State Space Reduction for Sensor Networks using Two-level Partial Order Reduction

Manchun Zheng¹, David Sanán², Jun Sun¹, Yang Liu³, Jin Song Dong⁴, Yu Gu¹

¹ Singapore University of Technology and Design

²Trinity College Dublin

³Nanyang Technology University

⁴National University of Singapore

VMCAI 2013

M. Zheng et. al. (SUTD, TCD, NTU & NUS) [Two-level POR for SNs](#page-42-0) The Contract COMCAI 2013 1/35

Outline

[Introduction](#page-2-0)

- **•** [Background](#page-2-0)
- **•** [Motivation](#page-7-0)

[Two-level POR for SNs](#page-11-0)

- **[Static Analysis](#page-12-0)**
- [SN Cartesian Semantics](#page-19-0)
- [Algorithms](#page-22-0)
- **[Implementation and Experiments](#page-29-0)**
	- **o** [Implementation](#page-29-0)
	- **•** [Experiments](#page-33-0)

 290

- Wireless communication: unicast, broadcast, dissemination, etc.
	- Interrupt-driven behaviors.
	- Hardware device: light, temperature, movement, etc.
	- **•** Applications:
		- Transportation: railway signaling
		- Military: enemy intrusion detection, autopilot
		- **Environment: fire detection, landslide** detection
	- Reliability is important.

Sensor Network Programs

TinyOS: a lightweight operating system [\[LMP](#page-41-0)⁺04]

- Designed to run on small, wireless sensors
- Concurrent, interrupt-driven execution model
- **Component libraries for device-related operations**

4 D.K.

TinyOS: a lightweight operating system [\[LMP](#page-41-0)⁺04]

- Designed to run on small, wireless sensors
- Concurrent, interrupt-driven execution model
- **Component libraries for device-related operations**

NesC (Networked Embedded System C) [\[GLvB](#page-40-0)⁺03]

- A dialect of C
- Component-based programming model
- **•** Extension for concepts like command, event, tasks, etc
- Operations are split-phase

- A sensor network N is defined as $\{S_1, S_2, \cdots, S_n\}$ where \mathcal{S}_i (0 \leqslant *i* \leqslant *n*) is a sensor with the identity *i* (i.e., the *ith* sensor);
- Local state: a state *C* for a sensor *S* is (V, Q, B, P) where *V* is the valuation of variables, *Q* is the task queue, *B* is the message buffer and *P* is the program counter;
- Global state: a state C for a network $\mathcal N$ (global state) is ${C_1, C_2, \cdots, C_n}$, where $C_i(1 \leq i \leq n)$ is the *i*th sensor's state.

- \bullet Model checkers: T-Check [\[LR10\]](#page-41-1), Anguiro [\[MVO](#page-41-2)+10], Tos2CProver [\[BK10\]](#page-40-1)
- o Limitations:
	- few deals with the (equivalently) complete state space
		- adopts stateless model checking techniques [\[LR10\]](#page-41-1)
		- applies "abstraction" that ignores certain behavior $[MVO⁺10]$ $[MVO⁺10]$
	- few deals with liveness properties but only safety properties
	- few reduction techniques are explored
		- only deals with communication event pairs [\[LR10\]](#page-41-1)

Two-level Concurrency of SNs

• Network level: interleaving among different sensors

$$
C_i \xrightarrow{e} C'_i, e \neq s_i.\text{send.dst.msg}, e \neq s_i.\text{idle}, e \neq s_i.\text{stop}
$$

$$
\{C_0, \cdots, C_i, \cdots, C_n\} \xrightarrow{e} \{C_0, \cdots, C'_i, \cdots, C_n\}
$$
 [nw1]

4 D.K.

つへへ

Two-level Concurrency of SNs

• Network level: interleaving among different sensors

$$
C_i \stackrel{e}{\rightarrow} C'_i, e \neq s_i.\text{send.dat.msg, } e \neq s_i.\text{idle, } e \neq s_i.\text{stop} \\ \{C_0, \cdots, C_i, \cdots, C_n\} \stackrel{e}{\rightarrow} \{C_0, \cdots, C'_i, \cdots, C_n\} \qquad [n w 1]
$$

• Sensor level: concurrency of tasks and interrupt handlers

4 D.K. \mathcal{A} \sim \rightarrow \rightarrow \rightarrow QQ

Motivating Example

```
\begin{array}{c} 1 \mid \text{event void } \text{ Boot.} \text{boot.}) \{ \\ 2 \mid \text{call } \text{Read.read();} \end{array}2 call Read.read();<br>3 post send task();
             post send task () ;
 4<br>5
 5 event void Read rdDone(int v){<br>6 value += v;
             value += v;
 7 }
 8 \mid task void send_task(){<br>9 busy = TRUE:
\begin{array}{c} |9| \ \ 10| \ \ 10| \ \ 11| \end{array} busy = TRUE;
             call Send.send ( count );
11 }
12 event v o i d Send . sendDone ( ) {
             busy = FALSE;
14<br>15
15 event v o i d Receive . r e c e i v e ( ) {
16 count ++;<br>17 post send
             post send task () ;
18
```
(a) Example Code

(b) State space of Boot.booted

4 5 8 4 5 8

Motivating Example

Figure: State space of two sensors running Boot.booted

M. Zheng et. al. (SUTD, TCD, NTU & NUS) [Two-level POR for SNs](#page-0-0) WALL THE STAND MUSIC 2013 9/35

4 0 1

 299

Exploring the state space by the SN Cartesian semantics

- Static analysis to identify w.r.t to a given property φ
	- local independence (to reduce intra-sensor concurrency)
		- **o** variable access conflicts
		- \bullet φ -visible variable assignment
		- **•** task queue equivalence
	- global independence (to reduce inter-sensor concurrency)
		- sending a message updates some sensors' message buffer and
		- triggers a receive interrupts that eventually modifies the task queue
- • Reduction for model checking
	- establishing a smaller state space but preserving φ
	- applying on-the-fly model checking

Definition (Local Independence)

Given a state $\mathcal{C},$ $\alpha_1, \alpha_2 \in \sum$, and $\alpha_1, \alpha_2 \in \mathit{enable}(\mathcal{C}),$ actions α_1 and α_2 are said to be local-independent, denoted by $\alpha_1 \equiv_U \alpha_2$, if the following conditions are satisfied.

$$
\bullet \ \mathit{ex}(\mathit{ex}(C, \alpha_1), \alpha_2) =_v \mathit{ex}(\mathit{ex}(C, \alpha_2), \alpha_1);
$$

$$
\bullet \ \ Q(\textsf{ex}(\textsf{ex}(\textsf{C},\alpha_1),\alpha_2)) \simeq Q(\textsf{ex}(\textsf{ex}(\textsf{C},\alpha_2)),\alpha_1).
$$

Local effects of an action

updating an variable or enqueuing a task

Equivalent execution sequences when two actions

- access variables exclusively
- **•** resulting in equivalent task queues

Definition (Local Independence)

Given a state $\mathcal{C},$ $\alpha_1, \alpha_2 \in \sum$, and $\alpha_1, \alpha_2 \in \mathit{enable}(\mathcal{C}),$ actions α_1 and α_2 are said to be local-independent, denoted by $\alpha_1 \equiv_U \alpha_2$, if the following conditions are satisfied.

- \bullet *ex*(*ex*(*C*, α_1), α_2) =*v ex*(*ex*(*C*, α_2), α_1);
- 2 $Q(ex(ex(C, \alpha_1), \alpha_2)) \simeq Q(ex(ex(C, \alpha_2)), \alpha_1).$

Local effects of an action

updating an variable or enqueuing a task

Equivalent execution sequences when two actions

- access variables exclusively
- **•** resulting in equivalent task queues

Definition (Local Independence)

Given a state $\mathcal{C},$ $\alpha_1, \alpha_2 \in \sum$, and $\alpha_1, \alpha_2 \in \mathit{enable}(\mathcal{C}),$ actions α_1 and α_2 are said to be local-independent, denoted by $\alpha_1 \equiv_U \alpha_2$, if the following conditions are satisfied.

$$
\bullet \ \mathit{ex}(\mathit{ex}(C, \alpha_1), \alpha_2) =_v \mathit{ex}(\mathit{ex}(C, \alpha_2), \alpha_1);
$$

2 $Q(ex(ex(C, \alpha_1), \alpha_2)) \simeq Q(ex(ex(C, \alpha_2)), \alpha_1).$

Local effects of an action

updating an variable or enqueuing a task

Equivalent execution sequences when two actions

- access variables exclusively
- **•** resulting in equivalent task queues

Local Independence

```
1 event v o i d Boot . booted ( ) {
2 call Read.read();<br>3 post send task();
          post send task () ;
4<br>5
5 event void Read rdDone(int v){<br>6 value += v:
          value += v:
7<br>8<br>9
   task void send task () {
          busv = TRUE;
0 call Send send ( count );
\frac{1}{2}event void Send.sendDone () {
          busy = FALSE:
4<br>5
\begin{array}{c} 5 \overline{\smash)} \text{ event } \text{ void } \text{ receive } \text{ receive } (\text{)} \{6 \} \text{ count } ++; \end{array}16 count ++;
          post send task();
18 }
```
• Let $W(t) = \{$ variables written by task t , $W(t) =$ {variables only read by task *t*}:

$$
t_{rd}: W(t_{rd}) = \{ \text{value} \}, R(t_{rd}) = \varnothing;
$$

$$
t_{rv}
$$

 \bullet

 $W(t_{rv}) = \{$ *count*, *busy* $\}$, $R(t_{rv}) = \emptyset$;

$$
\rightarrow (W(t_{rd}) \cup R(t_{rd})) \cap W(t_{lv}) =
$$

$$
R(t_{td}) \cap (W(t_{rv}) \cup R(t_{rv})) = \varnothing;
$$

• $t_{rd} \equiv \tau_l$ t_{rv} (t_{rd} is independent with task *trv*).

つへへ

•
$$
Q = \langle t_0, \cdots, t_n \rangle
$$
 is a task queue;

•
$$
Swap(Q, i) = \langle t_0, \cdots, t_{i+1}, t_i, \cdots, t_n \rangle;
$$

Definition (Task Queue Equivalence)

Given two task queue Q and Q' , they are equivalent ($Q \simeq Q'$) iff $Q^0 = Q \ \land \ \exists \ m \geqslant 0, Q^m = Q' \ \land \ (\forall \ k \in [0, m). \ \exists \ i_k. \ t^k_{i_k} \equiv \tau_k.$ $t_{i_k+1}^k \ \wedge \ Q^{k+1} = \textit{Swap}(Q^k, i_k))$ where t_i^k is the i^{th} task in $Q^k.$

$$
\bullet \text{ since } t_{rd} \equiv_{\mathcal{T}l} t_{rv}, \text{ thus } \langle t_{rd}, t_{rv} \rangle \simeq \langle t_{rd}, t_{rv} \rangle.
$$

M. Zheng et. al. (SUTD, TCD, NTU & NUS) [Two-level POR for SNs](#page-0-0) VMCAI 2013 13/35

Definition (Global Independence)

Let $t_i \in \mathcal{T}$ asks (\mathcal{S}_i) and $t_j \in \mathcal{T}$ asks (\mathcal{S}_j) such that $\mathcal{S}_i \neq \mathcal{S}_j$. Tasks t_i and t_j are said to be global-independent, denoted by $t_i \equiv_{GI} t_j$, iff $\forall\,\mathcal{C}\in\Gamma.\;$ $t_{i},t_{j}\in\mathsf{EnableT}(\mathcal{C})\Rightarrow\forall\,\mathcal{C}_{i}\in\mathsf{Ex}(\mathcal{C},t_{i}).\;\:\exists\,\mathcal{C}_{j}\in\mathcal{C}$ $\mathsf{Ex}(\mathcal{C},t_j)$. $\mathsf{Ex}(\mathcal{C}_i,t_j) \asymp \mathsf{Ex}(\mathcal{C}_j,t_i)$ and vice versa.

Informally, executing two tasks from different sensors in different orders resulting in equivalent sequences if

- there is no communication occurring in either t_i or t_j ;
- if t_i sends a message to \mathcal{S}_j , then t_j is independent of all receive tasks of $\mathcal{S}_{j},$ and vice versa.

 Ω

イロト イ押ト イヨト イヨト

Definition (Global Independence)

Let $t_i \in \mathcal{T}$ asks (\mathcal{S}_i) and $t_j \in \mathcal{T}$ asks (\mathcal{S}_j) such that $\mathcal{S}_i \neq \mathcal{S}_j$. Tasks t_i and t_j are said to be global-independent, denoted by $t_i \equiv_{GI} t_j$, iff $\forall\,\mathcal{C}\in\Gamma.\;t_i,t_j\in\mathsf{Enable} \mathcal{T}(\mathcal{C})\Rightarrow\forall\,\mathcal{C}_i\in\mathsf{Ex}(\mathcal{C},t_i).\;\exists\,\mathcal{C}_j\in\mathcal{C}$ $\mathsf{Ex}(\mathcal{C},t_j)$. $\mathsf{Ex}(\mathcal{C}_i,t_j) \asymp \mathsf{Ex}(\mathcal{C}_j,t_i)$ and vice versa.

Theorem (GI Detection)

 \forall $t_1 \in$ Tasks $(\mathcal{S}_i),$ $t_2 \in$ Tasks $(\mathcal{S}_j).$ $\mathcal{S}_i \neq \mathcal{S}_j,$ $t_1 \subset_{Gl} \mathcal{S}_i \Rightarrow$ $t_1 \equiv_{Gl} t_2$, where *t* ⊂*GI* $S \equiv \forall$ *t_r* ∈ *Rcvs*(S), *t_p* ∈ *Posts*(*t*). *t_r* ≡ *TI t_p*.

 Ω

≮ロトメ部 トメミトメミト 一毛

Cartesian POR for SNs

- Two-level independence analysis
- State space generation by Cartesian semantics [\[GFYS07\]](#page-40-2)
- Reduction of intra-sensor concurrency by persistent set technique [\[CGP01\]](#page-40-3)
- **•** Preserving LTL-X properties, i.e., LTL formulas without the X operator
- **•** Immediately integrated with existing verification algorithms

Sensor Network Cartesian Semantics

Sensor Prefix

Definition (Sensor Prefix)

A prefix $p \in \text{Prefix}(S)$ is defined as a tuple $(\langle C_0, \alpha_1, C_1, \cdots, \alpha_{m-1}, C_m \rangle, \{br_0, br_1, \cdots, br_n\}),$ where \forall 1 \leq *i* $<$ m . α _{*i*} \in $\sum_{\mathcal{S}} \wedge \mathcal{C}_i \stackrel{\alpha_i}{\hookrightarrow} \mathcal{C}_{i+1}$, and \forall 0 \leq *i* \leq n .*br*_{*i*} \in *Prefix*($\mathcal{S}, \mathcal{C}_m$).

M. Zheng et. al. (SUTD, TCD, NTU & NUS) [Two-level POR for SNs](#page-0-0) VMCAI 2013 16/35

つひひ

Let $W(\alpha)$ be the set of variables written by an action α , and $R(\varphi)$ be the set of variables read in the target property φ .

Definition (SN Cartesian Vector)

Given a global property $\varphi \in$ *Gprop*, a vector $(p_1, \cdots, p_i, \cdots, p_n)$ is a sensor network cartesian vector for $\mathcal N$ w.r.t. φ from a network state $\mathcal C$ *if the following conditions hold*:

$$
\bullet \ \ p_i \in \text{Prefix}(\mathcal{S}_i, \mathcal{C});
$$

$$
\bullet \ \forall t \in \mathsf{tasks}(p_i) \colon t \not\subset_{\mathsf{GI}} \mathcal{S}_i \Rightarrow t \in \mathsf{LastT}(p_i);
$$

$$
\begin{aligned}\n\text{②} \ \ \forall \, \alpha \in \text{acts}(p_i). \ \alpha \notin \text{safe}(\varphi) \Rightarrow \alpha \in \text{lastAct}(p_i) \text{ where } \alpha \in \text{safe}(\varphi), \\
\text{iff } W_\alpha \cap R(\varphi) = \varnothing.\n\end{aligned}
$$

Exploring the state space by the SN Cartesian semantics

- handling intra-sensor concurrency
- establishing sensor prefixes
- **•** generating sensor network Cartesian vectors (SNCVs)
- building state space by SNCVs
- • applying model checking algorithms directly

Generation of subsequent states for on-the-fly model checking algorithms:

M. Zheng et. al. (SUTD, TCD, NTU & NUS) [Two-level POR for SNs](#page-0-0) VMCAI 2013 19/35

 Λ lgorithm 1 Λ otCuccessors(Λ

 Ω

医单侧 医单

∢ □ ▶ ィ [□] ▶

Algorithms

Sensor Network Cartesian Vector Generation

∍

 299

K ロ ト K 伺 ト K ヨ ト

Algorithm 3 *GetPrefix*(S, C, φ)

- 1: $p \leftarrow \langle C \rangle$
- 2: $t \leftarrow getCurrentTsk(\mathcal{C}, \mathcal{S})$
- 3: {extend *p* by executing task *t*}
- 4: *ExecuteTask*($t, p, \varphi, \{C\}, S$)
- 5: **if** *t* terminates **then**
- 6: **for all** $p_i \in leaf(p)$ **do**

 $7:$ $C' \leftarrow$ *last* (p_i) 8: *irs* \leftarrow *GetItrs*($\mathcal{C}', \mathcal{S}$) 9: $p'_i \leftarrow$ *RunItrs*($C',$ *itrs*, S) 10: $p_i \leftarrow (p_i, \{p'_i\})$ 11: **end for** 12: **end if**

13: **return** *p*

 Ω

⊀ 伊 ⊁ ∢ 君 ⊁

Algorithm 4 *ExecuteTask*(*t*, $/p, \varphi, \mathcal{C}s, \mathcal{S}$)

- 1: {let α be the current action of *t*}
- 2: $\alpha \leftarrow \text{GetAction}(t, \mathcal{C})$
- 3: $C \in \widehat{last}(lp)$
- 4: {*post* actions interleave interrupts}
- 5: **if** $\alpha \leftarrow post(t')$ then
- 6: *itrs* \leftarrow *GetItrs*(*S*, *C*)
7: {interleave α and in
- 7: {interleave α and interrupts *itrs*}
8: $p \leftarrow$ *Runltrs*(*C*, *itrs* \cup { α }. *S*)
- 8: $p \leftarrow$ *RunItrs*(*C*, *itrs* $\cup \{\alpha\}$, *S*)
9: $lp \leftarrow (lp, \{p\})$
- $|p \leftarrow (|p, \{p\})$
- 10: **else**
- 11: {*non*-*post* actions}
- $12:$ $C' \leftarrow \mathsf{ex}(C, \alpha)$
- 13: $\textit{tmp} \leftarrow \langle \mathcal{C}, \alpha, \mathcal{C}' \rangle$
- 14: *setPfx*(C 0 , *tmp*)
- 15: $lp \leftarrow (lp, \{tmp\})$
- 16: **end if**
- 17: $lps \leftarrow leaf(lp)$
- 18: {stop executing *t* when *t* terminates or a nonsafe action is encountered}
- 19: **if** $\alpha \notin \text{safe}(\varphi)$ or *terminate* (t, α) **then** 20: **return**
- 20: **return**
- 21: **end if**
- 22: **for all** $lp' \in lps$ **do**
- 23: {extend *lp* only if no loop in it}
- **24: if** *last*(*lp'*) ∉ *Cs* **then**
- 25:
26: $\mathcal{O}' \leftarrow \mathcal{C} \mathcal{S} \cup \mathsf{states}(\mathsf{lp}')$
- 26: {executing *t* to extend *lp'*}
- 27: *ExecuteTask* $(t, lp', \varphi, Cs', \mathcal{S})$

(ロトイ部)→(差)→(差)→

- 28: **end if**
- 29: **end for**

 298

Theorem

Let \mathcal{T} *be the transition system of* \mathcal{N} *, where* $\mathcal{N} = (\mathcal{R}, \{S_0, \dots, S_N\})$ *.* Let T' be the transition system obtained after applying the two-level *partial order reduction w.r.t.* φ *over* \mathcal{N} *. Then* \mathcal{T}' *and* \mathcal{T} *are stuttering equivalent w.r.t.* φ *.*

 Ω

化重压 不重

Theorem

Let \mathcal{T} *be the transition system of* \mathcal{N} *, where* $\mathcal{N} = (\mathcal{R}, \{S_0, \dots, S_N\})$ *.* Let T' be the transition system obtained after applying the two-level *partial order reduction w.r.t.* φ *over* \mathcal{N} *. Then* \mathcal{T}' *and* \mathcal{T} *are stuttering equivalent w.r.t.* φ *.*

Preservation of LTL-X properties

It has been shown that if two structures $\mathcal{T}, \mathcal{T}'$ are stuttering equivalent w.r.t. an LTL-X property φ , then $\mathcal{T}'\models \varphi$ if and only if $\mathcal{T}\models \varphi$ [\[CGP01\]](#page-40-3). Therefore, our method preserves LTL-X properties.

 Ω

イロト イ押ト イヨト イヨトー

PAT www.patroot.com

- **•** Extensible and modularized
- Model checking algorithms for various semantic models

M. Zheng et. al. (SUTD, TCD, NTU & NUS) [Two-level POR for SNs](#page-0-0) VMCAI 2013 24/35

 QQ

PAT www.patroot.com

- More than 15 domain-specific model checkers developed on PAT
- 2300+ registered users from 550+ organizations in 58 countries

M. Zheng et. al. (SUTD, TCD, NTU & NUS) [Two-level POR for SNs](#page-0-0) VMCAI 2013 24/35

 QQ

Implemented as a module in PAT model checking framework

- Fully automatic and domain-specific for NesC and WSNs
- Safety Properties
	- **·** User-defined
	- Pre-defined low-level safety properties e.g, a infinite task, array index overflow, null pointer access
- Liveness (temporal) properties e.g, a buffer is released infinitely often

M. Zheng et. al. (SUTD, TCD, NTU & NUS) [Two-level POR for SNs](#page-0-0) VMCAI 2013 26 / 35

 298

イロトメ 倒 トメ 差 トメ 差

Figure: Cartesian state space of SN with size 2

Statistics of checking deadlockfree property, i.e, $R(\varphi) = \varnothing$.

More Examples

Configurations

Trickle

- LOC per sensor: 332
- Safety: false updating operation
- Livenss: ✸*AllUpdated*

Anti-theft

- LOC per sensor: 3391
- Safety: deadlock free

 \leftarrow \leftarrow \leftarrow -4 B +

 \bullet Liveness: \Box (theft $\Rightarrow \triangle$ alert)

Table: Experiment Results of NesC@PAT with POR

 299

- Overhead of independence analysis: negligible, within 1 second
- POR reduction ratio: at least 10^2 -10⁸
	- *POR ratio* = #*State wt POR* #*State wo POR*
	- Safety properties: #*State wo POR* \approx $S_1 \times S_2 \times \cdots \times S_n$
	- LTL properties: $\# State$ wo $POR \approx (S_1 \times S_2 \times \cdots \times S_n) \times BA$

Table: Experiment Results of NesC@PAT with POR

M. Zheng et. al. (SUTD, TCD, NTU & NUS) [Two-level POR for SNs](#page-0-0) VMCAI 2013 29/35

- Overhead of independence analysis: negligible, within 1 second
- POR reduction ratio: at least 10^2 -10⁸
	- *POR ratio* = #*State wt POR* #*State wo POR*
	- Safety properties: #*State wo POR* \approx $S_1 \times S_2 \times \cdots \times S_n$
	- LTL properties: $\# State$ wo $POR \approx (S_1 \times S_2 \times \cdots \times S_n) \times BA$

Table: Experiment Results of NesC@PAT with POR

M. Zheng et. al. (SUTD, TCD, NTU & NUS) [Two-level POR for SNs](#page-0-0) VMCAI 2013 29/35

Comparison with T-Check

Checking the same safety property of Trickle

- T-Check explores more states per second T-Check adopts stateless model checking
- NesC@PAT requires shorter time to for state space exploration T-Check may explore the same path multiple times due to stateless model checking
- ● NesC@PAT achieves better reduction than T-Check T-Check only deals with network-level co[ncu](#page-36-0)[rr](#page-38-0)[e](#page-36-0)[nc](#page-37-0)[y](#page-38-0)

Summary

- **A two-level POR for SNs**
- Preserves LTL-X properties
- Allows NesC@PAT to verify SNs with 3000+ LoC in each sensor
- Achieves good reduction results (10 $^2-$ 10 $^8)$

Future work

- Synthesis of network topology for a given property φ
- • Model checking large SNs or even parameterized SNs
	- Symmetry reduction
	- Local reasoning techniques

Thank you!

M. Zheng et. al. (SUTD, TCD, NTU & NUS) [Two-level POR for SNs](#page-0-0) VMCAI 2013 32 / 35

重

 \prec э 299

≮ロト ⊀ 倒 ト ⊀ ミト

Bibliography I

[BK10] Doina Bucur and Marta Z. Kwiatkowska. Software verification for TinyOS. In *IPSN*, pages 400–401, 2010.

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron Peled. *Model checking*. MIT Press, 2001.

[GFYS07] Guy Gueta, Cormac Flanagan, Eran Yahav, and Mooly Sagiv. Cartesian Partial-Order Reduction. In *SPIN*, pages 95–112, 2007.

[GLvB⁺03] D. Gay, P. Levis, R. v. Behren, M. Welsh, E. Brewer, and D. Culler.

The nesC Language: A Holistic Approach to Networked Embedded Systems.

In *PLDI*, pages 1–11, 2003.

M. Zheng et. al. (SUTD, TCD, NTU & NUS) [Two-level POR for SNs](#page-0-0) VMCAI 2013 33 / 35

 Ω

イロト イ押ト イヨト イヨ

[LMP⁺04] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer, and David Culler.

TinyOS: An operating system for sensor networks.

In *Ambient Intelligence*. Springer Verlag, 2004.

[LR10] Peng Li and John Regehr. T-Check: bug finding for sensor networks. In *IPSN*, pages 174–185, Stockholm, Sweden, 2010.

[MVO⁺10] Luca Mottola, Thiemo Voigt, Fredrik Osterlind, Joakim Eriksson, Luciano Baresi, and Carlo Ghezzi.

Anquiro: Enabling Efficient Static Verification of Sensor Network Software.

In *SESENA*, pages 32–37, 2010.

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$

[ZSL⁺11] Manchun Zheng, Jun Sun, Yang Liu, Jin Song Dong, and Yu Gu. Towards a model checker for nesc and wireless sensor networks. In *ICFEM*, pages 372–387, 2011.