ANUS
ﬁ National University
of Singapone

Model Checking a Lazy Concurrent
List-Based Set Algorithm

ZHANG Shaojie, LIU Yang
National University of Singapore

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Mational :,.!ni'.'q-rsir!,.'
of Singapose

TNUS
Agenda %

» Introduction

» Background

» Our approach

Overview

Linearizability definition

Modeling language

Linearizability as refinement relation
» Experiment

» Conclusion & Future Work

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Mational :,.!ni'.'q-rsir!,.'
of Singapose

N US
%

Introduction

» Concurrent objects are notoriously hard to design
correctly.

Esp. Lock-free & wait-free ones.

» Linearizability is an accepted correctness criterion
for shared objects.

A shared object is /inearizable if each operation on
the object can be understood as occurring

Instantaneously at some point, (a.k.a. /inearization
point)
Y Y 4

» Formal verification or proof of linearizability rely
on the knowledge of linearization points
Expert knowledge
Linearization points are hard to be statically determined

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Introduction

» Verify
based

Mational :,.!ni'.'q-rsir!,.'
of Singapose

TNUS
%

linearizaibility against lazy concurrent list-
set algorithm

Proposed by Steve Heller, Maurice Herlihy, Victor Luchangco,

Mark

Moir, William N, Scherer III, and Nir Shavit in 2005.

Martin Vechev, Eran Yahav, and Greta Yorsh described a
variation with weaker validation condition in 2009.

» Why ¢
High

noose this algorithm?
y concurrent, non-fixed linearization points.

Com
Mani

nlexity: non-deterministic target location
pulates dynamic allocated memory heavily &

Need a garbage collector

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Mational :,.!ni'.'q-rsir!,.'
of Singapose

TNUS
Agenda %

» Introduction

» Background

» Our Approach

Overview

Linearizability definition

Modeling language

Linearizability as refinement relation
» Experiment

» Conclusion & Future Work

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Mational :,.!ni'.'q-rsir!,.'
of Singapose

TNUS
%

Concurrent List-based Set

» Set interface
Unordered collection of items

No duplicates

Methods

bool add(int x): put x in set; if succeeds, return true
bool remove(int x) take x out of set
bool contains(int x) tests if x in set

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

BN US

Concurrent List-based Set 9% o
» Set as a single-linked sorted list
» List node

public class Node {
public int key: // item of interest
public Node next; // Reference to next node

public bool marked; //Indicate this node is about to be
removed

}

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

ﬁﬁﬁﬁﬁﬁﬁﬁﬁ

Concurrent List-based Set

» The sentinel nodes can only be compared, not
modified.

= {@3—@3—%
=)

Sorted by the key
(min & max possible keys)

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

9 NUS
Concurrent List-based Set I

» Optimistic locking scheme
Traverse without Locking

(15— 03— 3—+E D

o>

The Fourth IEEE International
Conference on Secure Software

BN US

HNational University

Concurrent List-based Set i

» Optimistic locking scheme
Lock the target node and its predecessor

([5— 3 G
B
Oo, %’}%}@

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

BN US

HNational University

Concurrent List-based Set i

» Optimistic locking scheme
Validation
Node 2 is not marked true
Node 4 still successor to Node 2

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

9 NUS
Concurrent List-based Set I

» Optimistic locking scheme
Validation

The Fourth IEEE International
Conference on Secure Software

9 NUS
Concurrent List-based Set I

» Remove

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

aNUS
ﬁ HNational University
of Singapore

Concurrent List-based Set

» Remove

L

1 still
points to

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

o2 NUS
Concurrent List-based Set 95 o

» Remove -

([5—~

What if
directly free
node 2?

Logical
delete

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Mational :,.!ni'.'q-rsir!,.'
of Singapose

TNUS
Agenda %

» Introduction

» Background

» Our Approach

Overview

Linearizability definition

Modeling language

Linearizability as refinement relation
» Experimental Result

» Conclusion & Future Work

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Overview of Our Approach

» The definition of linearizability is cast to trace
refinement relation.
Fully automatically
Without the knowledge of linearization points
» Modeling language: CSP#(Communicating
sequential programs)
Event-based; LTS-based semantics

» Tool: PAT(Process Analysis Toolkit)

A toolkit for automatically analyzing event-based
concurrent systems including refinement checking

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

N US
%

Mational :,.!ni'.'q-rsir!,.'
of Singapose

Overview of Our Approach

» Dynamic memory allocation

Pre-allocate a bounded array as a private memory
space

» Garbage collection
Reference counting algorithm

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Linearizability Manifesto 9

» Each operation could “take effect”
Instantaneously between invocation and

response
» Correlate every concurrent execution with a
consistent sequential atomic execution of the
operations.
Preserve real-time order
Respect the sequential specification of the object

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Mational :,.!ni'.'q-rsir!,.'
of Singapose

N US
%

Linearizability Example

Observation Sequential permutation

enqueue(l).inv
enqueue(l).res

enqueue(2).inv enqueue(1)
-------- dequeue() .inv enqueue(2)
enqueue(2).res dequeue() -> 1

dequeue() -> 2

dequeue() .inv

dequeue().res. 7 7

-------- dequeue().res.2 V

Timeline

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

o NUS
MOdellng language ol Unersy

» CSP#

Communicating Sequential Processes with shared
variables, low-level programming constructs and
user defined data structures.

» Grammar

P ::= Stop | Skip
e{program} — P
P\ X
Py; Py
P, OPy
if (b) {P1} else {P2}
Pi | P2
case{bl : Py b2: Py ---; default : P}
atomic{P}
e := name(.expression)#

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

of Jngapore

N US
@ Mational :,.!ni'\.?rsif!,'

Linearizability as Refinement Relations

» Theorem

Suppose Lsp is a linearizable specification LTS
model for a shared object o0, consider Lim that
iImplements object o, then Traces of Lim are
linearizable iff Lim refines Lsp.

» 1st-Step:
Define the linearizable specification model

» Specify each operation op of a shared object o
on a process p; using three atomic steps:

the invocation action /n{op);
the linearization action /in(op); (Invisible event)
the response action res(op, resp); .

The Fourth IEEE International Conference on Secure Software Integration and Reliability
Improvement

NUS

HNational University
of Singapone

Linearizability as refinement relations

//Gpecification
var<Set> 3;

Sys = i:{0..N-1}@(F(i, 0)):
Bi{i, j) = 1ifa(j < Q){((Bdd({i, j)[] Remove(i, j)[]Contains(i, j)))}:
Addii, j) = []x:{MIN..MAX}@E
add inv.i.x -> tan{s.hdd(i,x)}-> add res=s.i.x.(=2.GethddData())}-> P(i, j+1)
)i - -
Eemove (i, j) = [1x:{MIN..MAX}@
i rm inv.i.x -» tau{s.BRemove(i,x)}-> rm res.i.x.(s.GetRemoveData())-> P(1, J+1)
_ Cnntainsiii;j] = []x:{MIN..MRX}iE
| ct inv.i.x -» tau{s.Contains(i,x)} ->» ct res.i.x.(s.GetContainData())->F({i, J+1)

) :

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

HNational University
of Singapose

TINUS
%

Linearizability as Refinement Relations

» 2nd -Step:
Consider the implementation of object o.

» The visible events of /mp/are also those /nfop),
's and res(op, resp);'s.

» Memory management operations are
Fe)R%apsuIated as methods in the inner library of

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

N US
w Hational :,'ni-.'e-rr,if!,'

of Singapore

Linearizability as Refinement Relations

» Memory allocation
var<EntrylList> | = new EntryList(M, MIN, MAX),

» Reference Counting Garbage Collector

» Always keep the number of references to each list node

» Collector runs when the reference of some list node becomes
Zero

public class Node {

III\\

pubfic int key;
public Node next;
public bool marked;

public int reference;
//the number of variables pointing to this node

}

The Fourth IEEE International Conference on Secure
Software Integration and Reliability Improvement

| NUS

HNational University
of Singapone

Linearizability as Refinement Relations

» Reference Counting Garbage Collector

» Whenever a pointer variable to a list node is modified,
update the reference
Predecessor = Current

Assign(Predecessor, Current)

{

IncreaseReference(Current)
DecreaseReference(Predecessor)

}

» Don’ t consider the nodes of which reference is zero during
the checking

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Mational :,.!ni'.'q-rsir!,.'
of Singapose

TNUS
Agenda %

» Introduction

» Background

» Our Approach

Overview

Linearizability definition

Modeling language

Linearizability as refinement relation
» Experiment

» Conclusion & Future Work

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Experimental result

aNUS
ﬁ HNational University
of Singapore

» Testbed is a server with 2.813 GHz Intel Xeon 64-bit

CPU and 32

The maximum
number of

Se Result
#Proc ; #States | Time(sec)

2 65904 37.06

2 h - <]

| he number The number of

3 of processes operations each

: 1 process performs

3 2 1 - -

B ‘—' means infeasible.

B ‘>0 means unbounded number.

This model is built inside PAT, http://pat.comp.nus.edu.sg

The Fourth IEEE International
Conference on Secure Software

Optimization 95 s

4

Function details about dynamic memory
allocation and reference-counting garbage
collection are hided in the embedded library of
PAT.

No intermediate states during the function execution
are generated.

Manually combine sequences of local actions
into one atomic block

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Mational :,.!ni'.'q-rsir!,.'
of Singapose

TNUS
Agenda %

» Introduction

» Background

» Our Approach

Overview

Linearizability definition

Modeling language

Linearizability as refinement relation
» Experiment

» Conclusion & Future Work

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Conclusion W SiSrampo

» Verify linearizability using trace refinement
relation

» Show that refinement checking algorithm behind
PAT allows verifying linearizability against
concurrent objects

Without the knowledge of linearization points
Fully automatically
» Show that PAT provides a fairly convenient and

efficient way to define new data types and
complex functions in a programming language

Leaves the model clean

Avoid augmenting because of the runtime
environment

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

9 NUS
On-going and future work ™

» Deal with infamous state explosion problem
Symmetry reduction (in progress)
Partial order reduction

Combine various state space reduction techniques
and parameterized refinement checking for infinite
number of processes

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Mational :,.!ni'.'q-rsir!,.'
of Singapose

The |

(-t
-
O,

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

