
A Formal Semantics for the Complete Syntax of UML
State Machines with Communications

Shuang Liu1, Yang Liu2, Étienne André3, Christine Choppy3, Jun Sun4,
Bimlesh Wadhwa1 and Jin Song Dong1

1 School of Computing, National University of Singapore, Singapore
2 Nanyang Technology University, Singapore

3 LIPN, Université Paris 13, Sorbonne Paris Cité, France
4 Singapore University of Design and Technology, Singapore

Abstract. UML is a widely used notation introduced by the Object Management
Group (OMG), and formalizing its semantics is an important issue. In this work,
we concentrate on formalizing UML state machines which are used to express
the dynamic behavior of software systems. We propose a formal operational se-
mantics covering all features of the latest version (2.4.1) of UML state machine
specification. We use Labeled Transition System (LTS) as the semantic model of
UML state machines, which is subject to automatic verification techniques like
model checking. Furthermore, our proposed semantics includes synchronous and
asynchronous communications between state machines. We implement our ap-
proach in USM2C, a model checker supporting editing, simulation and automatic
verification of UML state machines. Experiments show the effectiveness of our
approach.

1 Introduction

UML diagrams [1] have become the de facto modeling language, and UML state ma-
chine diagrams are widely used to model the dynamic behavior of an object. Since
UML specification is documented in natural language, inconsistencies and ambigui-
ties arise, and it is thus important to provide a formal semantics for UML. Indeed, a
formal UML semantics (1) allows more precise and efficient communication between
engineers, (2) yields more consistent and rigorous models, and (3) lastly and most im-
portantly, enables automatic formal verification of UML state machine models through
techniques like model checking, which guarantees important properties of a system in
the early development stage.

Some existing works provide formal semantics for a subset of UML state machine
features, leaving some important issues unaddressed. First, none of the existing formal-
ization approaches achieve a full coverage of UML state machine features, and only a
few [5,2] consider UML 2.x specifications. To the best of our knowledge, only [11] con-
sidered the non-determinisms in the presence of orthogonal composite states. However,
the work in [11] supports only a limited set of syntax features, e.g., no pseudostates
except for initial and history are supported. We believe that all the features provided by
UML state machine specification should be considered, since each of them has its spe-
cific usage, especially choice, fork, join pseudostates, completion transitions and event
deferral, which are commonly used but often left out in existing formalizations.

1

Secondly, in the existing approaches, communications between state machines are
not formally defined. UML state machines are used to model the behavior of objects,
which are components of a system. The whole system may include several state ma-
chines interacting with each other synchronously or asynchronously. The dynamic be-
havior of those state machines constitute the dynamic behavior of the whole system.
From the viewpoint of the overall system behavior, especially due to synchronizations
among different components of the system, the verification of the entire system is more
meaningful than its subparts, which are in turn modeled by respective state machines.

Lastly, the unclarities (that is, inconsistencies and ambiguities) in the UML state
machine specifications are not thoroughly checked and discussed. Fecher et al. [6] dis-
cussed 29 unclarities in UML 2.0 state machines. But there are still some unclarities,
such as the granularity of a transition execution sequence and container of a transition
etc, which are not covered in [6] but will be discussed by our approach (Section 2.2).

In order to bridge the gaps in the current approaches, we provide a formal opera-
tional semantics for the complete set of UML state machine features, which includes
formal definition of state machine level and orthogonal composite state level non-
determinism. We also consider the communication mechanisms between different state
machines. The contributions of this paper are summarized as follows. (1) We provide a
formal operational semantics for UML 2.4.1 state machines covering the complete set
of UML state machine features. In particular, our formalization considers state machine
level and orthogonal composite state level non-determinism as well as synchronous and
asynchronous communications between state machines. (2) We explicitly discuss the
event pool mechanisms in UML state machines and consider deferral events as well as
completion events. (3) We exhibit 6 new unclarities in UML 2.4.1 state machine seman-
tics specifications. (4) We develop a self-contained tool USM2C based on the semantics
we have defined; it is able to model check various properties such as deadlock-freeness
and linear temporal logic (LTL) properties. We conduct experiments on our tool and
results show the effectiveness of our tool.

Related Works Due to limited space, we only discuss the most related works; in particu-
lar, we do not mention work focusing on the 1.x UML specification. Fecher [5] provided
a formal semantics for a subset of UML state machine features. The remaining subset
of UML state machine features are informally transformed to the defined subset of fea-
tures. The semantics defined in [5] blurs the run to completion (RTC) step, which is
the basic semantic step of UML state machine. Moreover, the informal transformation
procedure as well as the extra costs it introduces might make it infeasible for auto-
matic tool developing. Another work [11] by Schönborn considered non-determinism
in orthogonal composite states. But in terms of pseudostates, only initial and history
pseudostates are covered. Moreover, this approach does not define a complete RTC step
semantics. A subset of UML state machine features is also covered in works like, e.g.,
[12] that adopts Labelled Transition System (LTS) as a semantic domain to formal-
ize UML state machine semantics. But constructs such as junction, choice, fork and
join pseudostates, submachine state etc. are not supported. Jin et al. [7] use Abstract
State Machines (ASM) as the semantic domain and do cover more features, but choice
pseudostate is not considered. Moreover, some of their formalizations, such as deciding
conflicts in the presence of deferred events, do not respect UML2.x specifications. Re-

2

cently, a few proposals have been made to formalize UML state machine semantics into
Petri nets [3,2]. These approaches also do not support a number of pseudostates. The
input languages to model checking tools (Spin, PAT, etc.) are used in other approaches,
e.g., [9,13]. Due to the limitation of the translated language, only a small subset of UML
state machine features are supported. It is also hard to link back to the original model
when a counterexample is detected.

The rest of this paper is organized as follows. Section 2 provides the preliminaries
of UML state machines, exhibits new unclarities, and defines basic assumptions for our
work. Section 3 defines the syntax for UML state machines, including the event pool
formalization. Section 4 defines the formal semantics for UML state machines with
communications. Section 5 provides the implementation details and evaluation results.
Section 6 concludes the paper and discusses future directions of research.

2 UML Features, Unclarities and Our Assumptions

In this section, we introduce the preliminary knowledge about UML state machine.
Then, we exhibit unclarities that we found out in the UML 2.4.1 specification. Finally,
we provide basic assumptions for our approach.

2.1 Introduction of Basic Features of UML State Machines

We briefly introduce basic features of UML state machines in this section. We use the
RailCar system Fig. 1 (a modified version of the example used in [4]) as a running
example. The RailCar system is composed of Car state machine and Handler state
machine. They communicate with each other through synchronous event calls. The
Handler state machine models a part of a terminal behavior, which is responsible of
communicating with the Car state machine when the car is approaching and departing
the terminal.
Vertices and Transitions. A vertex is a node, which refers to a state, a pseudostate,
a final state or a connection point reference. A transition is a relation between a source
vertex and a target vertex. It may have a guard, a trigger and an effect (a sequence
of actions). The container of a transition is the region which owns the transition. A
compound transition is composed of a multiple transitions joined via choice, junction,
fork and join pseudostates.
Regions. It is container of vertices and transitions, and represents an orthogonal parts
of a composite state or a state machine. In Fig. 1, the areas [R1] and [R2] are regions.
States. There are three kinds of states, viz., simple state (e.g., in Fig. 1: Idle), com-
posite state (Departure) and submachine state. An orthogonal composite state (WaitAr-
rivalOK) has more than one region. States can have optional entry/exit/do behaviors.
A do behavior can be interrupted by an event. A state can also define a set of deferred
events. A final state (Final1) is a special kind of state which indicates finishing of its
enclosing region. It does not have regions, nor entry/exit/do behaviors.
Pseudostates. Pseudostates are introduced to connect multiple transitions to form
complex transition paths. There are 10 kinds of pseudostates: initial, join, fork, junc-
tion, choice, entry point, exit point, shallow history, deep history, terminate. Due to lack

3

 stm RailCar

Idle

Initial1

Standby

Operating

[R0] Departure

[RD]

Cruising

Choice1

Choice2

WaitArriv alOK

[R1]

[R2]

WaitStop

Watch Alarted

WaitEnter

WaitDepart

DepartSub1

[R3]

[R4]

WaitExit

SyncExit

WaitCruise

SynchCruise

join1

InitialD1

InitialD2

InitialD3

InitialA1

InitialA2

InitialA3

Choice3

Final1

Final2

Initial

WaitPlatform

WaitEnter

Parked

WaitExit

WaitComplete

WaitDepart

Car State Machine

Handler State Machine

t3

[TermNum!=0]

t0

[mode==pass]

/Handler.departReq

alert80

arriveAck

t10
t8

t4

[TermNum==0]

t9

t6 [mode==stop]

/TermNum - -;

t5

[mode==pass]

alert100

/Handler.arriveReq;

opend

progress

/Handler.departReq

setDest

/TermNum++;

platformAllocated

departAck

started

departAck

[mode==stop]

alertStop

opend

moveCompleted

/Car.departAck
exitAllocateddepartReq

moveCompleted

/Car.arriveAck

arriveReq

Fig. 1. The RailCar State Machine

of space, details are given in [10], while some commonly used features are discussed
below. Join pseudostate (join1) is used to merge transitions from states in orthogonal re-
gions. Fork pseudostate is used to split transitions targeting states in orthogonal regions.
Choice pseudostates (Choice1) represent a dynamic branching point. When a choice
pseudostate is encountered, the transition path emanating from it should be evaluated
in the environment when the choice pseudostate is reached (and not in the beginning of
the compound transition). Initial Pseudostate (Initial1) indicates the default initial state
of a region.

Connection Point Reference. It is an entry/exit point of a submachine state. It refers
to the entry/exit pseudostate of the state machine that the submachine state refers to.

Active State Configuration. It is a set of active states of a state machine when it is in
a stable status1, e.g., {Idle} or {Operating, Final2} in Fig. 1.

Run to Completion Step (RTC). It captures the semantics of processing one event
occurrence, i.e., executing a set of compound transitions (fired by the dispatched event),
which may cause the state machine to move to the next active state configuration, to-
gether with behavior executions. This is the basic semantic step in UML state ma-
chines. For example in Figure 1, if the current active state configuration is {Standby}
and the transition emanating from it is fired, the RTC step will lead the state machine to

1The state machine is waiting for event occurrences.

4

the next active state configuration, i.e., {Operating, Departure, DepartSub1, WaitExit ,
WaitCruise}, accompanied by the behavior execution to call the departReq behavior of
Handler state machine. The RTC step does not finish until the call event returns from
Handler state machine.

2.2 Unclarities in UML 2.4.1 State Machine Specification

Due to lack of space, we briefly sketch below some new unclarities we found in the
UML state machine specification (detailed discussions can be found in [10]).
Transition Execution Sequence. Transitions and compound transitions are used inter-
leavinglly in the descriptions of transition execution sequence, which makes it unclear
whether some rule is applied to a transition or to a compound transition. The transition
execution ordering is important since different execution orders may lead to different
results.
Basic Interleave Execution Step. If multiple compound transitions in orthogonal re-
gions are fired by the same event, it is unclear in what granularity should the interleaving
execution be conducted, either on transition or on compound transition level.
Order issue of entering orthogonal composite states. When entering orthogonal
composite states, no interleaving order is specified.

There are three other unclarities, viz., the container of a transition, the Least Com-
mon Ancestor (LCA) of a compound transition and the conflict resolutions in the pres-
ence of choice pseudostates are not clearly defined. We provide the detailed discussions
in [10] due to space limits.

2.3 Basic Assumptions on UML State Machine Semantics

In this section, we try to address the unclarities discussed in Section 2.2, and we provide
the basic assumptions for our semantics definition.
Transition Execution Sequence. Whether the transition execution sequence is defined
on a single transition or on a compound transition is not clearly stated. We define the
transition execution sequence based on a transition instead of compound transitions. In
this way, we can guarantee that behaviors are executed in a correct order.
Basic Interleave Execution Step. For interleaving execution of compound transitions
in orthogonal regions, we decide to regard a compound transition as the interleaving
execution step since a compound transition is a semantically complete path.
Order issues of entering orthogonal composite states. On entering an orthogonal
composite state, all possible interleaving orders among its substates to be entered are
allowed, as long as the hierarchical order is preserved, i.e., composite states are entered
before their substates.

3 Syntax of UML State Machines

In this section, we provide formal syntax definitions for UML state machine features
and abstractions of event pools. We define a self-contained model which includes mul-
tiple state machines. Table 1 lists the basic notations of all types defined in the work.

5

Table 1. Type Notations

Symbol Type Symbol Type Symbol Pseudostate type
KS active state configuration B boolean SHps deep history
T̃ compound transition C constraints Ips initial
K configurations Sf final state Cps choice
〈T̃〉 compound transition list S state Jops join
V vertex Trig triggers Jups junction
KV active vertex configuration T transition Tps terminate
CPR connection point reference E event Enps entry point
SM state machine R region Fps fork
B behaviors PS pseudostate SHps shallow history
〈B〉 behavior list N natural number Exps exit point

3.1 Syntax Formalization

We use tuples as syntax domain and refer to [1] as the basis for syntax definition.

Definition 1 (State). A state is defined as a tuple s = (r̂ , t̂def , αen , αex , αdo , ên , êx ,
ĉpr , sm , t̂) where:

– r̂ ⊂ R is the set of regions directly contained in this state.
– t̂def ⊂ Trig is the set of deferral triggers associated with this state.
– αen ∈ B ,αex ∈ B and αdo ∈ B represent the entry, exit and do behaviors associ-

ated with the state respectively.
– ên ∈ PS and êx ∈ PS are the entry point reference and exit point reference

associated with the state.
– ĉpr ⊂ CPR is a set of connection point references belonging to a submachine

state. This field is used only when the state is a submachine state.
– sm ∈ SM is the state machine referenced by this state. This is used only when the

state is a submachine state.
– t̂ ⊂ T is the set of internal transitions defined in the state.

There are four kinds of state types Ss , Sc , So and Sm , that represent simple state,
composite state, orthogonal composite state and submachine state, respectively.

Definition 2 (Pseudostate). A pseudostate is defined as a tuple ps = (ι, ĥ), where
ι ∈ R is the region in which the pseudostate is defined, and ĥ ∈ S is an optional field
which is used to record the last active set of states. This latter field is only used when
the pseudostate is a shallow history or deep history pseudostate.

There are ten kinds of pseudostates defined in UML 2.4.1 state machine specifications.
The last column of Table 1 shows the notations of different kinds of pseudostates. We
use PS to represent all kinds of pseudostates.

Definition 3 (Final state). A final state is a special kind of state, which is defined as a
tuple fs = (ι) where: ι ∈ So ∪ Sc is the composite state which is the direct ancestor of
the container of the Final State.

Definition 4 (Connection Point Reference). A Connection Point Reference is defined
as a tuple (ên , êx , s) where ên ⊂ Enps and êx ⊂ Exps are the entry point and exit
point kind pseudostates corresponding to this connection point, and s is the state in
which the connection point reference is defined.

6

Vertex V , S ∪ Sf ∪ PS ∪ CPR is an abstraction of all nodes. It is the superclass of
State, Final state, Pseudostate and Connection Point Reference.

Definition 5 (Transition). A transition is a tuple t = (sv , tv , t̂g , g , α , ι, t̂c) where:

– sv ∈ V , tv ∈ V are the source and target vertex of the transition respectively.
– t̂g ⊂ Trig , g ∈ C and α ∈ B are the set of triggers, the guard and the effect

behavior associated with the transition respectively.
– ι ∈ R is the container of the transition.
– t̂c is a set of tuples of the form segt = (ss, αst , ιst). It represents the special

situation that a join or fork pseudostate connects multiple transitions to form a
compound transition. Each tuple represents a segment transition which ends in the
join (resp. emanates from the fork) pseudostate. ss ∈ S is the non-fork (resp. non-
join) end of the segment transition 2, αst ∈ B is the behavior associated with the
segment transition. ιst ∈ R is the container of the segment transition.

We treat exit point pseudostate the same way with join pseudostate and entry point
pseudostate the same way with fork pseudostate.

We define the following functions on transitions for the benefit of a clear notation.
Function isFork(t) and isJoin(t) decides whether the transition t is a fork transition
and join transition respectively. We use t .α̃ to represent all possible action execution
sequences of t . Formal definition of t .α̃ is in [10].

Definition 6 (Region). A region is defined as a tuple r , (v̂ , t̂) where: v̂ ⊂ (S ∪ PS)
is the set of vertices directly contained in this region. t̂ ⊂ T is the set of transitions
owned by this region.

Definition 7 (State Machine). A UML state machine is defined by a tuple sm , (r̂ ,
ĉp), where r̂ is top most region which is directly contained by sm , and ĉp are the
connection points, i.e., entry/exit point pseudostates defined for this state machine.

Definition 8 (Compound Transition). A compound transition t̃ is a “semantically
complete” path composed of one or multiple transitions connected by pseudostates.
The set of compound transition T̃ = {t̃ | t̃ ∈ ST ∧ t̃ .ŝv ∈ S ∧ t̃ .t̂v ∈ S}. where
st ∈ ST ≡ st ∈ T ∨ ∃ sti , stj ∈ ST : last(sti) = first(stj) ∧ st = sti _ stj .

The operator _ represents the operation of connecting transitions in order. We de-
fine function len(t̃) to compute the total number of segment transitions the compound
transition is composed of. And seg(t̃ , i) returns the i th segment specified by the nat-
ural number index (i) of a given compound transition. We use first(t̃) and last(t̃) to
represent the first and last segment of t̃ (formal definitions are in [10]).
Compositional Operators. The operator “; ” is used to represent a sequential com-
position. Interleave operation (‖|) represents a non-determinism in the execution orders
of all the involved objects. Interleaving composition with synchronous communications
(‖|C) is a special case of interleaving: it requires the state machine to synchronize on
the specified event indicated by C . Interruption (∇) is used to represent interruption
of a do activity by some event occurrence. Parallel composition (‖) represents a real
concurrency, i.e., execute at the same time.

2The other end is the fork (resp. join) pseudostate.

7

Definition 9 (System). A system is a set of state machines executing interleavingly
(with synchronous communications). sys , ‖|Ci∈[1,n]Smi where Sm , (sm,EP ,GV).
Fields of Sm represent state machine (sm), event pool associated with sm and global
shared variables of sm respectively. n is the number of state machines within sys .

Event Pool Abstraction. Events of different types, such as change events and sig-
nal events, are processed differently. Events with same type but appearing in different
places, such as the trigger of a transition and in the deferred event set of a state, are also
processed differently. Change events have the highest priority during event dispatching.
A deferred event should always be checked to decide its status in each active state con-
figuration. We provide for this purpose three separate event pools, viz., completion event
pool (CEP), deferred event pool (DEP), and normal event pool (NEP). But the event
dispatching order in each pool is not specified. We use EP , (CEP ,DEP ,NEP) to
represent the event pool of a state machine and define the two basic operations on EP .
Merge(e,P) represents merge event e into the corresponding event pool represented
by P , and !EP represents dispatch an event from EP . (Formal definitions are in [10].)

4 A Formal Semantics for UML State Machines

This section devotes to a self-contained formal semantics for all UML state machine
features. We have adopted the semantic model of Labeled Transition Systems (LTS).
The dynamic semantics of a UML state machine is captured by the execution of RTC
steps, which have two kinds of effects, viz., changing active states and executing behav-
iors. We formally define the two kinds of changes separately. Then the semantics of the
RTC step is defined formally. At last, we define the semantics of the system. Remind
that for all the following definitions, we shall assume the notations in Table 1.

4.1 Active State Configuration Changes

An active state configuration KS is a set of states which are in active status at the same
time. It describes a stable state status of a UML state machine execution, i.e., the status
when the previous RTC step finishes. Remind that we define the transition execution
sequence based on transitions, which may emanate from or target pseudostates. So we
use Active Vertex ConfigurationKV to represent the snapshots of a UML state machine
during an RTC execution. An active vertex configuration is a set of vertices that are in
active status at the same time. KS and KV are defined formally in [10].
Next Active State Configuration. NextK : KS × 〈T̃ 〉 → KS is a function that
computes the next active state configuration after executing the list of compound transi-
tions. Formally: NextK (ks, (t̃1; . . . ; t̃n)) , NxK (ksn , t̃n), where ∀ i ∈ [2,n], ksi =

NxK (ksi−1, t̃i−1) ∧ ks1 = ks . Function NxK : KS × T̃ → KS computes the next
active state configuration after executing a compound transition. Formally, we have:
NxK (ks, t̃) , NxPK (kvn , seg(t̃ ,n)), where n = len(t̃), kv1 = ks , and ∀ i ∈
[2,n], kvi = NxPK (kvi−1, seg(t̃ , i −1)). Function NxPK : KV ×T → KV computes
the next active vertex configuration after executing a transition. Formally: NxPK (kv , t) ,
kv\Leave(kv , t)∪Enter(t). Functions Leave and Enter represent the set of states left
and entered after executing a transition and are formally defined in [10].

8

4.2 Behavior Execution

Another effect of executing an RTC step is to cause behaviors to be executed. All the
behaviors should be collected in the correct order. We define the following functions to
collect the behavior execution sequence.
Exit Behavior. ExitBehavior : KV ×T → 〈B〉 collects the ordered exit behaviors of
states that a given transition leaves in the current vertex configuration. Formally:

ExitBehavior(kv , t) = ExitV (kv ,MainSource(t), t)

ExitV (kv , v , t) ,


‖|Cr∈v.r̂ExitR(kv , r , t); v .αdo∇v .αex if v ∈ So

ExitR(kv , r , t); v .αdo∇v .αex if v ∈ Sc

v .αdo∇v .αex if v ∈ Ss

ε otherwise

ExitR(kv , r , t) ,



SetSH (h, v); ExitV (kv , v , t) if r ∈ R ∧ ∃ v ∈ r .v̂ : v ∈ kv ∧ v ∈ S
∧ ∃ h ∈ SHps : h ∈ r .v̂

SetDH (h, v); ExitV (kv , v , t) if r ∈ R ∧ ∃ v ∈ r .v̂ : v ∈ kv ∧ v ∈ S
∧ ∃ h ∈ DHps : isAncestor(h.ι, r)
∧ isAncestor(t .ι, h.ι)

ExitV (kv , v , t) if r ∈ R ∧ ∃ v ∈ r .v̂ : v ∈ kv
∧ ∀ s ′ ∈ r .v̂ , s ′ 6∈ SHps

∧ @h ∈ DHps : isAncestor(h.ι, r)
∧ isAncestor(t .ι, h.ι)

The exit behaviors of executing a transition are collected recursively starting from
its main source state (computed by function MainSource(t)). Exit behaviors should be
collected in an innermost-out order. We define function ExitV and ExitR to recursively
collect exit behaviors (from vertices and regions respectively). For orthogonal and com-
posite states, all their orthogonal regions should be exited before it. If the region to be
exited contains a shallow history or deep history pseudostate, the content of the history
pseudostate should be set properly (by functions SetSH and SetDH respectively) be-
fore exiting the region. Exiting simple states means terminates the do behavior (if any)
and executes the exit behavior, as defined by function exit . Otherwise, a pseudostate
must be encountered and no behavior is collected (denoted by ε).
Entry Behavior. EntryBehavior : T → 〈B〉 collects the ordered entry behaviors of
states a given transition enters. Formally:

EntryBehavior(t) = EntryV (MainTarget(t),Enter(t))

EntryV (v , V̂) ,



v .αen ; (‖|Cr∈v.r̂EntryR(r , V̂) ‖ v .αdo) if v ∈ So

v .αen ; (EntryR(r , V̂) ‖ v .αdo) if v ∈ Sc

v .αen ; v .αdo if v ∈ Ss

GenEvent(v .ι) if v ∈ Sf ∧ ∀ r ∈ v .ι.r̂ ,
∃ s ′ ∈ r .v̂ : s ′ ∈ kv ⇒ s ′ ∈ Sf

ε otherwise

9

EntryR(r , V̂) , EntryV (s ′, V̂) where r ∈ R ∧ s ′ ∈ r .v̂ ∧ s ′ ∈ V̂

Entry behaviors are collected in a similar manner to exit behaviors, except that the or-
der should be outermost-in. We define the function EntryV and EntryR to recursively
collect the entry behaviors of all the vertices in V̂ in order. All the states entered by
firing the transition t are computed by function Enter(t). Starting from the main target
state of a transition, if the state is an orthogonal composite state, then all its orthogonal
regions are entered interleavingly. Entering each state means executing its entry behav-
ior followed by its do activities (s.αen ; s.αdo) if any. Do activities of a composite
state should be executed in parallel (‖) with all the behaviors of its containing states.
Function GenEvent(s) generates a completion event for state s.ι (the container state
of final state s) and merges the generated event in the completion event queue (CEQ).
For orthogonal composite states, we can only generate a completion event when active
states in all its regions are final states .

Collect Actions. CollectAct : KS × T̃ → 〈B〉 collects the ordered sequence of
behaviors, associated with the execution of the given compound transition. Formally:

CollectAct(ks, t̃) , Act(kv1, seg(t̃ , 1)); . . . ; Act(kvi , seg(t̃ , i)); . . . ; Act(kvn , seg(t̃ ,n))

Act(kv , t) , ExitBehavior(kv , t); t .α̃; EntryBehavior(t)

where n = len(t̃), kv1 = ks and kvi = NxPK (kvi−1, t̃i−1) for i ∈ [2,n].

4.3 The Run to Completion Semantics

The effects of an RTC step execution include both active state changes and behavior
executions which may cause the event pool and global shared variables to be updated.
We use the term configuration to capture the stable status (including states, event pool
and global shared variables) of a UML state machine.

Definition 10 (Configuration). A configuration is a tuple k = (ks,EP ,GV) where
ks is the active state configuration, EP is the event pool and GV is the set of global
shared variables. Configurations describe the stable status of a UML state machine.

A configuration can be considered as a (stable) snapshot of the current UML state
machine. The execution of an RTC step can be depicted as moving from one configura-
tion to the next configuration. Based on the above definition, we provide the following
(inference) rules to formalize the procedure of an RTC step.
Wandering Rule. This rule captures the case where a dispatched event e is neither
consumed nor delayed. As a result, it is discarded, i.e., removed from the event pool
without causing any other effect.

e =!EP ,EP ′ = EP\{e},
∀ s ∈ ks, e 6∈ s.t̂def ,Enable((ks,EP ′,V), e) = ∅

[Wandering]
(ks,EP ,V)

e−→ (ks,EP ′,V)

Event e is dispatched from event pool (!EP), but no transition is triggered by e (i.e.,
Enable((ks,EP ′,V), e) = ∅), and no deferred event in the current configuration

10

matches the event e (i.e., ∀ s ∈ ks, e 6∈ s.t̂def). Event pool EP ′ is the the event pool
EP after dispatching event e . After executing this RTC step, only the event pool of the
state machine configuration changes.
Deferral Rule 1. This rule captures the case where a dispatched event is deferred by
some states in the current active state configuration, but does not trigger any transitions.

e =!EP ,EP ′ = EP\{e},
∃ s ∈ ks : e ∈ s.t̂def ,Enable((ks,EP ′,V), e) = ∅,
EP ′′ = Merge(e,EP ′.DEP),

[Deferral1]
(ks,EP ,V)

e−→ (ks,EP ′′,V)

Since event e is deferred, it should not be discarded but merged back to the deferred
event pool (Merge(e,EP ′.DEP)). So after the RTC execution, only the event pool
EP ′′ is changed.
Deferral Rule2. This rule captures the case where the dispatched event e triggers some
transitions and it is also deferred by some states in the current active state configuration.
But there exists at least one state, which defines the deferral event, that has higher
priority than the source states of the enabled transitions.

e =!EP ,EP ′ = EP\{e},
∃ s ∈ ks : e ∈ s.t̂def , T̂ = Enable((ks,EP ′,V), e), T̂ 6= ∅,
∀ t̃ ∈ T̂ ⇒ deferralConflict(t̃ , (ks,EP ′,V), e)

EP ′′ = Merge(e,EP ′.DEP)
[Deferral2]

(ks,EP ,V)
e−→ (ks,EP ′′,V)

T̂ is the set of transitions enabled by the dispatched event e . Event e is also deferred by
some states in the current active state configuration and the event deferral has higher
priority over transition firing (∀ t̃ ∈ T̂ ⇒ deferralConflict(t̃ , (ks,EP ′,V), e). Func-
tion deferralConflict is used to solve deferral conflicts and is formally defined in [10].
As a consequence, only the event pool of the state machine changed.

To increase the readability of the rules, we use the following brief representations in
all the following RTC rules. A(t̃1, . . . , t̃n) = CollectAct(t̃1); , . . . , ; CollectAct(t̃n)
represents the execution of the behaviors along t̃1, . . . , t̃n (i.e., a list of compound
transitions). Merge(A(〈t̃〉),EP) represents merging the event generated by actions in
A(〈t̃〉) if any into event pool EP . UpdateV (A(〈t̃〉),GV) represents updating of global
shared variables GV by actions in A(〈t̃〉).
Progress Rule. This rule captures the case where a set of compound transitions are
triggered by a dispatched event e . There is no event deferral or the fired transitions have
higher priority over event deferral.

e =!EP ,EP ′ = EP\{e},
T̂ = Firable((ks,EP ′,V), e), | T̂ |= n, 〈t̃〉 ∈ Permutation(T̂),

EP ′′ = MergeA(A(〈t̃〉),EP ′),V ′ = UpdateV (A(〈t̃〉),V)
[Progress]

(ks,EP ,V)
e−→ (NextK (ks, 〈t̃〉),EP ′′,V ′)

Function Firable((ks,EP ′,V), e) (defined in [10]) returns a set of compound transi-
tions which is the maximal non-conflicting subset of enabled transitions. As a result,

11

the firable set of transitions will be executed in an order specified by 〈t̃〉, which is an or-
dered list of compound transitions. Function Permutation (defined in [10]) computes
all possible total orders on the set of compound transitions T̂ . This function captures
the orthogonal composite state level non-determinism, i.e., when multiple compound
transitions are fired. Behaviors are collected along the transition execution sequence
following the permutation order (indicated by A(〈t̃〉)). Active state configuration is
changed as computed by function NextK (ks, 〈t̃〉).
ProgressC Rule. This rule captures the case where choice pseudostates are encoun-
tered during an RTC execution. Different from the RTC Progress rule, dynamic evalua-
tion would be conducted at the point where a choice pseudostate is reached.

e =!EP ,EP ′ = EP\{e},
T̂ =∈ Firable((ks,EP ′,V), e), | T̂ |= n,

t̃1i ∈ T̂ , 〈t̃〉 = (t̃1, . . . t̃
1
i , . . . , t̃n) ∈ Permutation(T̂)

V ′ = UpdateV (A(t̃1, . . . , t̃1i)),V),

EP ′′ = MergeA(A(t̃1, . . . , t̃1i)),EP ′)

t̃2i ∈ Firable(({last(t̃1i).tv},EP ′′,V ′), e),

EP ′′′ = MergeA(A(t̃2i . . . , t̃n),EP ′′),

V ′′ = UpdateV (A(t̃2i . . . , t̃n),V ′)
[ProgressC]

(ks,EP ,V)
e−→ (NextK (ks, 〈t̃〉),EP ′′′,V ′′)

The RTC ProgressC rule captures the same situation as the RTC Progress rule ex-
cept that choice pseudostates are encountered in a compound transition. Compound
transition ti is splitted by a choice pseudostate into t1i and t2i . The second half of ti is
evaluated based on the current environment V ′ .

4.4 System Semantics

A UML state machine models the dynamic behavior of one object within a system.
But multiple state machines representing different components of a system may inter-
act with each other synchronously or asynchronously. The interactions between state
machines together with the dynamic behavior of each single state machine compose the
dynamic behavior of the whole system. In order to verify the correctness of the overall
system behaviors, we need to capture the message passing sequences between all state
machines in the system.

Definition 11 (Semantics of a system). The semantics of a system is defined as a La-
beled Transition System (LTS) L , (S,Sinit ,), with:

– S is the set of states of L. Each LTS state is a tuple (k1, . . . , kn) where ki is the
configuration of the state machine Smi within the system;

– Sinit is the initial state of L.
– ⊆ S× S is the transition relation of L;

The LTS transition relations are defined as follows.

‖|Ci∈[1,n]Smi , kj −→ k ′j
[LTS1]

(k1, . . . , kj , . . . , kn) (k1, . . . , k
′
j , . . . , kn)

12

‖|Ci∈[1,n]Smi , kj −→ k ′j , e = SendSignal(j , k),Merge(e,EPk)
[LTS2]

(k1, . . . , kk , . . . , kj , . . . , kn ,) (k1, , . . . , k
′
k , . . . , k

′
j , . . . , kn)

‖|Ci∈[1,n]Smi , kj −→ k ′j , e = Call(j , k), e ∈ C , kk
e−→ k ′k

[LTS3]
(k1, . . . , kk , . . . , kj , . . . , kn) (k1, . . . , k

′
k , . . . , k

′
j , . . . , kn)

All the state machines in the system are executed non-deterministically. If the event
pool of one state machine dispatches an event, all the effects caused by the dispatched
event must be fulfilled before the RTC step completes. Specially, if a call action is
invoked by the effects of the current RTC step, the RTC does not complete until the
call action returns. Rule LTS1 captures the normal situation that a single state machine
is executed without communicating with other state machines. Rule LTS2 captures the
case where asynchronous communication is involved, i.e., the executing state machine
sends an asynchronous message to another state machine. The state machine receiving
the message merges the message into its own event pool. Rule LTS3 captures the case
where synchronous communication is involved. In this case, the callee state machine
is triggered by the call event. As a consequence, more than two state machines are
triggered to execute. The caller state machine can not finish its RTC step until the callee
has finished execution. Function SendSignal(j , k) and Call(j , k) represent the j th state
machine sends an asynchronous and a synchronous message to the k th state machine,
respectively.

5 Implementation and Evaluation

We have implemented the formal semantics defined in Section 4 in a self-contained
tool USM2C. This tool supports model checking of deadlock-freeness and LTL proper-
ties, as well as step-wise simulation of state machine executions. Counterexamples are
reported in terms of state machine execution traces. Due to space limitation, we report
part of the experiment here. The full set of experiments can be found in [10].

The first experiment is a comparison on the BankATM3 state machine provided
in [8] with the off-the-shelf tool HUGO [8]4. The BankATM system contains Bank state
machine and ATM state machine, which communicate with each other via both syn-
chronous and asynchronous events. HUGO translates UML state machine models into
Promela and uses Spin as the underlying model checker to do the verification. Due to its
comparability problem with Spin, we manually inspect the Promela code generated by
HUGO, write LTL properties accordingly and invoke Spin. The property we checked
is �(retain → ((!cardValid ∧ numIncorrect ≥ maxNumIncorrect)). It guarantees
that when a card is retained, it must be the case that at least maxNumIncorrect times
of wrong pin are entered. This property should hold for the BankATM system. Both

3We did modifications on the BankATM system to comply with UML 2.4.1 state machine
specifications. The modified BankATM system is available in [10].

4This is the only tool that model checks UML state machines available to public downloading
we are aware of. The latest version of HUGO is based on Spin4.3.0, which is currently unavail-
able, and HUGO has compatibility problems with Spin5.x and Spin6.x.

13

Table 2. Scalability Evaluation Result

N Time (s) States Transitions Memory (KiB)
2 0.06 63 105 8, 701
3 0.11 598 1, 397 10, 970
4 1.1 5, 560 17, 448 26, 726
5 13.1 50, 737 199, 513 163, 947
6 163 447, 895 2, 237, 563 734, 510

Spin and USM2C report a valid verification result. Spin reported 34.3 MiB memory us-
age, 61 stored states and 106 transitions verifying the above property on the generated
Promela code. Our tool USM2C reported 9.8 MiB total memory usage, 28 states and 31
transitions visited. By manually inspecting the Promela code generated by HUGO, we
found that an RTC step semantics is implemented as multiple steps in the presence of
orthogonal regions in their translation. This may lead to redundant copies of variables
and propositions, which cause more memory usage.

The second experiment is on the example in Fig. 1, which modifies the example
provided in [4]5 by manually introducing bugs. The example contains transitions which
emanate and enter orthogonal composite states, such as the transition from Cruising
state to WaitArrivalOK state, which is not supported by HUGO.

We checked the LTL property �(alert100 → ♦arriveAck), which depicts the situ-
ation when a car approaches a terminal and is 100 yards from it; the car will finally
receive the arriveAck event from the Handler. This property guarantees that the car will
not wait on the rail forever and it should hold globally in the RailCar system. But it is
reported to be violated and our tool finds the loop (opend→alert100)*, indicating that
the event opend caused the problem. The reason is that the opend event is immediately
available on entering state WaitArrivalOK; thus it got a chance to be dispatched by the
event pool in the next RTC step and causes the problem.

The third experiment is to evaluate the scalability of our tool. We modeled the din-
ning philosopher problem with UML state machines and conducted model checking
with our tool. Table 2 shows the result of this experiment.

The data listed in Table 2 is the result of checking deadlock free property with our
Shortest Witness Trace using Breadth First Search search engine, which forces breadth
first search. The state space we get is quite close to the real state space generated.
We can see from the result that our tool can handle large state spaces caused by non-
determinism. In addition, we can further reduce the state space through techniques like
partial order reduction. We are considering this as one of our future work.

We believe that communications between objects are error-prone and hard to find
manually. The experiment results show that our method is effective in finding design
errors in the presence of both synchronous and asynchronous communications. Our
tool is also more efficient and can deal with more features of UML state machines.

6 Conclusion

In this paper, we provided a formal semantics for the complete set of UML behavioral
state machine features. Our semantics considers state machine level and orthogonal

5 We remove the Arrival state and the completion transition emanating from Operating state

14

composite state level non-determinisms as well as the communication aspect between
UML state machines which bridge the gap of current approaches. To the best of our
knowledge, this is the first attempt of full formalization of the latest UML state ma-
chines specification [1]. We have implemented a self-contained tool for model check-
ing various properties for UML behavior state machine. The experiments show that our
tool is effective in finding bugs with both synchronous and asynchronous communica-
tions between different state machines. Several issues linked with UML state machines
remain unaddressed. In future work, we aim at considering the real-time aspects and
object-oriented issues, such as dynamic invoking and destroying objects.

References

1. OMG unified language superstructure specification(formal). version 2.4.1, 2011-08-06.
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/.

2. É. André, C. Choppy, and K. Klai. Formalizing non-concurrent UML state machines using
colored Petri nets. ACM SIGSOFT Software Engineering Notes, 37(4):1–8, 2012.

3. C. Choppy, K. Klai, and H. Zidani. Formal verification of UML state diagrams: a Petri net
based approach. ACM SIGSOFT Software Engineering Notes, 36(1):1–8, 2011.

4. D.Harel and E.Gery. Executable object modeling with statecharts. IEEE Computer, 30:31–
42, 1997.

5. H. Fecher and J. Schönborn. UML 2.0 state machines: Complete formal semantics via core
state machine. Formal Methods: Applications and Technology, pages 244–260, 2007.

6. H. Fecher, J. Schönborn, M. Kyas, and W. de Roever. 29 new unclarities in the semantics of
UML 2.0 state machines. Formal Methods and Software Engineering, pages 52–65, 2005.

7. Y. Jin, R. Esser, and J. Janneck. A method for describing the syntax and semantics of UML
statecharts. Software and Systems Modeling, 3(2):150–163, 2004.

8. A. Knapp and S. Merz. Model checking and code generation for UML state machines and
collaborations. In Proc. 5th W. Tools System Design & Verif. , volume 11, pages 59–64, 2002.

9. A. Knapp, S. Merz, and C. Rauh. Model checking - timed UML state machines and collab-
orations. In FTRTFT’02 , pages 395–416. Springer-Verlag, 2002.

10. S. Liu, Y. Liu, É. André, C. Choppy, J. Sun, B. Wadhda, and J. S. Dong. A Formal Se-
mantics for the Complete Syntax of UML State Machines with Communications (Report).
Technical report, National University of Singapore, 2013. http://comp.nus.edu.sg/
˜lius87/uml/techreport/uml_sm_semantics.pdf.

11. J. Schönborn. Formal semantics of UML 2.0 behavioral state machines. Technical report,
Inst. Computer Science and Applied Mathematics, Christian-Albrechts-Univ. of Kiel , 2005.

12. M. Von Der Beeck. A structured operational semantics for UML-statecharts. Software and
Systems Modeling, 1(2):130–141, 2002.

13. S. Zhang and Y. Liu. An automatic approach to model checking UML state machines. In 4th
Int. Conf. Secure Software Integration & Reliability etc. (SSIRI-C) , pages 1–6. IEEE, 2010.

15

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://comp.nus.edu.sg/~lius87/uml/techreport/uml_sm_semantics.pdf
http://comp.nus.edu.sg/~lius87/uml/techreport/uml_sm_semantics.pdf

	A Formal Semantics for the Complete Syntax of UML State Machines with Communications

