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Introduction

� Unified Modeling Language (UML) is de facto standard for 
designing and architecting software systems.

� UML model consists of a set of diagrams that together 
describes the single system.

� Specification

Visualization� Visualization

� Architecture design 

� Construction

� Simulation and Testing

� Documentation
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Introduction

� Lack of precise and complete semantics

� Esp. for dynamic behavior

� How can we ensure that the models for a system analysis 
and its design are consistent?

� How can we check that a design model correctly realizes 
a system requirement model?a system requirement model?

� Take advantage of formal methods to detect model-level 
errors
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Model Checking Principle
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UML & Model Checking
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Introduction

� Present a translation approach to verifying UML state 
machines.

� Fully automatically

� Independent of any modeling tools

� Verification tool: PAT

� SPIN, FDR, SMV, UppAal, Chess, Magic, Verisoft, Slam, Blast...

� Expressive modeling language

� Simulator

� Deadlock, reachability, trace refinement relationship,

linear temporal logic (LTL) properties with various fairness 
assumptions.
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Introduction

� Compared with other works

� Support a larger subset of UML state machines than most 
other works

� Esp. advanced modeling constructs

� Minimize the use of shared variables

� Directly specify in terms of processes and events� Directly specify in terms of processes and events
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Modeling language

� CSP# (Communicating sequential programs)

� Communicating Sequential Processes + shared variables + 
low-level programming constructs 

� Grammar
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Translation Rules

f : UML → CSP#
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UML State Machines

� A state machine describes the lifetime of a single object.

� It contains states and transitions between them.

f(finalState)  =  Skip

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement



UML state machines

� A state is a condition or situation during the life of an 
object during which some invariant condition holds.

� An event is an occurrence of a stimulus that can trigger a 
state transition.

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

UML State CSP Process

UML Event CSP Event



State

� A state has three kinds of optional behavior:

� Entry

� DoActivity

� Exit P1 ∆ P2: behaves as P1 until
the occurrence of the first event from P2
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Improvement

f (state) = 
f (entry); //atomic process
f (doActivity)
∆

(f (trans1) □ f (trans2) □ � � �□ f (transN))



State

� Three kinds of states

� Simple

� Composite

� Submachine

� Composite state

� Region as process
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Improvement

f (compositeState) = 
f (entry); 
(f (doActivity) ||| f(r1) ||| f(r1)|||… )
∆

(f (trans1) □ f (trans2) □ � � �□ f (transN))



State

� Submachine state

� Specifies the insertion of the specification of a submachine 
state machine
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f (ReadAmout) = f (ReadAmountAM)



Transition

� A transition has five parts.

� Source state

� Target state

� Event trigger

� Guard condition

Effect

f (trans) = event → 
[guard]

( (f (exit); f (effect); f (targetState)))

� Effect
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State machine

� State machine

f (sm) = f (i) where i is the topmost initial state of sm.

� System

f (s) = f (sm1) ||| f (sm2) ||| � � � ||| f (smn)

f (s) = f (sm1) || f (sm2) || � � � || f (smn)f (s) = f (sm1) || f (sm2) || � � � || f (smn)
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Advanced States and Transitions

� Fork

� Join

� Entry/Exit point

� History
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Fork

� Fork state deals with the transition from a single source 
state to several substates in different regions of a 
composite state.

� When a transition from a fork state is fired, control 
passes to all the target states.
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Fork

0 1 2
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Join

� Join state specifies the transition from substates in 
different regions of a composite state to a target state 
outside the composite state. 

� A join transition is effective only if all the source states 
are active.
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Join
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Entry/Exit point

� Entry/exit point is the entry/exit point of a state machine 
referred by a submachine state.

� Behaviorally analogous to a subroutine
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Entry/Exit point
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History

� History state adds “memory "to composite state by 
recording the last substate that was active prior to a 
transition from the composite state.

� An integer shared variable is used to record which 
substate is currently active.
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Case Study

var present = false, track = 0;

NONPLAYING(i) =
case{
(i == 0) : CLOSED()
(i == 1) : OPEN()
} ∆ (

CDPLAYER() = NONPLAYING(0);

var j = 0;
BUSY(i) =
find track start → case{(i == 0) : 
PLAYING()
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} ∆ (
([!present](play → NONPLAYING(0)))
□ ([present](play → BUSY(0)))
□(off → Skip));

(i == 1) : PAUSED()} ∆ 
((load → NONPLAYING(1))
□ ([track! = N]
□({track = track + 1} → BUSY(0)))
□([track == N]NONPLAYING(0))
□(stop → NONPLAYING(0))
□(off → Skip)
□(play → BUSY(j));



Case Study
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Case Study

� Two basic requirements 

� □ ˜((track == 0)/\(play_track))

� □ ((present == true)/\play → ◊ play track)
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Conclusion 

� Defined a translation scheme for a UML model composed 
of asynchronously executing, hierarchical state machines.

� Effectively handle advanced modeling techniques in state 
machines.

� Provide a automatic approach to transforming a model of state 
machines to the input model of PAT model checkermachines to the input model of PAT model checker
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Future work

� Looking for more industrial cases

� Support deferred events and time events

� Sequence diagrams, activity diagrams, …..

� Provide an easier way to specify properties. 
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The End

Thank you for your kind attention!
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