
Towards Verification of a
Service Orchestration Language

Tian Huat Tan
School of Computing,

National University of Singapore
{tianhuat}@comp.nus.edu.sg

Abstract—Recently, Orc is proposed as a powerful yet elegant
language for distributed and concurrent programming which
provides computational services such as distributed communi-
cation and data manipulation via sites. With a few concurrency
primitives, programmers are able to orchestrate the invocation
of sites to achieve a goal, and meanwhile, manage timeouts,
priorities, and failures. To guarantee the correctness of Orc
models, effective verification support is desirable. In this work,
we present an automatic approach to verify different properties
against Orc models using model checking techniques. To further
improve the performance, advanced reduction techniques, like
partial order reduction, are proposed.

Keywords-Orc; Orchestration; Model Checking

I. INTRODUCTION

Concurrency is an essential problem of the current world
with the advent of multi-core and multi-CPU systems. How-
ever, it is not an easy task for programmers to maximize the
benefit of concurrency, since programmers are burdened with
the task of managing the threads and locks explicitly. Orc
calculus [5] is designed to express orchestrations and wide-
area computations in a simple and structured manner, and to
address the problems mentioned above.

In this work, our approach contributes to providing direct
verification for Orc language. Orc is developed under PAT
framework [7]. Figure 1 shows the workflow of our approach.
First, users can specify Orc models as well as various assertion
properties via the editor. The input models are compiled into
internal representations (i.e. LTS), based on the operational
semantics [11], [4], [3]. Linear Temporal Logics (LTL) asser-
tions are subsequently translated into Büchi automata. Users
can visualize the system behaviors via an animated simulator,
or perform verification using different verifiers.

II. ORCHESTRATION LANGUAGE ORC

The fundamental of Orc calculus is the execution of ex-
pressions, which are built up recursively with concurrent
combinators. During execution, an expression may call sites
(i.e. external services) or publish values.

Sites are basic units of Orc language. They are considered
as external services. A site can be an unreliable remote service
(e.g. Google), or a predictable and well-defined local service
(e.g. if). Henceforth, we will refer the former as remote site
and latter as local site. The simplest Orc expression is a site
call M(p), where M is the service’s name and p is a list of
parameters.

Language Parser

Internal Processes
Collection

Simulator

Assersion Parser and Buchi Automata Translator

Graphic Viewer

Explicit On-the-fly Model Checking
Supporting Fairness Assumptions

Reachability
Model Checker

Deadlock
Model Checker

Counterexamples

LTL Assersions

Parser

Simulator

Refinement
Model Checker

System Models
Reachablitlity

Assertions
Deadlock
Assertions

Editor

Refinement
Assertions

Assertions
Collection

Verifiers

View
BA

generate generate

Fig. 1. System Work Flow

Combinators are used to combine various expressions.
There are four combinators: parallel, sequential, pruning, and
otherwise combinators. The parallel combinator F | G defines
a parallel expression, where expressions F and G execute
independently. The sequential combinator F > x > G defines
a sequential expression, where each value published by F
initiates a separate execution of G wherein x is bound to
it. The execution of F is then continued in parallel with all
these executions of G. The pruning combinator F < x < G
defines a pruning expression, where initially F and G execute
in parallel. However, when F needs the value of x it will be
blocked until G publishes a value to bind x and G terminates
immediately after that. The otherwise combinator F ; G defines
an otherwise expression, where F executes first. The execution
of F is replaced by G if F halts without any published value.
F halts if all site calls are responded or halted, and it doesn’t
publish any more value or call any more site.

We refer readers to [1] for detail introduction on Orc
language, including various site definitions, and functional
core language that have been added to Orc.

III. VERIFICATION

Now we present our approach in verifying Orc. We support
all four combinators, functional core language, and a subset
of local sites at the first stage. Behaviors of local sites are
predefined and predictable. For non-timer sites, we support
fundamental sites, such as Ref , Buffer, SyncChannel, and
Semaphore. For these four sites, it is assumed that each call
of them responses immediately with a predictable value v.
For timer site, we support Rtimer, and it is assumed that it
responses a signal value after t time units [11], where signal
is a return value which carries no information.



A. Time constraint

In the expression Rtimer(500) À “x” | Rtimer(600) À “y”,
Rtimer(500) should return before Rtimer(600). In order to
resolve time constraint, we use an approach similar to [9].
A clock variable will be assigned to each Rtimer when it
is waiting for site returned value. In order to reduce the
number of clock variables, the clock variable is created if
necessary and pruned when it is not needed. To resolve the
time constraint of active clocks, techniques based on different
bound matrix (DBM) are used.

B. Deadlock-freeness

A deadlock occurs when the entire system is in terminal
state, although some of the local processes might not be ter-
minated. To verify whether a system is deadlock, we perform
a depth-first search on the state-space for terminal state.

C. Reachability

A safety property is a property that states ”bad thing will
never occur”. For example ∼ (cs0 ∧ cs1) specified that cs0
and cs1 cannot be both true at the same time. To verify a
safety property p, we can negate the property ∼ p, and check
whether system reaches ∼ p, i.e. the system is possible to
enter into a state that satisfies property ∼ p. If the system
reaches ∼ p, then the safety property is violated. A depth first
search is performed on the state space for state that violates
the property.

D. Linear Temporal Logic

A liveness property stating ”something good will eventually
happened”. To model the liveness properties, Linear Temporal
Logic (LTL) [6] is normally used.

Algorithms based on automata theoretic approach are used
to avoid construction of the entire state-space. This tactic is
called on-the-fly model checking [2].

E. Timed Refinement

In time-critical orchestrations, properties such as whether a
particular process will be invoked at t time-units after a certain
event e are crucial. We verify such properties by means of
timed refinement checking. The idea is to construct a specifica-
tion written in Orc, and to check whether the application to be
verified conforms to the behavior of the specification including
real-time constraints. For the time refinement algorithms, we
are using an approach similar to [8].

IV. REDUCTION TECHNIQUES

In our work, we have discussed various aspects of verifi-
cation, with the use of respective state-of-the-art verification
algorithms. However, in verification of Orc, the main difficulty
is the state-explosion problem. The operational semantics of
Orc allows the execution to run in parallel in many places. For
example, in pruning combinator A < x < B, parallel combina-
tor A | B, and site call operators with two arguments M(A, B),
expression A and B can be run in parallel. This also implies
that simple functional expressions like if E then F else G

would need to run in parallel since it is translated into mixed of
pruning and parallel expressions, ie. (if (b) À F | if (∼ b) À
G) < b < E, before evaluation. Furthermore, when a function
call is executed the function body and argument expressions
are executed in parallel. Parallelism in Orc has made states
grow exponentially and thus posed a challenge for its formal
verification. Thus state reduction becomes a crucial task for
verification of model.

Fortunately, due to the functional programming flavor of
Orc, we can expect there would exist many independent
execution, and they can be easily abstracted away using partial
order reduction. This can be done by actively analyzing the
structure of Orc program to understand whether it has made
use of sites that support mutable storage (e.g. Ref site) or time
(e.g. Rtimer), and handle them accordingly. Furthermore, it is
frequent that behaviorally similar processes are run in parallel,
thus we can use symmetry reduction or even process counter
abstraction [10] to yield a smaller state space for verification.
The general idea is grouping behaviorally similar processes
while not keeping the process identifer. Lastly, there is a list
of identities in Orc language that have been proved using
strong bisimulation [12]. This identities are exploited for state
reduction as well.

V. CONCLUSION

In this paper, we present our approach in direct verification
of Orc. We believe this will help in improving the overall
quality of the Orc language implementations. We are working
on ways to further reduce the state space of the model. We
would also consider to support verification of more local sites
and include remote sites in the near future.

REFERENCES

[1] Orc Language. http://orc.csres.utexas.edu/.
[2] G. J. Holzmann. The Model Checker SPIN. IEEE Transactions on

Software Engeering, 23(5):279–295, 1997.
[3] D. Kitchin. Operational and denotational semantics of the otherwise

combinator. 2009.
[4] D. Kitchin, W. Cook, and J. Misra. A language for task orchestration

and its semantic properties. pages 477–491. 2006.
[5] D. Kitchin, A. Quark, W. Cook, and J. Misra. The Orc programming

language. In FMOODS/FORTE, pages 1–25, 2009.
[6] A. P. Sistla and E. M. Clarke. The complexity of propositional linear

temporal logics. J. ACM, 32(3):733–749, 1985.
[7] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible

Verification under Fairness. In CAV 2009, pages 702–708, Grenoble,
France, June 2009.

[8] J. Sun, Y. Liu, J. S. Dong, F. Wang, M. C. Zhen, and
L. A. Tuan. Verifying compositional safety critical systems
by timed language inclusion checking. Technical report.
http://www.comp.nus.edu.sg/˜pat/cavreport.pdf.

[9] J. Sun, Y. Liu, J. S. Dong, and X. Zhang. Verifying stateful timed
csp using implicit clocks and zone abstraction. In ICFEM 2009, pages
581–600. Springer, 2009.

[10] J. Sun, Y. Liu, A. Roychoudhury, S. Liu, and J. S. Dong. Fair model
checking with process counter abstraction. In FM’09, pages 123–139.
Springer, 2009.

[11] I. Wehrman, D. Kitchin, W. Cook, and J. Misra. A timed semantics of
orc. Theoretical Computer Science, 402(2-3):234–248, August 2008.

[12] I. Wehrman, D. Kitchin, W. R. Cook, and J. Misra. Properties of the
timed operational and denotational semantics of orc. Technical Report
TR-07-65, The University of Texas at Austin, Department of Computer
Sciences, December 2007.


