
Modeling and Verification of Transmission Protocols: A Case Study on CSMA/CD
Protocol

Ling Shi
School of Computing

National University of Singapore
Singapore

shiling@comp.nus.edu.sg

Yan Liu
School of Computing

National University of Singapore
Singapore

yanliu@comp.nus.edu.sg

Abstract—In this paper, we investigate the modeling and
verification of real time systems using a case study on trans-
mission protocol, CSMA/CD. Modeling and verification of
real time systems is hot research topic which has practical
implications. Such systems are considered as mission critical, as
its correctness within timed constraints are of great importance.
Through modeling and verifying CSMA/CD protocol using
timed extension of CSP (TCSP) modeling techniques in PAT,
we propose a formal model for CSMA/CD protocol and
verify its critical properties like deadlock-freeness, divergence-
freeness and collision detection in a given bounded delay. The
integrated reduction techniques in PAT help in carrying out
the verification with reasonable speed and results.

Keywords-CSMACD Protocol; Real Time System; Model
Checking; PAT

I. INTRODUCTION

Real-time systems are applications to be considered as
mission critical. The total correctness of such systems de-
pends not only upon its logical correctness, but also upon the
time in which it is performed. Real-time systems can fail in
catastrophic ways leading to death or tremendous financial
loss. There are many potential causes such as environmental
conditions, human errors etc.. However, design errors are
increasingly becoming the most serious culprit. Traditional
way of verifying software systems has its limitations as
human inspection is limited by the abilities of reviewers
and only a small portion of the state space of real-time
systems can be explored by simulation and testing. Thus,
they provide no guarantees about the quality of the system.
Formal methods, on the other hand, which refer to mathe-
matically rigorous techniques and tools for the specification,
design and verification of software and hardware systems,
are often advocated as a way of increasing confidence in
such systems [1]. They are able to symbolically examine the
entire state space of a system and establish such correctness
or safety properties that are true for all inputs. Here, ”math-
ematically rigorous” means that, in a mathematical logic,
well-formed statements is used as specifications and rigorous
deductions are the basis for formal verifications.

Model checking [2] is a general term for a collection of
related formal methods. Such technique offers the potential

to guarantee correct functional behavior of a system with
respect to its specification. It is studied and adopted in indus-
tries as a promising and powerful approach to automatic ver-
ification of systems in the last two decades. Our home-grown
model checker known as PAT (Process Analysis Toolkit) [3],
[4], [5], [6] is such a tool to apply state-of-the-art model
checking techniques for system analysis. It supports a wide
range of modeling languages including CSP# (short for
communicating sequential programs), which shares similar
design principle with integrated specification languages like
TCOZ [7], [8]. The modeling language integrated in PAT
combines high-level modeling operators like (conditional or
non-deterministic) choices, interrupt, (alphabetized) parallel
composition, interleaving, hiding, asynchronous message
passing channel, etc., with programmer-favored low-level
constructs like variables, arrays, if-then-else, while, etc..
The real-time system module of PAT is an extension of
CSP module with operators which captures quantitative
timing requirements. In addition to all above, PAT provides
automatic simulation and verification for models, which can
help the designer to find implicit errors of a presented model.

Transmission protocols are one kind application of real-
time systems, whose rules govern interactions among com-
munication agents. They play an important part in computer
networks and distributed systems. Many protocols have
been successfully used, but they may suffer from some
unexpected failures. The most common faulty in protocols
is the occurrence of deadlock; others include loss of mes-
sage, message destruction, and timeout. In this paper, we
formally specify a simple but typical transmission protocol
CSMA/CD (Carrier Sense Multiple Access / Collision De-
tection) [9], which is widely used in Ethernet networks. We
have shown how PAT can be used to model this protocol. The
protocol properties are also verified based on verification
theories in PAT including deadlock freeness, divergence free,
timed refinement.

The rest of paper is organized as follows. Section II
discusses related works on formal models and verifications
of CSMA/CD protocol. Section III introduces timed CSP#
language, timed refinement checking for verification and

CSMA/CD protocol, and Section IV specifies CSMA/CD
protocol in our modeling language. Section V presents the
verification properties and experimental results. Section VI
concludes the paper.

II. RELATED WORK

Sergio Yovine conducted case studies on communication
protocols in the tool named KRONOS [10]. In the tool’s
user manual [11], he formally modeled the CSMA/CD
protocol using timed automata which captures the system’s
time constraints in a explicit way, and also he used TCTL
to verify important system properties such as reachability,
bounded response etc., as well as using timed-abstracting
equivalence means to compare a real time implementation
of a system with an abstract and untimed specification of
it, verifying the correctness of system behaviors. However,
using timed automata to model should explicitly set/reset
clock variables, this work should be carefully computed,
and it’s tedious and error-prone. Moreover, timed automata
techniques do not support compositional real time systems
like deadline, timed-interrupt which is useful in industry case
studies.

Another useful model checker Uppaal [12], [13] also
demonstrates a model of this protocol which is also based
on explicit clock variables. While this model has a deadlock,
it does not consider how to respond busy signal to request
sender in multi-agents Ethernet networks. In fact, bus just
broadcasts busy signal to all senders which causes the
deadlock.

Günther Starnberger in his paper [14] using Spin model
checker to formally model CSMA/CD protocol. He used five
process types to model different behaviors of this protocol
and used such processes to make the verification of certain
properties straightforward. However, this method requires
user to have specialized knowledge and skills in modeling
and verifying systems. For example, using processes like
monitor process to aid the verification and terminator pro-
cess to simplify the system model. What’s more, the huge
memory consumption of visiting the whole state space, like
verify the deadlock freeness property needs extra commands
to take care of. And lack of ability to check the whole state
space make the model checker limited in verifying some
important properties when there are many processes. The
most inconvenience is that his model does not have time
constraints which are very important to protocols in real
time systems. Timed properties like time-out, deadline is
essential to transmission protocols like CSMA/CD, which
would have significant effects on system behaviors.

In previous work [13], the modeling of CSMA/CD pro-
tocol is possible to reach a state where there is a deadlock.
But such a state does not present in the reality, since with
the protocol, the bus network will always be able to receive
messages from the senders. Thus in order to model the
protocol more precisely, we carefully construct our model

in such a way it doesn’t present a deadlock state. We model
this protocol in the real-time system (RTS) module of PAT,
using implicit clocks to model the system behaviors [15].
Implicit clocks have certain benefits that it can model the
compositional timed systems, to satisfy high-level system re-
quirements like deadline, timeout, timed interrupt, which can
be composed sequentially, or in parallel. We also use timed
refinement relationship to check system correctness like
KRONOS using timed-abstracting technique. However, our
refinement checking is to check whether an implementation
satisfies a specification or not. It is different from KRONOS,
which uses an extended version of branching time temporal
logic named Computation Tree Logic(CTL) [16] with time
TCTL [17] to do timed property checking. We also show
our verification results of certain critical properties in our
home-grown model checker PAT.

III. BACKGROUND

In this section, we will give the background information
of formally modeling and verifying CSMA/CD protocol. It
will include knowledge about the modeling language Timed
CSP# for modeling real time systems with a comparison to
Timed Automata and concept of timed refinement checking
for verification of critical properties. At the end of this
section, we will briefly introduce the popular transmission
protocol- Carrier Sense, Multiple Access with Collision
Detection (CSMA/CD) protocol.

A. Syntax of Timed CSP#

The Timed CSP# modeling language is a timed extension
of Communication Sequence Process (CSP) [18], its gram-
mar is defined as follows.

Definition 1 (Process): A timed process is defined by the
following grammar.

P = Stop | Skip – primitives
| e → P – event prefixing
| [b]P – state guard
| if b then P else Q – if-then-else
| P 2 Q – general choice
| P ‖ Q – parallel composition
| P; Q – sequential composition
| P \ X – hiding
| P =̂ Q – process referencing
| Wait[d] – delay
| P timeout[d] Q – timeout
| P interrupt[d] Q – timed interrupt
| P within[d] – react within some time
| P waituntil[d] – wait until
| P deadline[d] – deadline

where P and Q range over processes, e ∈ Σ is an observable
event, b is a boolean expression, X is a set of event names
and d is an integer constant.

Stop is the process does nothing but idling, also denotes
deadlock. Skip states termination. Process e → P performs
event e first and then behaves as P. Notice that e may be an
abstract event or a data operation, e.g. written in the form
of e{x = 1; y = 2; } or an external C# program. The data
operation is used to update data variables and it is assumed
to be executed atomically. A guard process is written as [b]P.
If b is true, then it behaves as P, else it idles until b becomes
true. A conditional choice is written as if b then P else Q.
If b is true, then it behaves P, else it behaves Q. An
unconditional choice is written as P 2 Q. The choice to
choose which process to perform accords to what events are
requested by its environment. Parallel composition is written
as P ‖ Q, where P and Q may communicate via variables,
or multi-party event synchronization. Process P; Q behaves
as P until P terminates and then behaves as Q immediately.
P \ X hides occurrences of events in X by replacing them
with τ (an unobservable event). Process P =̂ Q defines P
to be exactly as Q. Processes may communicate through
message passing on channels. Channel buffer size must be
greater or equal to 0. Notice that a channel with buffer size
0 sends/receives messages synchronously.

Timed process constructs can be used to capture common
real-time system behavior patterns. Process Wait[d] delays
the system execution for a period of d time units then it
terminates. In process P timeout[d] Q, the first observable
event of P should occur before d time units elapse (since the
process starts). Otherwise, Q takes control over after exactly
d time units elapse. Process P interrupt[d] Q behaves exactly
as P (which may engage in multiple observable events) until
d time units elapse, and then Q takes controls over. Process
P within[d] constrains that P must react (by engaging in an
observable event) within d time units. Process P waituntil[d]
denotes P executes for at least d time units and process
P deadline[d] constrains P must terminate within d time
units.

Compared to Timed CSP#, Timed Automata [19] which is
popular for specifying real time systems during last decades,
has certain deficiencies that it is not feasible in supporting
compositional models. Timed Automata are powerful in de-
signing real-time models with explicit clock variables. Real-
time constraints are captured by explicitly setting/reseting
clock variables. A number of automatic verification sup-
ported for Timed Automata have proven to be success-
ful (e.g. UPPAAL [20], KRONOS [10] and RED [21]).
However, in industrial case studies of real-time system
verification, system requirements are often structured into
phases, which are then composed sequentially, in parallel
and alternatively [22]. High-level requirements for real-time
systems are often stated in terms of deadline, time out, and
timed interrupt. Unlike Timed CSP#, Timed Automata lack
high-level compositional patterns for hierarchical design.
As a result, users often need to manually cast those terms
into a set of clock variables with carefully calculated clock

Figure 1. Algorithm of CSMA/CD Protocol

constraints. The process is tedious and error-prone.

B. Timed Refinement Checking

A timed safety property can be proved by showing a timed
trace refinement relationship between an implementation and
a handcrafted specification which captures the property. The
timed trace refinement relationship [15] is a model satisfies
a specification if and only if the timed traces of the models
are a subset of those of specification. Assume that a model
I contains two events start and end. Further, the property is
that end must occur within 5 seconds since start occurs. In
order to prove that I satisfies the property, we can show
that I refines (in timed traces semantics) the following
specification: S = start → ((end → S) within[5]).

C. Brief Introduction for CSMA/CD protocol

In Ethernet network, several agents may be connected
by a single bus. A problem arises that how to assign the
usage of bus to only one of many agents who competes
for. Carrier Sense, Multiple Access with Collision Detection
(CSMA/CD) protocol describes one solution to this problem.
The simplified algorithm of CSMA/CD is shown in Fig. 1.
Roughly speaking, whenever an agent starts sending mes-
sages, it must first listen to the bus and wait for absence
signal before transmitting. When the absence signal comes
which means the bus is idle, the agent begins to transmit. If
it detects a busy bus, it waits for a random amount of time
before another try. As for the propagation time for message
to travel from source node to the destination node via bus, an
agent may listen to the bus to be idle while another agent is
sending message before the message reaches any destination.
Thus, collision occurs, then all of the agents are informed of
this collision, and abort their transmission immediately. All
transmitting messages are lost and all agents should compete
for the bus again by waiting a random time.

WaitFor(i) = (cd?i → WaitFor(i))
2 (newMess!i → ((begin!i → Trans(i))

2 (busy?i → Retry(i))
2 (cd?i → Retry(i))));

Trans(i) = (cd?i → Retry(i)within[0, 52])

2 (atomic{end!i → Skip}within[808, 808];

WaitFor(i));

Retry(i) = (newMess!i → ((begin!i → Trans(i)within[0, 52])

2 (busy?i → Retry(i)within[0, 52])

2 (cd?i → Retry(i)within[0, 52])));

Figure 2. Model for the Sender

Our home-grown model checker PAT integrated the real-
time system module which based on the Timed CSP# mod-
eling language makes the modeling and verification of our
case study feasible. The parallel verification [23] and on-the-
fly refinement checking algorithm [3] enhanced with state
space reduction technique enabled the efficient checking
of certain crucial properties like safety properties, liveness
properties. Thus we explore our modeling and verification
of CSMA/CD protocol based on PAT.

IV. MODEL FOR CSMA/CD PROTOCOL

As in real world, there are several important time pa-
rameters, such as different propagation time according to
various materials of network wires. In order to better model
the real world protocol behavior, we make the following
assumptions. First we suppose that agents communicate in
the 10Mbps Ethernet with a worst case propagation (denoted
here by σ) for absence signal travel of 26 µsec. Additionally,
we fix that messages have a fixed length of 1024 bytes, and
the time for transmitting a complete message is assumed to
be a constant time (denoted here by λ) 808 µsec, including
propagation time. Besides, we don’t model backoff strategy
for retrying, we just assume that agent will retry within
2σ (52 µsec) time unit elapsed since the last step. Also,
we make assumptions that no messages are lost during
transmitting and there’s no buffer for incoming messages
at the agent side.

Based on the above assumptions, we then model the
CSMA/CD protocol in the real-time system module in our
PAT tool. The model for this protocol consists of two
components, namely Sender (sending agent) and Bus (mes-
sage transmitting channel). Sender and Bus communicate
by synchronous events, so we define this communication by
pair-wise synchronization channels. In order to make all the
variables and processes of this model to be clearly aware, we
list all the related contents of this model with a simplified
description, as illustrated in Table I.

Category Name Description
N Constant: number of senders
channel newMess
0 Sender gets messages to send

channel begin 0 Sender starts sending message
Global
Definition channel busy 0 Sender senses a busy bus

channel cd 0 Sender detects a collision

channel end 0 Sender completes its trans-
mission

WaitFor(i) Sender i is waiting for a mes-
sage from the upper level

Sender
Behavior Trans(i) Sender i is sending a message

Retry(i)
Sender i is waiting to retry
after detecting a collision or
a busy bus

Idle Bus is free, no sender is trans-
miting

Bus
Behavior Active One sender starts transmitting

and is detecting collision

Active1 One sender is transmitting
messages, bus is busy

Collision
Collision occurs and bus
broadcasts the collision infor-
mation to all senders

Table I
COMPONENTS OF CSMA/CD MODEL

A. Modeling Sender Behavior

The behavior of component Sender is showed in Fig. 2.
WaitFor process models the behavior of sender i waiting
for upper level messages to come. Trans process represents
sender i completes transmitting messages within λ time unit
or detects a collision within 2σ (52 µsec) time unit after its
sending. Retry process expresses sender i wait for a 2σ (52
µsec) time unit to re-attempt.

Initially, the sender i is in WaitFor process. When a mes-
sage arrives, one of the following transitions is executed. If
the bus is not busy, the sender starts transmission. Otherwise,
if bus is busy because another sender is already transmitting,
it moves to retry state, or a collision is detected, it waits to
retry. If a collision occurs while there is no message to send,
the sender i remains in WaitFor state.

In Trans process, sender i has two transitions, which is
modeled as two external choices in PAT. If a collision is
detected before 2σ time unit elapsed, the sender goes to
Retry process. Otherwise, it terminates sending the message
after exactly λ time unit, then it goes to the initial process.

When sender i is in Retry process, it makes a new step to
resend messages before 2σ time unit elapsed since the last
step. If the bus is idle, it will begin to transmit and moves
to Trans state; If the bus is busy or receives a collision, it
will still be in Retry state.

B. Modeling Bus Behavior

The behavior of component Bus is showed in Fig. 3.
Initially, bus is in Idle process. When one sender starts

Idle = newMess?i → begin?i → Active;

Active = (end?i → Idle)
2 (newMess?i →

((begin?i → Collision) timeout[26]

2 (busy!i → Active1)));

Active1 = (end?i → Idle)
2 (newMess?i → busy!i → Active1);

Collision = atomic{BroadcastCD(0)}within[0, 26]; Idle;

Figure 3. Model for the Bus

BroadcastCD(x) = if (x < N){
(cd!x → BroadcastCD(x + 1))

2

(newMess?[i==x]i → cd!x → BroadcastCD(x + 1))

}
else {

Skip
};
Figure 4. Model for the BroadcastCD process

sending its message, bus goes to Active process. If bus
receives a signal that sender completes sending, it moves
to idle state. Or after being in Active state for at least σ
time unit, bus replies busy signal to any new attempt, which
models the fact that the head of the message currently being
sent has already propagated, then bus moves to Active1 state.
If another sender starts sending messages before σ time unit
elapsed, bus moves to Collision state where it takes no more
than σ time unit to broadcast collision to all senders. We use
atomic process BroadcastCD shown in Fig. 4 to broadcast
collision to all senders. After that, bus moves to Idle state.
When bus in Active1 process, which means a sender has
begun sending messages without collision, it will respond
busy signal to all request senders until the sender completes
transmitting, then bus moves to Idle state.

C. Modeling CSMA/CD Protocol

The whole system is executed by all senders and bus in-
terleave with each other. The communication is implemented
by the synchronous channel between senders and bus. We
model this as Fig. 5

V. VERIFICATION AND EXPERIMENTAL RESULTS

A. Verification Properties

In order to formally verify our model for CSMA/CD
protocol is correct, we define several categories of
properties to check whether it satisfies some properties.
These properties in PAT can be categorized as LTL-
X Model Checking, Refinement Checking and Timed
Refinement Checking. In LTL-X Model Checking, properties
are formulated using linear temporal logic formulae

CSMACD = (||| x : {0..N − 1}@WaitFor(x)) ||| Idle;

Figure 5. Model for the CSMACD protocol

without next operator, which includes safety property
and liveness property. Refinement Checking is to verify
whether the system satisfies the property by showing a
refinement relationship between the system and a model
which models the property. The refinement relationship
can be trace-refinement, stable failures refinement and
failures/divergence refinement [18]. Timed Refinement
Checking supports refinement checking between timed
models, using implicit clocks and zone abstraction
mechanism.

Deadlock Freeness (P0)
Informally, safety property states ”bad things” never happen
during the execution. Deadlock freeness is a safety property
that has to be fulfilled so that it is always possible to move
from one state to another. Deadlock freeness property in our
model is defined as follows:

#assert CSMACD deadlockfree;

Timed Divergence-free (P1)
If a process performs internal transitions and timed transi-
tions forever without engaging any useful events, the process
is said to be divergent. While the divergent system is
undesirable, for it can give unbound timer, thus disallows
timed refinement checking. Timed Divergence-free property
in our model is defined as follows:

#assert CSMACD divergencefree < T >;

Collision detection in a given bounded delay (P2)
Whenever two senders are simultaneously transmitting, a
collision is detected in a bounded delay. In worst case, a
sender can start sending at most σ time units after another
sender, which means a collision occurs no more than σ
time unit after two senders simultaneously transmit. And
collision may take σ time units to be propagated. So a sender
will detect a collision at most 2σ (52 µsec) after it starts
transmitting.

Figure. 6 shows a model that specifies this property. Spec
shows that if event begin.0 occurs which means sender 0 be-
gins transmitting, then Constrained1 happens. Constrained1
states if event begin.1 occurs thereafter which means sender
1 starts sending messages almost simultaneously, event cd.0
or cd.1 must occur within 52 time units, otherwise, no con-
straints apply, which is modeled as Relaxed process. In Spec
process, if event begin.1 occurs and then followed by event
begin.0, then Constrained2 happens. Constrained2 states
if event begin.0 occurs thereafter which means sender 0
starts sending messages almost simultaneously, event cd.0 or
cd.1 must occur within 52 time units, otherwise, it executes

Spec = (newMess.0 → begin.0 → Constrained1)

2 (newMess.1 → begin.1 → Constrianed2)

2 Relaxed;

Constrained1 =

((newMess.1 → begin.1 →
((cd.0 → Skip 2 cd.1 → Skip)deadline[52])); Spec)

2 Relaxed;

Constrained2 =

((newMess.0 → begin.0 →
((cd.0 → Skip 2 cd.1 → Skip)deadline[52])); Spec)

2 Relaxed;

Relaxed =

(2 x : {2..N − 1}@(newMess.x → begin.x → Spec))
2

(2 x : {0..N − 1}@((newMess.x →
(busy.x → Spec 2 cd.x → Spec))

2 (cd.x → Spec)
2 (end.x → Spec)));

Figure 6. Model for the Collision detection in a given bounded delay

Relaxed process. In Spec process, if no constraints apply,
it goes to Relaxed process. Our specification is to show
whenever two senders send messages simultaneously, they
will receive collision within 52 µsec since start transmitting.

In order to verify our model satisfies this property, we use
timed refinement to check this requirement. Here, we define
this in the following:

#assert CSMACD refines < T > Spec;

B. Experimental Results

Timed refinement checking allows us to verify Collision
detection in a given bounded delay property which consists
of timed transitions. We have experimented CSMA/CD
protocol on PAT for different number of senders. Table II
summarizes the verification results of properties. The experi-
ment testbed is a PC running Windows XP3 within 2.33GHz
Intel(R) core(TM)2 Duo CPU and 3.25GB memory.
From the table II, firstly we can see that the number of

states, transitions and running time increase rapidly with
the number of senders. Secondly, we can show that PAT
is effective, for it can handle thousands of states in no
more than 1000 seconds. The data on UPPAAL [13] or
KRONOS [11] verifying the same models has been omitted
from the table because KRONOS just model two senders,
and model in UPPAAL [13] has a deadlock, it does not
consider how to respond busy signal to request sender in
multi-agents Ethernet networks. In fact, bus just broadcasts
busy signal to all senders which cause the deadlock. Since
our model does not present deadlock state, the more realistic
modeling has brought us more states then we can verify our
model more correctly.

Property No. of
Senders Result #States #Transitions Time(sec)

P0 4 Yes 787 1075 0.20
P0 5 Yes 2789 3847 0.60
P0 6 Yes 8851 12227 2.28
P0 7 Yes 26109 35991 8.43
P0 8 Yes 73123 100419 31.03
P0 9 Yes 196997 269319 108.69
P0 10 Yes 514915 700611 361.58
P1 4 Yes 787 1075 0.17
P1 5 Yes 2789 3847 0.66
P1 6 Yes 8851 12227 2.53
P1 7 Yes 26109 35991 9.79
P1 8 Yes 73123 100419 35.69
P1 9 Yes 196997 269319 123.24
P1 10 Yes 514915 700611 407.12
P2 4 Yes 787 1075 0.20
P2 5 Yes 2789 3847 0.90
P2 6 Yes 8851 12227 3.69
P2 7 Yes 26109 35991 14.74
P2 8 Yes 73123 100419 55.38
P2 9 Yes 196997 269319 196.35
P2 10 Yes 514915 700611 655.38

Table II
EXPERIMENTAL RESULTS

VI. CONCLUSION

In this paper, we proposed a formal model for popular
transmission protocol named CSMA/CD protocol, which is
used in Ethernet to solve the competence for bus recourse
among multi-agents. Using our home-grown model checker
PAT, we modeled this protocol based on extension of timed
CSP and verified its critical properties like deadlock free-
ness, divergence-freeness, as well as verified this protocol
with timed constraints using timed refinement model check-
ing techniques. Experiments show that our model satisfied
these properties. We also made comparisons to other model
checkers like KRONOS, UPPAAL and Spin to show that
PAT is efficient and feasible to model compositional systems.
However, our model and verification show there are still
certain problems leaving uninvestigated such as the star-
vation problem should be specially take care of, either by
improving our model or making more strict assumptions.
Our future work also includes research on other modeling
techniques to model richer properties of our systems like
applying the probabilistic model checking techniques, and
keep on improving PAT to efficiently deal with state explo-
sion problems.

REFERENCES

[1] J. P. Bowen, J. Bowen, J. Bowen, J. Bowen, V. Stavridou,
V. Stavridou, V. Stavridou, and V. Stavridou, “Safety-critical
systems, formal methods and standards,” Software Engineer-
ing Journal, vol. 8, pp. 189–209, 1993.

[2] O. G. E. M. Clarke and D. A. Peled, Model Checking. MIT
Press, 2000.

[3] J. Sun, Y. Liu, and J. S. Dong, “Model Checking CSP
Revisited: Introducing a Process Analysis Toolkit,” in ISoLA
08. Springer, 2008, pp. 307–322.

[4] “PAT website,” http://www.comp.nus.edu.sg/∼pat/.

[5] J. Sun, Y. Liu, J. S. Dong, and J. Pang, “PAT: Towards
Flexible Verification under Fairness,” in CAV 2009, Grenoble,
France, June 2009, pp. 702–708.

[6] J. Sun, Y. Liu, J. S. Dong, and H. H. Wang, “Specifying
and Verifying Event-based Fairness Enhanced Systems,” in
ICFEM 2008, ser. LNCS, vol. 5256. Springer, 2008, pp.
318–337.

[7] B. Mahony and J. S. Dong, “Timed communicating object z,”
IEEE Transactions on Software Engineering, vol. 26, no. 2,
pp. 150–177, 2000.

[8] B. Mahony and J. S. Dong, “Blending object-z and timed csp:
An introduction to tcoz,” in THE 20TH INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING (ICSE98).
IEEE Press, 1997, pp. 95–104.

[9] A. S. Tanenbaum, Computer networks: 2nd edition. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.

[10] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis,
and S. Yovine, “Kronos: A Model-Checking Tool for Real-
Time Systems,” in International Conf. on Computer Aided
Verification (CAV). Springer, 1998.

[11] S. Yovine, “Kronos: A verification tool for real-time systems.
(kronos user’s manual release 2.2),” International Journal on
Software Tools for Technology Transfer, vol. 1, pp. 123–133,
1997.

[12] T. Amnell, G. Behrmann, J. Bengtsson, P. R. D;Argenio,
A. David, A. Fehnker, T. Hune, B. Jeannet, K. G. Larsen,
M. O. Mller, P. Pettersson, C. Weise, and W. Yi, “Uppaal -
now, next, and future,” in In Proc. MOVEP00, LNCS 2067.
Springer, 2001, pp. 99–124.

[13] “UPPAAL website,” http://www.uppaal.com/.

[14] “Ethernet CSMA/CD verification using the Spin model
checker software,” https://guenther.starnberger.name/
publications/div/spin.pdf.

[15] J. Sun, Y. Liu, J. S. Dong, and X. Zhang, “Verifying Stateful
Timed CSP Using Implicit Clocks and Zone Abstraction,”
in Proceedings of the 11th IEEEInternational Conference on
Formal Engineering Methods (ICFEM 2009), ser. Lecture
Notes in Computer Science, vol. 5885, 2009, pp. 581–600.

[16] E. Clarke and E. Emerson, “Design and synthesis of
synchronization skeletons using branching time temporal
logic,” 1982, pp. 52–71. [Online]. Available: http://dx.doi.
org/10.1007/BFb0025774

[17] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Sym-
bolic model checking for real-time systems,” Information and
Computation, vol. 111, pp. 394–406, 1992.

[18] C. Hoare, Communicating Sequential Processes, ser. Interna-
tional Series in Computer Science. Prentice-Hall, 1985.

[19] R. Alur and D. L. Dill, “A theory of timed automata,”
Theoretical Computer Science, vol. 126, pp. 183–235, 1994.

[20] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,”
1997.

[21] F. Wang, R.-S. Wu, and G.-D. Huang, “Verifying timed and
linear hybrid rule-systems with red,” in SEKE, 2005, pp. 448–
454.

[22] K. Havelund, A. Skou, K. G. Larsen, and K. Lund, “Formal
modeling and analysis of an audio/video protocol: an indus-
trial case study using uppaal,” in RTSS ’97: Proceedings of
the 18th IEEE Real-Time Systems Symposium. Washington,
DC, USA: IEEE Computer Society, 1997, p. 2.

[23] Y. Liu, J. Sun, and J. S. Dong, “Scalable multi-core model
checking fairness enhanced systems,” in ICFEM ’09: Pro-
ceedings of the 11th International Conference on Formal
Engineering Methods. Berlin, Heidelberg: Springer-Verlag,
2009, pp. 426–445.

