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Sensor Networks (SNs)

Wireless communication: unicast, broadcast, dissemination, etc.
Interrupt-driven behaviors.
Hardware device: light, temperature,
movement, etc.
Applications:

Transportation: railway signaling
Military: enemy intrusion detection, autopilot
Environment: fire detection, landslide
detection

Reliability is important.

2

1

3
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Sensor Network Programs

TinyOS: a lightweight operating system [LMP+04]
Designed to run on small, wireless sensors
Concurrent, interrupt-driven execution model
Component libraries for device-related operations

NesC (Networked Embedded System C) [GLvB+03]
A dialect of C
Component-based programming model
Extension for concepts like command, event, tasks, etc
Operations are split-phase
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Formal Definitions of SNs [ZSL+11]

A sensor network N is defined as {S1,S2, · · · ,Sn} where
Si(0 6 i 6 n) is a sensor with the identity i (i.e., the i th sensor);
Local state: a state C for a sensor S is (V ,Q,B,P) where V is the
valuation of variables, Q is the task queue, B is the message
buffer and P is the program counter;
Global state: a state C for a network N (global state) is
{C1,C2, · · · ,Cn}, where Ci(1 6 i 6 n) is the i th sensor’s state.
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Model Checking SN Implementation

Model checkers: T-Check [LR10], Anquiro [MVO+10],
Tos2CProver [BK10]
Limitations:

few deals with the (equivalently) complete state space
adopts stateless model checking techniques [LR10]
applies “abstraction” that ignores certain behavior [MVO+10]

few deals with liveness properties but only safety properties
few reduction techniques are explored

only deals with communication event pairs [LR10]
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Two-level Concurrency of SNs

Network level: interleaving among different sensors

Ci
e→ C′

i , e 6= si .send .dst .msg, e 6= si .idle, e 6= si .stop
[ nw1 ]

{C0, · · · ,Ci , · · · ,Cn}
e
↪→ {C0, · · · ,C′

i , · · · ,Cn}

Sensor level: concurrency of tasks and interrupt handlers
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Motivating Example

1 event vo id Boot . booted ( ) {
2 c a l l Read . read ( ) ;
3 post send_task ( ) ;
4 }
5 event vo id Read . rdDone ( i n t v ) {
6 value += v ;
7 }
8 task vo id send_task ( ) {
9 busy = TRUE;

10 c a l l Send . send ( count ) ;
11 }
12 event vo id Send . sendDone ( ) {
13 busy = FALSE;
14 }
15 event vo id Receive . rece ive ( ) {
16 count ++;
17 post send_task ( ) ;
18 }

(a) Example Code
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Motivating Example
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Two-level POR
Overview

Exploring the state space by the SN Cartesian semantics
Static analysis to identify w.r.t to a given property ϕ

local independence (to reduce intra-sensor concurrency)
variable access conflicts
ϕ-visible variable assignment
task queue equivalence

global independence (to reduce inter-sensor concurrency)
sending a message updates some sensors’ message buffer and
triggers a receive interrupts that eventually modifies the task queue

Reduction for model checking
establishing a smaller state space but preserving ϕ
applying on-the-fly model checking
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Independence Analysis
Local Independence

Definition (Local Independence)
Given a state C, α1, α2 ∈

∑
, and α1, α2 ∈ enable(C), actions α1 and

α2 are said to be local-independent, denoted by α1 ≡LI α2, if the
following conditions are satisfied.

1 ex(ex(C, α1), α2) =v ex(ex(C, α2), α1);
2 Q(ex(ex(C, α1), α2)) ' Q(ex(ex(C, α2)), α1).

Local effects of an action
updating an variable or enqueuing a task

Equivalent execution sequences when two actions
access variables exclusively
resulting in equivalent task queues
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Independence Analysis
Local Independence

1 event vo id Boot . booted ( ) {
2 c a l l Read . read ( ) ;
3 post send_task ( ) ;
4 }
5 event vo id Read . rdDone ( i n t v ) {
6 value += v ;
7 }
8 task vo id send_task ( ) {
9 busy = TRUE;

10 c a l l Send . send ( count ) ;
11 }
12 event vo id Send . sendDone ( ) {
13 busy = FALSE;
14 }
15 event vo id Receive . rece ive ( ) {
16 count ++;
17 post send_task ( ) ;
18 }

Let W (t) = { variables written by
task t}, W (t) = {variables only
read by task t}:
trd : W (trd) = {value}, R(trd) = ∅;
trv :
W (trv ) = {count ,busy}, R(trv ) = ∅;
(W (trd)

⋃
R(trd))

⋂
W (ttv ) =

R(ttd)
⋂

(W (trv )
⋃

R(trv )) = ∅;
trd ≡TI trv (trd is independent with
task trv ).
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Independence Analysis
Local Independence

Q = 〈t0, · · · , tn〉 is a task queue;
Swap(Q, i) = 〈t0, · · · , ti+1, ti , · · · , tn〉;

Definition (Task Queue Equivalence)
Given two task queue Q and Q′, they are equivalent (Q ' Q′) iff

Q0 = Q ∧ ∃m > 0,Qm = Q′ ∧ (∀ k ∈ [0,m). ∃ ik . tk
ik
≡TI

tk
ik+1 ∧ Qk+1 = Swap(Qk , ik )) where tk

i is the i th task in Qk .

since trd ≡TI trv , thus 〈trd , trv 〉 ' 〈trd , trv 〉.
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Independence Analysis
Global Independence

Definition (Global Independence)
Let ti ∈ Tasks(Si) and tj ∈ Tasks(Sj) such that Si 6= Sj . Tasks ti and tj
are said to be global-independent, denoted by ti ≡GI tj , iff
∀ C ∈ Γ. ti , tj ∈ EnableT (C)⇒ ∀Ci ∈ Ex(C, ti). ∃ Cj ∈
Ex(C, tj). Ex(Ci , tj) � Ex(Cj , ti) and vice versa.

Informally, executing two tasks from different sensors in different
orders resulting in equivalent sequences if

there is no communication occurring in either ti or tj ;
if ti sends a message to Sj , then tj is independent of all receive
tasks of Sj , and vice versa.
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Sensor Network Cartesian Semantics
Cartesian POR for SNs

Two-level independence analysis
State space generation by Cartesian semantics [GFYS07]
Reduction of intra-sensor concurrency by persistent set
technique [CGP01]
Preserving LTL-X properties, i.e., LTL formulas without the X
operator
Immediately integrated with existing verification algorithms

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 15 / 35



Sensor Network Cartesian Semantics
Sensor Prefix

Definition (Sensor Prefix)
A prefix p ∈ Prefix(S) is defined as a tuple
(〈C0, α1, C1, · · · , αm−1, Cm〉, {br0,br1, · · · ,brn}), where
∀1 ≤ i < m. αi ∈

∑
S ∧ Ci

αi
↪→ Ci+1, and ∀0 ≤ i ≤ n.bri ∈ Prefix(S, Cm).
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Sensor Network Cartesian Semantics
Definition

Let W (α) be the set of variables written by an action α, and R(ϕ) be
the set of variables read in the target property ϕ.

Definition (SN Cartesian Vector)

Given a global property ϕ ∈ Gprop, a vector (p1, · · · ,pi , · · · ,pn) is a
sensor network cartesian vector for N w.r.t. ϕ from a network state C if
the following conditions hold:

1 pi ∈ Prefix(Si , C);
2 ∀ t ∈ tasks(pi). t 6⊂GI Si ⇒ t ∈ LastT (pi);
3 ∀α ∈ acts(pi). α 6∈ safe(ϕ)⇒ α ∈ lastAct(pi) where α ∈ safe(ϕ),

iff Wα ∩ R(ϕ) = ∅.
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Algorithms
Overview

Exploring the state space by the SN Cartesian semantics
handling intra-sensor concurrency
establishing sensor prefixes
generating sensor network Cartesian vectors (SNCVs)
building state space by SNCVs
applying model checking algorithms directly
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Algorithms
State Exploration

Generation of subsequent states for on-the-fly model checking
algorithms:

Algorithm 1 GetSuccessors(C, ϕ)

1: list ← ∅
2: p ← pfx(C)
3: if Next(p, C) 6= ∅ then
4: {no successors of C in p}
5: list ← Next(p, C)
6: else
7: {generate a new sncv from C}
8: scv ← GetNewCV (C, ϕ)

9: for all i ← 1 to n do
10: {traverse each sensor prefix to ob-

tain the successors of C}
11: list ← list ∪ {Next(scv [i], C)}
12: end for
13: end if
14: return list
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Algorithms
Sensor Network Cartesian Vector Generation

Algorithm 2 GetNewCV (C, ϕ)

1: scv ← (

n︷ ︸︸ ︷
〈〉, · · · , 〈〉)

2: for all Si ∈ N do
3: {generate prefix for sensors}
4: visited ← {C}
5: workingLeaf ← ∅
6: {generate a prefix from S}
7: pi ← GetPrefix(Si , C, ϕ)
8: for all lp ∈ leaf (pi ) do
9: if l̂ast(lp) 6∈ visited

and Extensible(lp,Si , ϕ) then
10: workingLeaf .Push(lp)
11: visited ← visited ∪ l̂ast(lp)
12: end if
13: end for
14: while workingLeaf 6= ∅ do
15: pk ← workingLeaf .Pop()

16: visited ← visited ∪ {l̂ast(pk )}
17: {generate a new prefix from the last

state of pk }
18: p′k ← GetPrefix(Si , l̂ast(pk ), ϕ)
19: pk ← (pk , {p′k})
20: for all lp ∈ leaf (p′k ) do
21: if Extensible(lp,Si , ϕ) and

l̂ast(lp) 6∈ visited then
22: workingLeaf .Push(lp)
23: end if
24: end for
25: end while
26: {update the i th element of scv with pi }
27: scv [i]← pi
28: end for

29: return scv

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 20 / 35



Algorithms
Sensor Prefix Generation

Algorithm 3 GetPrefix(S, C, ϕ)

1: p ← 〈C〉
2: t ← getCurrentTsk(C,S)
3: {extend p by executing task t}
4: ExecuteTask(t ,p, ϕ, {C},S)
5: if t terminates then
6: for all pi ∈ leaf (p) do

7: C′ ← l̂ast(pi)
8: irs ← GetItrs(C′,S)
9: p′

i ← RunItrs(C′, itrs,S)
10: pi ← (pi , {p′

i })
11: end for
12: end if
13: return p
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Algorithms
Task Execution

Algorithm 4 ExecuteTask(t , lp, ϕ, Cs,S)

1: {let α be the current action of t}
2: α← GetAction(t , C)
3: C ∈ l̂ast(lp)
4: {post actions interleave interrupts}
5: if α← post(t ′) then
6: itrs ← GetItrs(S, C)
7: {interleave α and interrupts itrs}
8: p ← RunItrs(C, itrs ∪ {α},S)
9: lp ← (lp, {p})

10: else
11: {non-post actions}
12: C′ ← ex(C, α)
13: tmp ← 〈C, α, C′〉
14: setPfx(C′, tmp)
15: lp ← (lp, {tmp})

16: end if
17: lps ← leaf (lp)
18: {stop executing t when t terminates or a non-

safe action is encountered}
19: if α 6∈ safe(ϕ) or terminate(t , α) then
20: return
21: end if
22: for all lp′ ∈ lps do
23: {extend lp only if no loop in it}
24: if l̂ast(lp′) 6∈ Cs then
25: Cs′ ← Cs ∪ states(lp′)
26: {executing t to extend lp′}
27: ExecuteTask(t , lp′, ϕ, Cs′,S)
28: end if

29: end for
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Algorithms
Soundness

Theorem
Let T be the transition system of N , where N = (R, {S0, · · · ,SN}).
Let T ′ be the transition system obtained after applying the two-level
partial order reduction w.r.t. ϕ over N . Then T ′ and T are stuttering
equivalent w.r.t. ϕ.

Preservation of LTL-X properties
It has been shown that if two structures T , T ′ are stuttering equivalent
w.r.t. an LTL-X property ϕ, then T ′ |= ϕ if and only if T |= ϕ [CGP01].
Therefore, our method preserves LTL-X properties.
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PAT
www.patroot.com

Extensible and modularized
Model checking algorithms for various semantic models
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PAT
www.patroot.com

More than 15 domain-specific model checkers developed on PAT
2300+ registered users from 550+ organizations in 58 countries

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 24 / 35



NesC@PAT

Implemented as a module in PAT model checking framework
Fully automatic and domain-specific for NesC and WSNs
Safety Properties

User-defined
Pre-defined low-level safety properties
e.g, a infinite task, array index overflow, null pointer access

Liveness (temporal) properties
e.g, a buffer is released infinitely often
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Two-level POR implementation
NesC@PAT
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Motivating Example Revisited

Figure: Cartesian state space of SN with size 2

Statistics of checking deadlockfree property, i.e, R(ϕ) = ∅.

Size Result #State #Trans Time(s) OH(ms) #States
wo POR

POR
Ratio

2 X 2040 2129 0.1 1.18 45K 0.04
3 X 30K 31827 1.4 1.30 9M 3× 10−3

4 X 276K 294K 14 2.60 2025M 1× 10−4

6 X 2.3M 2.5M 129 30 9.11e+13 2.5× 10−8
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More Examples
Configurations

Trickle
LOC per sensor: 332
Safety: false updating
operation
Livenss: 3AllUpdated

Anti-theft
LOC per sensor: 3391
Safety: deadlock free
Liveness: 2(theft
⇒ 3alert)

App
(LOC /
sensor)

Property Size #State #Trans Time(s) OH
#States
wo
POR

POR Ratio

Anti-theft
(3391)

Deadlock
free 3 1.2M 1.2M 791 95 >2.3G < 6× 10−4

2(theft⇒
3alert)

1.3M 1.4M 2505 108 >4.6G < 3× 10−4

Trickle
(332)

3
AllUpdated

2 3268 3351 3 2 111683 3× 10−2

3 208K 222K 74 3 >23.7M < 8× 10−3

4 838K 947K 405 4 >5.4G < 2× 10−4

5 13.3M 15.7M 8591 5 >1232.2G < 1× 10−5

Table: Experiment Results of NesC@PAT with POR
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Results
Discussions

Overhead of independence analysis:
negligible, within 1 second
POR reduction ratio: at least 102-108

POR ratio = #State wt POR
#State wo POR

Safety properties: #State wo POR ≈ S1 × S2 × · · · × Sn
LTL properties: #State wo POR ≈ (S1 × S2 × · · · × Sn)× BA

App
(LOC /
sensor)

Property Size #State #Trans Time(s) OH
#States
wo
POR

POR Ratio

Anti-theft
(3391)

Deadlock
free 3 1.2M 1.2M 791 95 >2.3G < 6× 10−4

2(theft⇒
3alert)

1.3M 1.4M 2505 108 >4.6G < 3× 10−4

Trickle
(332)

3
AllUpdated

2 3268 3351 3 2 111683 3× 10−2

3 208K 222K 74 3 >23.7M < 8× 10−3

4 838K 947K 405 4 >5.4G < 2× 10−4

5 13.3M 15.7M 8591 5 >1232.2G < 1× 10−5

Table: Experiment Results of NesC@PAT with POR
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Comparison with T-Check

Checking the same safety property of Trickle

Size
NesC@PAT T-Check

wt POR wo POR Ratio Bound wt POR wo POR Ratio#State Exh Time(s) #State Exh Time(s)
2 3012 Y 2 52.3K 6× 10−2 20 4765 Y 1 106.2K ≈ 4 ×

10−2

3 120K Y 20 >11.8M < 1× 10−2 12 66.2K N 1 13.5M ≈ 5 ×
10−3

50 12.6M Y 283 NA NA
4 368K Y 58 >2.7G < 1× 10−4 10 56.7K N 1 41.8M ≈ 1 ×

10−3

50 420.7M Y 1291 NA NA
5 4.2M Y 638 >616G < 7× 10−6 8 85.2K N 1 17.4M ≈ 1 ×

10−3

50 NA N >12600 NA NA

T-Check explores more states per second
T-Check adopts stateless model checking
NesC@PAT requires shorter time to for state space exploration
T-Check may explore the same path multiple times due to
stateless model checking
NesC@PAT achieves better reduction than T-Check
T-Check only deals with network-level concurrency

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 30 / 35



Conclusion

Summary
A two-level POR for SNs
Preserves LTL-X properties
Allows NesC@PAT to verify SNs with 3000+ LoC in each sensor
Achieves good reduction results (102 − 108)

Future work
Synthesis of network topology for a given property ϕ
Model checking large SNs or even parameterized SNs

Symmetry reduction
Local reasoning techniques
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Question

Thank you!
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