Towards Expressive Specification and Efficient Model Checking

Jin Song Dong
National University of Singapore
dongjs@comp.nus.edu.sg

System modeling is very important and highly non-
trivial. The choice of specification language is an important
factor in the success of the entire development. The lan-
guage should cover several facets of the requirements and
the model should reflect exactly (up to abstraction of irrele-
vant details) an existing system or a system to be built. The
language should have a semantic model suitable to study the
behaviors of the system and to establish the validity of de-
sired properties. A formal model can be the basis for a va-
riety of system development activities, e.g., system simula-
tion, visualization, verification or prototype synthesis.

Over the last decade, many integrated formal specifica-
tion languages have been proposed in order to precisely and
concise model systems with not only complicated control
flows but also complex data structures and operations. Ex-
amples include Circus [5] (i.e., an integration of CSP and
the Z language), CSP-OZ [1] (i.e., an integration of CSP and
Object-Z) and TCOZ [2] (i.e., an integration of Timed CSP
and Object-Z). Integrated specification languages are very
expressive, which makes mechanical analysis extremely
difficult. In particular, all above languages incorporate (a
large subset of) the Z language, which is based first-order
logic and set theory and thus beyond the capability of me-
chanical verification techniques like model checking.

On the other hand, popular model checkers like SPIN,
SMV and FDR are designed for specialized domains and
are therefore based on restrictive modeling languages. For
instance, Promela (supported by SPIN) is based on a sub-
set of CSP for communicating network protocols. The in-
put language of SMV is initially designed for specification
of hardware circuits. A number of compositional operators
which model common system behavior patterns are miss-
ing in both languages. FDR, which supports all operators
of CSP, however, lacks support of shared variables or non-
trivial data-types. Language limitations can be significant
barrier to the practical verification of complex systems.

In this tutorial, we introduce our latest effort on com-
bining the expressiveness of integrated formal specification
languages with the power of mechanical system analysis
method like model checking. We present a process analysis
toolkit (PAT [3, 4], available at http://pat.comp.nus.edu.sg),
which is a self-contained framework for system specifica-

Jun Sun
National University of Singapore
sunj@comp.nus.edu.sg

tion, simulation and verification. PAT supports a modeling
language named CSP# (short for communicating sequential
programs), which shares similar design principle with spec-
ification languages like TCOZ. Nonetheless, instead of rely-
ing on the Z language, CSP# mixes high-level modeling op-
erators with low-level programs, for the purpose of flexible
system modeling and efficient verification. In CSP#, data
operations can be modeled as terminating sequential pro-
grams, which then can be composed using high-level com-
positional operators. The idea is to treat sequential termi-
nating programs, which may indeed be C# programs, as
atomic events. The result is a highly expressive modeling
language which cover a wide range of application domains.

CSP# models are executable with complete operational
semantics, and therefore subject to fully automated system
verification techniques like model checking. PAT verifies
CSP# models using state-of-art model checking techniques,
e.g., on-the-fly explicit state model checking with partial or-
der reduction. Besides new modeling techniques, PAT com-
plements existing model checkers in a number of aspects.
For instance, it supports an assertion language which allows
LTL formulae constituted with propositions and events. It
has dedicated algorithms for model checking under a vari-
ety of fairness constraints, which are often required for veri-
fication of liveness properties. CSP# and PAT have been ap-
plied a many systems including distributed algorithms, con-
current data objects, parameterized systems, etc. Previously
unknown bugs have been identified.

References

[1] C. Fischer. CSP-OZ: a combination of object-Z and CSP. In
FMOODS’97, pages 423-438. Chapman & Hall, Ltd., 1997.

[2] B. Mahony and J. S. Dong. Timed Communicating Object Z.
IEEE Trans. on Soft. Eng., 26(2):150-177, 2000.

[3] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible
Verification under Fairness. CAV’09, 2009. to appear.

[4] J. Sun, Y. Liu, J. S. Dong, and H. Wang. Specifying and Veri-
fying Event-based Fairness Enhanced Systems. In ICFEM 08,
volume 5256 of LNCS, pages 318-337. Springer, 2008.

[5] J. Woodcock and A. Cavalcanti. The Semantics of Circus. In
ZB 2002, volume 2272 of LNCS, pages 184-203, 2002.



