
An Analyzer for Extended Compositional Process Algebras

Yang Liu
School of Computing
National University of

Singapore
liuyang@comp.nus.edu.sg

Jun Sun
School of Computing
National University of

Singapore
sunj@comp.nus.edu.sg

Jin Song Dong
School of Computing
National University of

Singapore
dongjs@comp.nus.edu.sg

ABSTRACT
System simulation and verification become more demanding as
complexity grows. PAT is developed as an interactive system to
support composing, simulating and reasoning of process algebra
with various extensions like fairness events, global variables and
parameterized processes. PAT provides user friendly interfaces to
support system modeling and simulation. Furthermore, it embeds
two complementing model checking techniques catering for dif-
ferent systems and properties, namely, an explicit on-the-fly model
checker which is designed to verify event-based fairness constraints
efficiently and a bounded model checker based on state-of-the-art
SAT solvers. The model checkers are capable of proving reacha-
bility, deadlock-freeness and the full set of Linear Temporal Logic
(LTL) properties. Compared to other model checkers, PAT has two
key advantages. Firstly, it supports an intuitive annotation of fair-
ness constraints so that it handles large number of fairness con-
straints efficiently. Secondly, the compositional encoding of sys-
tem models as SAT problems allows us to handle compositional
process algebra effectively. The experimental results show that PAT
is capable of verifying systems with large number of states and out-
performs the state-of-the-art model checkers in some cases.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specification; D.2.4
[Software Engineering]: Program Verification—Model Checking

General Terms
Verification

Keywords
Simulation, Model Checking, Fairness, SAT Solvers

1. OVERVIEW
Critical system requirements like safety, liveness and fairness

play important roles in system/software specification, verification
and development. It is desirable to have handy tools to simulate the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

system behavior and verify the critical properties, which becomes
more demanding as the complexity grows. PAT was started with
the investigation of system verification under fairness assumptions
based on our previous work in [1]. The motivation is that fairness
assumptions are often necessary in system verification practice in
order to prove desirable system properties, whereas existing lan-
guages and tools have limited support for fairness modeling as well
as verification. After that, we went further to explore state-of-the-
art verification techniques for more effective system verification.
We developed novel techniques and extended PAT with the capa-
bility of bounded model checking as well as powerful system sim-
ulation. Till now, PAT has been developed as an interactive system
which supports system modeling, simulating and verification. Cur-
rently, it is publicly available at out web site [5].

PAT has been implemented in C# 2.0 for the benefits of Object-
Oriented design and competitive performance. Primary experiments
has shown promising results. The current PAT is able to handle sys-
tems with large number of states and outperforms the state-of-the-
art model checkers (e.g. Spin [3] and FDR [4]) in some cases.

The system models (including both the specification and desired
properties) are parsed separately into internal representations. Sim-
ulator can take in the internal specification processes for the pur-
pose of simulation. The Büchi automata generated from the LTL
properties can also be viewed graphically. The model checkers
build the product of the specification and the Büchi automaton (which
represents the negation of the property) and conclude true if the
product is empty and report with a counterexample otherwise. PAT
consists of three main components as follows.

An editor The specification editor provides a user friendly inter-
face for users to input system models (i.e., the full CSP syn-
tax with various extensions is supported) as well as desirable
properties (i.e., the full temporal logic syntax is supported).

A simulator The simulator allows users to perform various simu-
lation tasks on the input models: complete states generation
based on the execution graph, automatically random simula-
tion, user interactive simulation, trace replay and so on.

Model checkers The model checkers embedded in PAT are event-
based on-the-fly model checker with the support of annotated
fairness assumptions and the bounded model checker based
on the state-of-the-arts SAT-Solvers. They are complemen-
tary to each other to cater for various models and properties.

2. MODELING AND SIMULATION
PAT embeds an editor which serves as a user friendly interface

for system modeling. The editor accepts extended CSP specifica-
tions and LTL properties with the features, like complete text edit-



ing functions, syntax highlighting, multi-documents environment
and multi-threading execution.

The input language of PAT is based on the classic Communicat-
ing Sequential Processes (CSP), for its rich set of process constructs
and multi-threaded concurrency. We remark that the simulation and
verification algorithms are not limited to specific languages. For
better expressiveness, we extended CSP with following features.

Event-based Fairness We introduce the notion of event-based fair-
ness, i.e., a fairness constraint is associated with individual
events. In this way, a variety of fairness constraints can be
naturally expressed in event-based system models.

Global Variables and Parameterized Processes The process def-
initions are extended to accept global variables and parame-
ters. To make full use of this extension, we further introduce
the process guard and assignment constructs.

Because we are dealing with an event-based formalism, we ex-
tend standard LTL with events so that properties concerning both
states and events can be stated and verified. The complete grammar
rules of extended CSP and LTL supported by PAT are available at
our web site [5].

System Simulator takes in the specifications and allows users to
perform various simulation tasks including complete states gener-
ation based on the execution graph, automatically random simula-
tion with animation, Execution trace display and replay and image
printing and exporting functions.

3. VERIFICATION
PAT embeds two complementing model checkers catering for

different systems and properties. Instead of presenting the technical
details of two model checking algorithms, we will use a running ex-
ample to illustrate the intuition behind the event-based fairness as
well as the algorithms. The following is the model of the classic
dining philosophers problem [2],

Phili = think .i → get .i .(i + 1)%N → get .i .i →
eat .i → put .i .(i + 1)%N → put .i .i → Phili

Forki = get .((i − 1)%N ).i → put .((i − 1)%N ).i
→ Forki 2 get .i .i → put .i .i → Forki

PhilsN = ‖N−1

i=0
(Phili ‖ Forki)

where N is the number of philosophers, get .i .j (put .i .j ) is the
action of the i-th philosopher picking up (putting down) the j -th
fork. The property to verify is

∧N−1
i=0 23eat .i which informally

means that no philosopher would starve.

3.1 On-the-fly Model Checking
The explicit on-the-fly model checker constructs the product of

the system and the Büchi automaton generated from the negation
of the property on-the-fly and concludes with a counterexample as
soon as a fair loop is discovered. If the specification is not an-
notated with fairness constraints, a fair loop means a loop which
contains at least one fair state of the Büchi automaton. Our model
checker uses a DFS-search algorithm to find one fair loop effi-
ciently, e.g., verifying PhilsN against the property would return the
trace 〈think .i , get .i .(i+1)%N → get .i .i → eat .i → put .i .(i+
1)%N → put .i .i〉, i.e., one of the philosophers keeps eating and
thus the rest starve. If the system is fair, i.e., every philosopher gets
a chance to grab a fork, then non-starvation is guaranteed.

We go beyond existing model checkers like Spin or FDR to ver-
ify systems annotated with event-based fairness. The key idea of
event-based fairness is that fairness constraints (weak or strong)

is associated with individual events by annotating the event using
wl(event) or sl(event). It may be the case that only a subset of
the events is associated with fairness constraints, e.g., for a vending
machine, it is natural to require eventually an item is dispatched af-
ter some coins have been inserted whereas it is unnatural to require
that always eventually some coins will be inserted. Event-based
fairness is extremely flexible. The explicit model checking algo-
rithm is extended to take the fairness constraints into account. For
systems with fairness annotations, a fair loop is a loop which not
only contains at least one fair state of the Büchi automaton, but also
is fair regarding the event-based fairness. We skip the semantics of
event-based fairness and the extended model checking algorithm
for brevity. In summary, a variety of fairness constraints can be
naturally embedded in the model itself and the algorithm handles
event-based fairness efficiently.

3.2 Bounded Model Checking
Bounded model checking has been shown to be a complementary

approach for system verification. The idea is to encode the verifica-
tion problem as a SAT problem and then apply state-of-the-art SAT
solvers to conclude whether the property is true or false. PAT em-
beds a bounded model checker to complement the explicit model
checker, i.e., to produce the shortest counterexample if there is one
or to produce a counterexample if the explicit model checking is
simply infeasible (due to time or memory limit). The challenging
aspect of applying bounded model checking to compositional pro-
cess algebra is that the encoding must be compositional and must
avoid the building of the explicit state graph (which is destined to
be huge). Given a number of processes running in parallel (say

‖N

i=0
Pi ), the compositional encoding (that has been implemented

in PAT) encodes each sub-component Pi first and then composes
the encoding of Pi to build the encoding of the composition. For
instance, Phili ‖ Forki is encoded first and then the encoding is
manipulated so that the encoding of PhilsN is exactly the con-
junction of the encoding of Phili ‖ Forki . This way, we avoid
exploring the state space of PhilsN . If Pi is also an indexed paral-
lel composition of multiple sub-processes (which is not possible in
Spin but perfectly reasonable in process algebras like CSP or CCS),
the same procedure is repeated.

4. CONCLUSION
In summary, we have developed a self-contained tool PAT for

system specification and verification based on an event-based com-
positional processes. Experiment results show that PAT does veri-
fication rather efficiently. The future plan of PAT includes process
refinement/equivalence checking, optimization techniques like par-
tial order reduction as well as model checker based on BDD.

5. REFERENCES
[1] J. S. Dong, P. Hao, J. Sun, and X. Zhang. A Reasoning

Method for Timed CSP Based on Constraint Solving. In Proc.
of the 8th Inter. Conf. on Formal Engineering Methods
(ICFEM 2006), pages 342–359. Springer, 2006.

[2] C. A. R. Hoare. Communicating Sequential Processes. Inte.
Series in Computer Science. Prentice-Hall, 1985.

[3] G. J. Holzmann. The Model Checker SPIN. IEEE
Transactions on Software Engeering, 23(5):279–295, 1997.

[4] A. W. Roscoe. The Theory and Practice of Concurrency.
Prentice-Hall, 1997.

[5] J. Sun, Y. Liu, and J. S. Dong. A Simulator and Model
Checker for Extended CSP.
http://www.comp.nus.edu.sg/~liuyang/pat/, 2008.


