))[] (stopread->Reading(x-1) <<x>1>> Controller());

Controller()=((startread->Reading(1))[]((stopread->(error->Controller()))[](startwrite->Writing())));

Writing()=((stopwrite->Controller())[](stopread->(error->Writing())));

aReadersWriters()=(Controller() ||(|||x:{0..N}@Reader()) ||(|||x:{0..N}@Writer()));

· The following are the properties to verify:

· A: Deadlock-freeness

· B: []!error
· The following are experiment results using PAT-Exp: 

· Remarks: 

	Setting\N
	Property
	Result
	10
	20
	40
	80
	160
	200

	hasFair = false
	A
	Yes
	0.1
	0.1
	0.4
	2.5
	22.4
	42.7

	Same above
	B
	Yes
	0.1
	0.1
	0.7
	5.0
	43.2
	78.0

	hasFair = true
	A
	Yes
	0.1
	0.1
	0.3
	2.4
	20.0
	41.8

	Same above
	B
	Yes
	0.1
	0.3
	0.7
	4.7
	40.1
	89.0


Experiment #5: the classic sliding game

· The following parameters are varying: 

· N: the size of the board is N * N.

b= [2,6,1,0,5,10,3,4,9,13,12,8,14,11,7,15]

e = 3;

Left() = [e!=3&&e!=7&&e!=11&&e!=15]goleft{board[e]=board[e+1];board[e+1]=0;e:=e+1;} -> Game();

Right() = [e!=0&&e!=4&&e!=8&&e!=12]goright{board[e]=board[e-1];board[e-1]=0;e:=e-1;} -> Game();

Up() = [e!=12&&e!=13&&e!=14&&e!=15]goup{board[e]=board[e+4];board[e+4]=0;e:=e+4;} -> Game();

Down() = [e!=0&&e!=1&&e!=2&&e!=3]godown{board[e]=board[e-4];board[e-4]=0;e:=e-4;} -> Game();

Game() = Left() [] Right() [] Up() [] Down();

· The following are the properties to verify:

· A: reachability, i.e., move the blocks to the desired setting. 

· B: []b[e]==0, i.e., from any setting, it is possible to reach the desirable configuration.

· The following are experiment results on PAT-Exp:

	Setting\N
	Result
	3
	4

	A
	Yes
	14
	-

	B
	Yes
	52.7
	-


Experiment #5: Peterson’s Algorithm

