
State Space Reduction for Sensor Networks using
Two-level Partial Order Reduction

Manchun Zheng1, David Sanán2, Jun Sun1, Yang Liu3, Jin Song
Dong4, Yu Gu1

1Singapore University of Technology and Design

2Trinity College Dublin

3Nanyang Technology University

4National University of Singapore

VMCAI 2013

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 1 / 35

Outline

1 Introduction
Background
Motivation

2 Two-level POR for SNs
Static Analysis
SN Cartesian Semantics
Algorithms

3 Implementation and Experiments
Implementation
Experiments

4 Conclusion

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 2 / 35

Sensor Networks (SNs)

Wireless communication: unicast, broadcast, dissemination, etc.
Interrupt-driven behaviors.
Hardware device: light, temperature,
movement, etc.
Applications:

Transportation: railway signaling
Military: enemy intrusion detection, autopilot
Environment: fire detection, landslide
detection

Reliability is important.

2

1

3

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 3 / 35

Sensor Network Programs

TinyOS: a lightweight operating system [LMP+04]
Designed to run on small, wireless sensors
Concurrent, interrupt-driven execution model
Component libraries for device-related operations

NesC (Networked Embedded System C) [GLvB+03]
A dialect of C
Component-based programming model
Extension for concepts like command, event, tasks, etc
Operations are split-phase

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 4 / 35

Sensor Network Programs

TinyOS: a lightweight operating system [LMP+04]
Designed to run on small, wireless sensors
Concurrent, interrupt-driven execution model
Component libraries for device-related operations

NesC (Networked Embedded System C) [GLvB+03]
A dialect of C
Component-based programming model
Extension for concepts like command, event, tasks, etc
Operations are split-phase

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 4 / 35

Formal Definitions of SNs [ZSL+11]

A sensor network N is defined as {S1,S2, · · · ,Sn} where
Si(0 6 i 6 n) is a sensor with the identity i (i.e., the i th sensor);
Local state: a state C for a sensor S is (V ,Q,B,P) where V is the
valuation of variables, Q is the task queue, B is the message
buffer and P is the program counter;
Global state: a state C for a network N (global state) is
{C1,C2, · · · ,Cn}, where Ci(1 6 i 6 n) is the i th sensor’s state.

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 5 / 35

Model Checking SN Implementation

Model checkers: T-Check [LR10], Anquiro [MVO+10],
Tos2CProver [BK10]
Limitations:

few deals with the (equivalently) complete state space
adopts stateless model checking techniques [LR10]
applies “abstraction” that ignores certain behavior [MVO+10]

few deals with liveness properties but only safety properties
few reduction techniques are explored

only deals with communication event pairs [LR10]

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 6 / 35

Two-level Concurrency of SNs

Network level: interleaving among different sensors

Ci
e→ C′

i , e 6= si .send .dst .msg, e 6= si .idle, e 6= si .stop
[nw1]

{C0, · · · ,Ci , · · · ,Cn}
e
↪→ {C0, · · · ,C′

i , · · · ,Cn}

Sensor level: concurrency of tasks and interrupt handlers

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 7 / 35

Two-level Concurrency of SNs

Network level: interleaving among different sensors

Ci
e→ C′

i , e 6= si .send .dst .msg, e 6= si .idle, e 6= si .stop
[nw1]

{C0, · · · ,Ci , · · · ,Cn}
e
↪→ {C0, · · · ,C′

i , · · · ,Cn}

Sensor level: concurrency of tasks and interrupt handlers

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 7 / 35

Motivating Example

1 event vo id Boot . booted () {
2 c a l l Read . read () ;
3 post send_task () ;
4 }
5 event vo id Read . rdDone (i n t v) {
6 value += v ;
7 }
8 task vo id send_task () {
9 busy = TRUE;

10 c a l l Send . send (count) ;
11 }
12 event vo id Send . sendDone () {
13 busy = FALSE;
14 }
15 event vo id Receive . rece ive () {
16 count ++;
17 post send_task () ;
18 }

(a) Example Code

0

0

1 6

2 7

9 8

6

3

4

11

5 10

12 13

14

15

0: empty

1: tst

2: tst , trd

3: trd

4: tst , trv

5: trd , tst

6: trv

7: trv , tst

8: trv , tst , trd

9: tst , trd , trv

10: trd , trv

11: tst , trv , trd

12: trd , tst , trv

13: trd , trv , tst

14: trv , trd

15: trv , trd , tst

2

3

rv

2 rv rd

rd rv rv rd 3 3

rv rd rv 3 rd 3

(b) State space of Boot.booted

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 8 / 35

Motivating Example

0: empty

1: tst

2: tst , trd

3: trd

4: trd , tsd

2

rd

rd

3

rd

0.0

0.0

0.0

1.0

3.0 3.0

2.0

0.1 2.1

5.0

4.0

0.0

0.0

0.0

0.0

0.0

0.0

2

3

3

rd

9

2

3

rd

10 sd 6

2

4.0

rv

3

rv rd

rv

rd

rv rd

P11

P21

P12

P22

P13

P23

5: tsd

6: trv

7: trv , tst

8: trv , tst , trd

9: tst , trv , trd

Task Queue

2.0

Figure: State space of two sensors running Boot.booted

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 9 / 35

Two-level POR
Overview

Exploring the state space by the SN Cartesian semantics
Static analysis to identify w.r.t to a given property ϕ

local independence (to reduce intra-sensor concurrency)
variable access conflicts
ϕ-visible variable assignment
task queue equivalence

global independence (to reduce inter-sensor concurrency)
sending a message updates some sensors’ message buffer and
triggers a receive interrupts that eventually modifies the task queue

Reduction for model checking
establishing a smaller state space but preserving ϕ
applying on-the-fly model checking

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 10 / 35

Independence Analysis
Local Independence

Definition (Local Independence)
Given a state C, α1, α2 ∈

∑
, and α1, α2 ∈ enable(C), actions α1 and

α2 are said to be local-independent, denoted by α1 ≡LI α2, if the
following conditions are satisfied.

1 ex(ex(C, α1), α2) =v ex(ex(C, α2), α1);
2 Q(ex(ex(C, α1), α2)) ' Q(ex(ex(C, α2)), α1).

Local effects of an action
updating an variable or enqueuing a task

Equivalent execution sequences when two actions
access variables exclusively
resulting in equivalent task queues

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 11 / 35

Independence Analysis
Local Independence

Definition (Local Independence)
Given a state C, α1, α2 ∈

∑
, and α1, α2 ∈ enable(C), actions α1 and

α2 are said to be local-independent, denoted by α1 ≡LI α2, if the
following conditions are satisfied.

1 ex(ex(C, α1), α2) =v ex(ex(C, α2), α1);
2 Q(ex(ex(C, α1), α2)) ' Q(ex(ex(C, α2)), α1).

Local effects of an action
updating an variable or enqueuing a task

Equivalent execution sequences when two actions
access variables exclusively
resulting in equivalent task queues

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 11 / 35

Independence Analysis
Local Independence

Definition (Local Independence)
Given a state C, α1, α2 ∈

∑
, and α1, α2 ∈ enable(C), actions α1 and

α2 are said to be local-independent, denoted by α1 ≡LI α2, if the
following conditions are satisfied.

1 ex(ex(C, α1), α2) =v ex(ex(C, α2), α1);
2 Q(ex(ex(C, α1), α2)) ' Q(ex(ex(C, α2)), α1).

Local effects of an action
updating an variable or enqueuing a task

Equivalent execution sequences when two actions
access variables exclusively
resulting in equivalent task queues

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 11 / 35

Independence Analysis
Local Independence

1 event vo id Boot . booted () {
2 c a l l Read . read () ;
3 post send_task () ;
4 }
5 event vo id Read . rdDone (i n t v) {
6 value += v ;
7 }
8 task vo id send_task () {
9 busy = TRUE;

10 c a l l Send . send (count) ;
11 }
12 event vo id Send . sendDone () {
13 busy = FALSE;
14 }
15 event vo id Receive . rece ive () {
16 count ++;
17 post send_task () ;
18 }

Let W (t) = { variables written by
task t}, W (t) = {variables only
read by task t}:
trd : W (trd) = {value}, R(trd) = ∅;
trv :
W (trv) = {count ,busy}, R(trv) = ∅;
(W (trd)

⋃
R(trd))

⋂
W (ttv) =

R(ttd)
⋂

(W (trv)
⋃

R(trv)) = ∅;
trd ≡TI trv (trd is independent with
task trv).

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 12 / 35

Independence Analysis
Local Independence

Q = 〈t0, · · · , tn〉 is a task queue;
Swap(Q, i) = 〈t0, · · · , ti+1, ti , · · · , tn〉;

Definition (Task Queue Equivalence)
Given two task queue Q and Q′, they are equivalent (Q ' Q′) iff

Q0 = Q ∧ ∃m > 0,Qm = Q′ ∧ (∀ k ∈ [0,m). ∃ ik . tk
ik
≡TI

tk
ik+1 ∧ Qk+1 = Swap(Qk , ik)) where tk

i is the i th task in Qk .

since trd ≡TI trv , thus 〈trd , trv 〉 ' 〈trd , trv 〉.

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 13 / 35

Independence Analysis
Global Independence

Definition (Global Independence)
Let ti ∈ Tasks(Si) and tj ∈ Tasks(Sj) such that Si 6= Sj . Tasks ti and tj
are said to be global-independent, denoted by ti ≡GI tj , iff
∀ C ∈ Γ. ti , tj ∈ EnableT (C)⇒ ∀Ci ∈ Ex(C, ti). ∃ Cj ∈
Ex(C, tj). Ex(Ci , tj) � Ex(Cj , ti) and vice versa.

Informally, executing two tasks from different sensors in different
orders resulting in equivalent sequences if

there is no communication occurring in either ti or tj ;
if ti sends a message to Sj , then tj is independent of all receive
tasks of Sj , and vice versa.

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 14 / 35

Independence Analysis
Global Independence

Definition (Global Independence)
Let ti ∈ Tasks(Si) and tj ∈ Tasks(Sj) such that Si 6= Sj . Tasks ti and tj
are said to be global-independent, denoted by ti ≡GI tj , iff
∀ C ∈ Γ. ti , tj ∈ EnableT (C)⇒ ∀Ci ∈ Ex(C, ti). ∃ Cj ∈
Ex(C, tj). Ex(Ci , tj) � Ex(Cj , ti) and vice versa.

Theorem (GI Detection)

∀ t1 ∈ Tasks(Si), t2 ∈ Tasks(Sj). Si 6= Sj , t1 ⊂GI Si ⇒ t1 ≡GI t2, where
t ⊂GI S ≡ ∀ tr ∈ Rcvs(S), tp ∈ Posts(t). tr ≡TI tp.

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 14 / 35

Sensor Network Cartesian Semantics
Cartesian POR for SNs

Two-level independence analysis
State space generation by Cartesian semantics [GFYS07]
Reduction of intra-sensor concurrency by persistent set
technique [CGP01]
Preserving LTL-X properties, i.e., LTL formulas without the X
operator
Immediately integrated with existing verification algorithms

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 15 / 35

Sensor Network Cartesian Semantics
Sensor Prefix

Definition (Sensor Prefix)
A prefix p ∈ Prefix(S) is defined as a tuple
(〈C0, α1, C1, · · · , αm−1, Cm〉, {br0,br1, · · · ,brn}), where
∀1 ≤ i < m. αi ∈

∑
S ∧ Ci

αi
↪→ Ci+1, and ∀0 ≤ i ≤ n.bri ∈ Prefix(S, Cm).

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 16 / 35

Sensor Network Cartesian Semantics
Definition

Let W (α) be the set of variables written by an action α, and R(ϕ) be
the set of variables read in the target property ϕ.

Definition (SN Cartesian Vector)

Given a global property ϕ ∈ Gprop, a vector (p1, · · · ,pi , · · · ,pn) is a
sensor network cartesian vector for N w.r.t. ϕ from a network state C if
the following conditions hold:

1 pi ∈ Prefix(Si , C);
2 ∀ t ∈ tasks(pi). t 6⊂GI Si ⇒ t ∈ LastT (pi);
3 ∀α ∈ acts(pi). α 6∈ safe(ϕ)⇒ α ∈ lastAct(pi) where α ∈ safe(ϕ),

iff Wα ∩ R(ϕ) = ∅.

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 17 / 35

Algorithms
Overview

Exploring the state space by the SN Cartesian semantics
handling intra-sensor concurrency
establishing sensor prefixes
generating sensor network Cartesian vectors (SNCVs)
building state space by SNCVs
applying model checking algorithms directly

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 18 / 35

Algorithms
State Exploration

Generation of subsequent states for on-the-fly model checking
algorithms:

Algorithm 1 GetSuccessors(C, ϕ)

1: list ← ∅
2: p ← pfx(C)
3: if Next(p, C) 6= ∅ then
4: {no successors of C in p}
5: list ← Next(p, C)
6: else
7: {generate a new sncv from C}
8: scv ← GetNewCV (C, ϕ)

9: for all i ← 1 to n do
10: {traverse each sensor prefix to ob-

tain the successors of C}
11: list ← list ∪ {Next(scv [i], C)}
12: end for
13: end if
14: return list

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 19 / 35

Algorithms
Sensor Network Cartesian Vector Generation

Algorithm 2 GetNewCV (C, ϕ)

1: scv ← (

n︷ ︸︸ ︷
〈〉, · · · , 〈〉)

2: for all Si ∈ N do
3: {generate prefix for sensors}
4: visited ← {C}
5: workingLeaf ← ∅
6: {generate a prefix from S}
7: pi ← GetPrefix(Si , C, ϕ)
8: for all lp ∈ leaf (pi) do
9: if l̂ast(lp) 6∈ visited

and Extensible(lp,Si , ϕ) then
10: workingLeaf .Push(lp)
11: visited ← visited ∪ l̂ast(lp)
12: end if
13: end for
14: while workingLeaf 6= ∅ do
15: pk ← workingLeaf .Pop()

16: visited ← visited ∪ {l̂ast(pk)}
17: {generate a new prefix from the last

state of pk }
18: p′k ← GetPrefix(Si , l̂ast(pk), ϕ)
19: pk ← (pk , {p′k})
20: for all lp ∈ leaf (p′k) do
21: if Extensible(lp,Si , ϕ) and

l̂ast(lp) 6∈ visited then
22: workingLeaf .Push(lp)
23: end if
24: end for
25: end while
26: {update the i th element of scv with pi }
27: scv [i]← pi
28: end for

29: return scv

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 20 / 35

Algorithms
Sensor Prefix Generation

Algorithm 3 GetPrefix(S, C, ϕ)

1: p ← 〈C〉
2: t ← getCurrentTsk(C,S)
3: {extend p by executing task t}
4: ExecuteTask(t ,p, ϕ, {C},S)
5: if t terminates then
6: for all pi ∈ leaf (p) do

7: C′ ← l̂ast(pi)
8: irs ← GetItrs(C′,S)
9: p′

i ← RunItrs(C′, itrs,S)
10: pi ← (pi , {p′

i })
11: end for
12: end if
13: return p

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 21 / 35

Algorithms
Task Execution

Algorithm 4 ExecuteTask(t , lp, ϕ, Cs,S)

1: {let α be the current action of t}
2: α← GetAction(t , C)
3: C ∈ l̂ast(lp)
4: {post actions interleave interrupts}
5: if α← post(t ′) then
6: itrs ← GetItrs(S, C)
7: {interleave α and interrupts itrs}
8: p ← RunItrs(C, itrs ∪ {α},S)
9: lp ← (lp, {p})

10: else
11: {non-post actions}
12: C′ ← ex(C, α)
13: tmp ← 〈C, α, C′〉
14: setPfx(C′, tmp)
15: lp ← (lp, {tmp})

16: end if
17: lps ← leaf (lp)
18: {stop executing t when t terminates or a non-

safe action is encountered}
19: if α 6∈ safe(ϕ) or terminate(t , α) then
20: return
21: end if
22: for all lp′ ∈ lps do
23: {extend lp only if no loop in it}
24: if l̂ast(lp′) 6∈ Cs then
25: Cs′ ← Cs ∪ states(lp′)
26: {executing t to extend lp′}
27: ExecuteTask(t , lp′, ϕ, Cs′,S)
28: end if

29: end for

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 22 / 35

Algorithms
Soundness

Theorem
Let T be the transition system of N , where N = (R, {S0, · · · ,SN}).
Let T ′ be the transition system obtained after applying the two-level
partial order reduction w.r.t. ϕ over N . Then T ′ and T are stuttering
equivalent w.r.t. ϕ.

Preservation of LTL-X properties
It has been shown that if two structures T , T ′ are stuttering equivalent
w.r.t. an LTL-X property ϕ, then T ′ |= ϕ if and only if T |= ϕ [CGP01].
Therefore, our method preserves LTL-X properties.

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 23 / 35

Algorithms
Soundness

Theorem
Let T be the transition system of N , where N = (R, {S0, · · · ,SN}).
Let T ′ be the transition system obtained after applying the two-level
partial order reduction w.r.t. ϕ over N . Then T ′ and T are stuttering
equivalent w.r.t. ϕ.

Preservation of LTL-X properties
It has been shown that if two structures T , T ′ are stuttering equivalent
w.r.t. an LTL-X property ϕ, then T ′ |= ϕ if and only if T |= ϕ [CGP01].
Therefore, our method preserves LTL-X properties.

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 23 / 35

PAT
www.patroot.com

Extensible and modularized
Model checking algorithms for various semantic models

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 24 / 35

PAT
www.patroot.com

More than 15 domain-specific model checkers developed on PAT
2300+ registered users from 550+ organizations in 58 countries

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 24 / 35

NesC@PAT

Implemented as a module in PAT model checking framework
Fully automatic and domain-specific for NesC and WSNs
Safety Properties

User-defined
Pre-defined low-level safety properties
e.g, a infinite task, array index overflow, null pointer access

Liveness (temporal) properties
e.g, a buffer is released infinitely often

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 25 / 35

Two-level POR implementation
NesC@PAT

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 26 / 35

Motivating Example Revisited

Figure: Cartesian state space of SN with size 2

Statistics of checking deadlockfree property, i.e, R(ϕ) = ∅.

Size Result #State #Trans Time(s) OH(ms) #States
wo POR

POR
Ratio

2 X 2040 2129 0.1 1.18 45K 0.04
3 X 30K 31827 1.4 1.30 9M 3× 10−3

4 X 276K 294K 14 2.60 2025M 1× 10−4

6 X 2.3M 2.5M 129 30 9.11e+13 2.5× 10−8

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 27 / 35

More Examples
Configurations

Trickle
LOC per sensor: 332
Safety: false updating
operation
Livenss: 3AllUpdated

Anti-theft
LOC per sensor: 3391
Safety: deadlock free
Liveness: 2(theft
⇒ 3alert)

App
(LOC /
sensor)

Property Size #State #Trans Time(s) OH
#States
wo
POR

POR Ratio

Anti-theft
(3391)

Deadlock
free 3 1.2M 1.2M 791 95 >2.3G < 6× 10−4

2(theft⇒
3alert)

1.3M 1.4M 2505 108 >4.6G < 3× 10−4

Trickle
(332)

3
AllUpdated

2 3268 3351 3 2 111683 3× 10−2

3 208K 222K 74 3 >23.7M < 8× 10−3

4 838K 947K 405 4 >5.4G < 2× 10−4

5 13.3M 15.7M 8591 5 >1232.2G < 1× 10−5

Table: Experiment Results of NesC@PAT with POR

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 28 / 35

Results
Discussions

Overhead of independence analysis:
negligible, within 1 second
POR reduction ratio: at least 102-108

POR ratio = #State wt POR
#State wo POR

Safety properties: #State wo POR ≈ S1 × S2 × · · · × Sn
LTL properties: #State wo POR ≈ (S1 × S2 × · · · × Sn)× BA

App
(LOC /
sensor)

Property Size #State #Trans Time(s) OH
#States
wo
POR

POR Ratio

Anti-theft
(3391)

Deadlock
free 3 1.2M 1.2M 791 95 >2.3G < 6× 10−4

2(theft⇒
3alert)

1.3M 1.4M 2505 108 >4.6G < 3× 10−4

Trickle
(332)

3
AllUpdated

2 3268 3351 3 2 111683 3× 10−2

3 208K 222K 74 3 >23.7M < 8× 10−3

4 838K 947K 405 4 >5.4G < 2× 10−4

5 13.3M 15.7M 8591 5 >1232.2G < 1× 10−5

Table: Experiment Results of NesC@PAT with POR

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 29 / 35

Results
Discussions

Overhead of independence analysis:
negligible, within 1 second
POR reduction ratio: at least 102-108

POR ratio = #State wt POR
#State wo POR

Safety properties: #State wo POR ≈ S1 × S2 × · · · × Sn
LTL properties: #State wo POR ≈ (S1 × S2 × · · · × Sn)× BA

App
(LOC /
sensor)

Property Size #State #Trans Time(s) OH
#States
wo
POR

POR Ratio

Anti-theft
(3391)

Deadlock
free 3 1.2M 1.2M 791 95 >2.3G < 6× 10−4

2(theft⇒
3alert)

1.3M 1.4M 2505 108 >4.6G < 3× 10−4

Trickle
(332)

3
AllUpdated

2 3268 3351 3 2 111683 3× 10−2

3 208K 222K 74 3 >23.7M < 8× 10−3

4 838K 947K 405 4 >5.4G < 2× 10−4

5 13.3M 15.7M 8591 5 >1232.2G < 1× 10−5

Table: Experiment Results of NesC@PAT with POR

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 29 / 35

Comparison with T-Check

Checking the same safety property of Trickle

Size
NesC@PAT T-Check

wt POR wo POR Ratio Bound wt POR wo POR Ratio#State Exh Time(s) #State Exh Time(s)
2 3012 Y 2 52.3K 6× 10−2 20 4765 Y 1 106.2K ≈ 4 ×

10−2

3 120K Y 20 >11.8M < 1× 10−2 12 66.2K N 1 13.5M ≈ 5 ×
10−3

50 12.6M Y 283 NA NA
4 368K Y 58 >2.7G < 1× 10−4 10 56.7K N 1 41.8M ≈ 1 ×

10−3

50 420.7M Y 1291 NA NA
5 4.2M Y 638 >616G < 7× 10−6 8 85.2K N 1 17.4M ≈ 1 ×

10−3

50 NA N >12600 NA NA

T-Check explores more states per second
T-Check adopts stateless model checking
NesC@PAT requires shorter time to for state space exploration
T-Check may explore the same path multiple times due to
stateless model checking
NesC@PAT achieves better reduction than T-Check
T-Check only deals with network-level concurrency

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 30 / 35

Conclusion

Summary
A two-level POR for SNs
Preserves LTL-X properties
Allows NesC@PAT to verify SNs with 3000+ LoC in each sensor
Achieves good reduction results (102 − 108)

Future work
Synthesis of network topology for a given property ϕ
Model checking large SNs or even parameterized SNs

Symmetry reduction
Local reasoning techniques

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 31 / 35

Question

Thank you!

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 32 / 35

Bibliography I

[BK10] Doina Bucur and Marta Z. Kwiatkowska.
Software verification for TinyOS.
In IPSN, pages 400–401, 2010.

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron Peled.
Model checking.
MIT Press, 2001.

[GFYS07] Guy Gueta, Cormac Flanagan, Eran Yahav, and Mooly Sagiv.
Cartesian Partial-Order Reduction.
In SPIN, pages 95–112, 2007.

[GLvB+03] D. Gay, P. Levis, R. v. Behren, M. Welsh, E. Brewer, and D. Culler.

The nesC Language: A Holistic Approach to Networked
Embedded Systems.
In PLDI, pages 1–11, 2003.

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 33 / 35

Bibliography II

[LMP+04] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk,
Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer, and
David Culler.
TinyOS: An operating system for sensor networks.
In Ambient Intelligence. Springer Verlag, 2004.

[LR10] Peng Li and John Regehr.
T-Check: bug finding for sensor networks.
In IPSN, pages 174–185, Stockholm, Sweden, 2010.

[MVO+10] Luca Mottola, Thiemo Voigt, Fredrik Osterlind, Joakim Eriksson,
Luciano Baresi, and Carlo Ghezzi.
Anquiro: Enabling Efficient Static Verification of Sensor Network
Software.
In SESENA, pages 32–37, 2010.

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 34 / 35

Bibliography III

[ZSL+11] Manchun Zheng, Jun Sun, Yang Liu, Jin Song Dong, and Yu Gu.

Towards a model checker for nesc and wireless sensor networks.

In ICFEM, pages 372–387, 2011.

M. Zheng et. al. (SUTD, TCD, NTU & NUS) Two-level POR for SNs VMCAI 2013 35 / 35

	Introduction
	Background
	Motivation

	Two-level POR for SNs
	Static Analysis
	SN Cartesian Semantics
	Algorithms

	Implementation and Experiments
	Implementation
	Experiments

	Conclusion

