
An Automatic Approach to Model

Checking UML State Machines

ZHANG Shaojie, LIU Yang

National University of Singapore

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Agenda

� Introduction

� Our Approach

� Case Study

� Conclusion & Future Work

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Introduction

� Unified Modeling Language (UML) is de facto standard for
designing and architecting software systems.

� UML model consists of a set of diagrams that together
describes the single system.

� Specification

Visualization� Visualization

� Architecture design

� Construction

� Simulation and Testing

� Documentation

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Introduction

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Introduction

� Lack of precise and complete semantics

� Esp. for dynamic behavior

� How can we ensure that the models for a system analysis
and its design are consistent?

� How can we check that a design model correctly realizes
a system requirement model?a system requirement model?

� Take advantage of formal methods to detect model-level
errors

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Model Checking Principle

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

UML & Model Checking

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Introduction

� Present a translation approach to verifying UML state
machines.

� Fully automatically

� Independent of any modeling tools

� Verification tool: PAT

� SPIN, FDR, SMV, UppAal, Chess, Magic, Verisoft, Slam, Blast...

� Expressive modeling language

� Simulator

� Deadlock, reachability, trace refinement relationship,

linear temporal logic (LTL) properties with various fairness
assumptions.

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Introduction

� Compared with other works

� Support a larger subset of UML state machines than most
other works

� Esp. advanced modeling constructs

� Minimize the use of shared variables

� Directly specify in terms of processes and events� Directly specify in terms of processes and events

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Agenda

� Introduction

� Our Approach

� Case Study

� Conclusion & Future Work

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Modeling language

� CSP# (Communicating sequential programs)

� Communicating Sequential Processes + shared variables +
low-level programming constructs

� Grammar

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Translation Rules

f : UML → CSP#

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

UML State Machines

� A state machine describes the lifetime of a single object.

� It contains states and transitions between them.

f(finalState) = Skip

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

UML state machines

� A state is a condition or situation during the life of an
object during which some invariant condition holds.

� An event is an occurrence of a stimulus that can trigger a
state transition.

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

UML State CSP Process

UML Event CSP Event

State

� A state has three kinds of optional behavior:

� Entry

� DoActivity

� Exit P1 ∆ P2: behaves as P1 until
the occurrence of the first event from P2

The Fourth IEEE International Conference on
Secure Software Integration and Reliability

Improvement

f (state) =
f (entry); //atomic process
f (doActivity)
∆

(f (trans1) □ f (trans2) □ � � �□ f (transN))

State

� Three kinds of states

� Simple

� Composite

� Submachine

� Composite state

� Region as process

The Fourth IEEE International Conference on
Secure Software Integration and Reliability

Improvement

f (compositeState) =
f (entry);
(f (doActivity) ||| f(r1) ||| f(r1)|||…)
∆

(f (trans1) □ f (trans2) □ � � �□ f (transN))

State

� Submachine state

� Specifies the insertion of the specification of a submachine
state machine

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

f (ReadAmout) = f (ReadAmountAM)

Transition

� A transition has five parts.

� Source state

� Target state

� Event trigger

� Guard condition

Effect

f (trans) = event →
[guard]

((f (exit); f (effect); f (targetState)))

� Effect

The Fourth IEEE International Conference on
Secure Software Integration and Reliability

Improvement

State machine

� State machine

f (sm) = f (i) where i is the topmost initial state of sm.

� System

f (s) = f (sm1) ||| f (sm2) ||| � � � ||| f (smn)

f (s) = f (sm1) || f (sm2) || � � � || f (smn)f (s) = f (sm1) || f (sm2) || � � � || f (smn)

The Fourth IEEE International Conference on
Secure Software Integration and Reliability

Improvement

Advanced States and Transitions

� Fork

� Join

� Entry/Exit point

� History

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Fork

� Fork state deals with the transition from a single source
state to several substates in different regions of a
composite state.

� When a transition from a fork state is fired, control
passes to all the target states.

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Fork

0 1 2

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Join

� Join state specifies the transition from substates in
different regions of a composite state to a target state
outside the composite state.

� A join transition is effective only if all the source states
are active.

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Join

The Fourth IEEE International Conference on
Secure Software Integration and Reliability

Improvement

Entry/Exit point

� Entry/exit point is the entry/exit point of a state machine
referred by a submachine state.

� Behaviorally analogous to a subroutine

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Entry/Exit point

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

History

� History state adds “memory "to composite state by
recording the last substate that was active prior to a
transition from the composite state.

� An integer shared variable is used to record which
substate is currently active.

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Agenda

� Introduction

� Our Approach

� Case Study

� Conclusion & Future Work

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Case Study

var present = false, track = 0;

NONPLAYING(i) =
case{
(i == 0) : CLOSED()
(i == 1) : OPEN()
} ∆ (

CDPLAYER() = NONPLAYING(0);

var j = 0;
BUSY(i) =
find track start → case{(i == 0) :
PLAYING()

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

} ∆ (
([!present](play → NONPLAYING(0)))
□ ([present](play → BUSY(0)))
□(off → Skip));

(i == 1) : PAUSED()} ∆
((load → NONPLAYING(1))
□ ([track! = N]
□({track = track + 1} → BUSY(0)))
□([track == N]NONPLAYING(0))
□(stop → NONPLAYING(0))
□(off → Skip)
□(play → BUSY(j));

Case Study

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Case Study

� Two basic requirements

� □ ˜((track == 0)/\(play_track))

� □ ((present == true)/\play → ◊ play track)

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Agenda

� Introduction

� Our Approach

� Case Study

� Conclusion & Future Work

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Conclusion

� Defined a translation scheme for a UML model composed
of asynchronously executing, hierarchical state machines.

� Effectively handle advanced modeling techniques in state
machines.

� Provide a automatic approach to transforming a model of state
machines to the input model of PAT model checkermachines to the input model of PAT model checker

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Future work

� Looking for more industrial cases

� Support deferred events and time events

� Sequence diagrams, activity diagrams, …..

� Provide an easier way to specify properties.

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

The End

Thank you for your kind attention!

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

