Improved Reachability Analysis in DTMC via Divide and Conquer

Songzheng Song¹ Lin Gui¹ Jun Sun² Yang Liu³ Jin Song Dong¹

¹ National University of Singapore

²Singapore University of Technology and Design

³Nanyang Technological University

iFM 2013 June 13, 2013

*S. Song***, L. Gui, J. Sun, Y. Liu, J. S. Dong: iFM 2013** Website of our group: [http://www.patroot.com](#page-54-0)

(ロ) (伊)

医电子 化重子

B $2Q$

4 [Evaluations](#page-44-0)

 $A\equiv \mathbb{R} \Rightarrow A\equiv \mathbb{R}$

← ロ ▶ + 伊 \mathbf{p} 2990

÷.

- **[Background](#page-17-0)**
- **[Our Approach](#page-28-0)**
- **[Evaluations](#page-44-0)**
- 5 [Conclusion and Future Work](#page-49-0)

*S. Song***, L. Gui, J. Sun, Y. Liu, J. S. Dong: iFM 2013** Website of our group: [http://www.patroot.com](#page-0-0)

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

 \equiv

 2990

Stochastic systems exist in many domains.

*S. Song***, L. Gui, J. Sun, Y. Liu, J. S. Dong: iFM 2013** Website of our group: [http://www.patroot.com](#page-0-0)

4 ロ) (何) (日) (日)

 299

÷.

Stochastic systems exist in many domains.

- Network: IPv4 Zeroconf
- Communication protocol: IEEE 802.3 CSMA/CD
- Biology: Cell cycles

イロト イ押 トイヨ トイヨト

÷.

Stochastic systems exist in many domains.

- Network: IPv4 Zeroconf
- Communication protocol: IEEE 802.3 CSMA/CD

医电子 化重子

 $2Q$

э

(ロ) (伊)

• Biology: Cell cycles

Stochastic systems exist in many domains.

- **A** Network: IPv4 Zeroconf
- Communication protocol: IEEE 802.3 CSMA/CD

イロメ イ押 メイヨメ イヨメ

 $2Q$

э

• Biology: Cell cycles

Formal analysis of stochastic systems is critical.

We focus on probabilistic model checking.

*S. Song***, L. Gui, J. Sun, Y. Liu, J. S. Dong: iFM 2013** Website of our group: [http://www.patroot.com](#page-0-0)

イロト イ押 トイヨ トイヨ トー

重。 299

We focus on probabilistic model checking.

*S. Song***, L. Gui, J. Sun, Y. Liu, J. S. Dong: iFM 2013** Website of our group: [http://www.patroot.com](#page-0-0)

イロン イ何ン イヨン イヨン・ヨー

 299

We focus on probabilistic model checking.

Discrete Time Markov Chain (DTMC) is a widely used formalism in probabilistic model checking.

 2990

G.

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

Definition

A DTMC is a tuple (*S*, *sinit* , *Pr*, *AP*, *L*) where *S* is a countable set of states; $s_{init} \in S$ is the initial state; *Pr* is a function: $S \times S \rightarrow [0, 1]$ representing the transition relation, which satisfies \forall $\bm{s} \in \mathcal{S},$ $\Sigma_{\bm{s}' \in \mathcal{S}}$ $\bm{\mathit{Pr}}(\bm{s}, \bm{s}') = 1;$ $\bm{\mathit{AP}}$ is a set of atomic propositions and L: $S\to 2^\textit{AP}$ is a labeling function.

◆ ロ ▶ → 伊 ▶ → ヨ ▶ → ヨ ▶ → ヨ

Definition

A DTMC is a tuple (*S*, *sinit* , *Pr*, *AP*, *L*) where *S* is a countable set of states; $s_{init} \in S$ is the initial state; *Pr* is a function: $S \times S \rightarrow [0, 1]$ representing the transition relation, which satisfies \forall $\bm{s} \in \mathcal{S},$ $\Sigma_{\bm{s}' \in \mathcal{S}}$ $\bm{\mathit{Pr}}(\bm{s}, \bm{s}') = 1;$ $\bm{\mathit{AP}}$ is a set of atomic propositions and L: $S\to 2^\textit{AP}$ is a labeling function.

 $($ \Box $)$ $($ \Box $)$

化重新润滑剂

B

Reachability analysis plays a key role in DTMC verification, e.g., it is used to decide the probability of reaching certain disastrous state.

*S. Song***, L. Gui, J. Sun, Y. Liu, J. S. Dong: iFM 2013** Website of our group: [http://www.patroot.com](#page-0-0)

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

重し $2Q$

Reachability analysis plays a key role in DTMC verification, e.g., it is used to decide the probability of reaching certain disastrous state.

B

 \mathbf{p}_i

4 0 8

ă,

Reachability analysis plays a key role in DTMC verification, e.g., it is used to decide the probability of reaching certain disastrous state.

4 0 8

 $2Q$

∍

Reachability analysis plays a key role in DTMC verification, e.g., it is used to decide the probability of reaching certain disastrous state.

- **1** Solving linear equations
- 2 Value iteration.

4 0 8

 $2Q$

∍

Reachability analysis plays a key role in DTMC verification, e.g., it is used to decide the probability of reaching certain disastrous state.

- **1** Solving linear equations
- 2 Value iteration.

We combine their advantages together!

(□) (f)

→ 重 ▶ → 重 ▶

[Evaluations](#page-44-0)

*S. Song***, L. Gui, J. Sun, Y. Liu, J. S. Dong: iFM 2013** Website of our group: [http://www.patroot.com](#page-0-0)

(ロ) (伊)

→ 重き (重き

 \equiv

 2990

Strongly Connected Component

-
- SCC 1 Those maximal sets of states mutually connected.
	- ² An SCC is called *trivial* if it just has one state without a self-loop.
	- ³ An SCC is *nontrivial* iff it is not trivial.
	- ⁴ A DTMC is *acyclic* iff it only has *trivial* SCCs.

メラメメラト

4 0 8 \leftarrow $2Q$

э

Strongly Connected Component

-
- SCC 1 Those maximal sets of states mutually connected.
	- ² An SCC is called *trivial* if it just has one state without a self-loop.
	- ³ An SCC is *nontrivial* iff it is not trivial.
	- ⁴ A DTMC is *acyclic* iff it only has *trivial* SCCs.

Nontrival SCCs : {{*s*1, *s*2, *s*3}, {*s*4}, {*s*5}}

*S. Song***, L. Gui, J. Sun, Y. Liu, J. S. Dong: iFM 2013** Website of our group: [http://www.patroot.com](#page-0-0)

4 €

4 0 8

ă

Input and Output

in a DTMC $\mathcal{M} = (S, s_{init}, Pr, AP, L)$, given a group of states $\mathcal{D} \subseteq S$, the input states of D are defined as the states in D having incoming transitions from states outside D ; the output states of D are defined as states outside \overline{D} which have incoming transitions from states in D.

$$
lnp(\mathcal{D}) = \{s' \in \mathcal{D} \mid \exists s \in S \setminus \mathcal{D}.Pr(s, s') > 0\}
$$

$$
Out(\mathcal{D}) = \{s' \in S \setminus \mathcal{D} \mid \exists s \in \mathcal{D}.Pr(s, s') > 0\}
$$

イロメ イ押 メイヨメ イヨメ

ă,

Input and Output

in a DTMC $\mathcal{M} = (S, s_{init}, Pr, AP, L)$, given a group of states $\mathcal{D} \subseteq S$, the input states of D are defined as the states in D having incoming transitions from states outside D ; the output states of D are defined as states outside \overline{D} which have incoming transitions from states in D.

$$
lnp(\mathcal{D}) = \{s' \in \mathcal{D} \mid \exists s \in S \setminus \mathcal{D}.Pr(s, s') > 0\}
$$

$$
Out(\mathcal{D}) = \{s' \in S \setminus \mathcal{D} \mid \exists s \in \mathcal{D}.Pr(s, s') > 0\}
$$

If $\mathcal{D} = \{s_1, s_2, s_3\}$, then $\mathsf{Imp}(\mathcal{D}) = \{s_1\}$, $\mathsf{Out}(\mathcal{D}) = \{s_4, s_5\}$ [.](#page-20-0)

÷,

 2990

 D can be abstracted by calculating the transition probability from $\text{Inp}(\mathcal{D})$ to $\text{Out}(\mathcal{D})$.

*S. Song***, L. Gui, J. Sun, Y. Liu, J. S. Dong: iFM 2013** Website of our group: [http://www.patroot.com](#page-0-0)

4 ロ) (何) (日) (日)

重。 299

Abstraction

 D can be abstracted by calculating the transition probability from $\text{Inp}(\mathcal{D})$ to $\text{Out}(\mathcal{D})$.

 $\mathbf{y} \rightarrow \mathbf{z}$

B × \mathcal{A}

4 ロ ▶ 4 伊

÷.

 2990

Abstraction

 D can be abstracted by calculating the transition probability from $\text{Inp}(\mathcal{D})$ to $\text{Out}(\mathcal{D})$.

*S. Song***, L. Gui, J. Sun, Y. Liu, J. S. Dong: iFM 2013** Website of our group: [http://www.patroot.com](#page-0-0)

 2990

÷.

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

[Motivation](#page-2-0)

[Background](#page-17-0) [Our Approach](#page-28-0) [Evaluations](#page-44-0)

[Conclusion and Future Work](#page-49-0)

$\mathcal D$ is an SCC and $|Out(\mathcal D)| \leq 1$

*S. Song***, L. Gui, J. Sun, Y. Liu, J. S. Dong: iFM 2013** Website of our group: [http://www.patroot.com](#page-0-0)

 4 ロ } 4 6 } 4 \pm } 4 \pm }

÷.

 299

$\mathcal D$ is an SCC and $|Out(\mathcal D)| < 1$

If $|Out(\mathcal{D})| = 0$, \mathcal{D} has no outgoing transitions, then no matter whether D has target states or not, we do not need to solve D. If $D \cap G = \phi$, it is obvious that all states in D has probability 0 to reach *G*; otherwise, it is trivial to show that all states in D has probability 1 to reach *G*.

*S. Song***, L. Gui, J. Sun, Y. Liu, J. S. Dong: iFM 2013** Website of our group: [http://www.patroot.com](#page-0-0)

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

B

$\mathcal D$ is an SCC and $|Out(\mathcal D)| < 1$

- **If** $|Out(\mathcal{D})| = 0$, \mathcal{D} has no outgoing transitions, then no matter whether D has target states or not, we do not need to solve D. If $D \cap G = \phi$, it is obvious that all states in D has probability 0 to reach *G*; otherwise, it is trivial to show that all states in D has probability 1 to reach G .
- \bullet If $|Out(\mathcal{D})| = 1$, assume s_{out} is the output state. All paths entering D will leave it eventually. Therefore, for every $s_i \in \text{Imp}(\mathcal{D})$, the probability of paths entering $\mathcal D$ via s_i , staying in D and exiting D to *sout* should be 1. So D can be abstracted directly.

イロン イ押ン イヨン イヨン 一重

[Evaluations](#page-44-0)

*S. Song***, L. Gui, J. Sun, Y. Liu, J. S. Dong: iFM 2013** Website of our group: [http://www.patroot.com](#page-0-0)

(ロ) (伊)

→ 重き (重き

 \equiv

 2990

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

重。 $2Q$

- **1** Find SCCs:
- 2 Abstract SCCs.

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

(B) $2Q$

- **1** Find SCCs:
- 2 Abstract SCCs.

If the SCCs are huge, what should we do?

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

重し $2Q$

- **1** Find SCCs;
- 2 Abstract SCCs.

If the SCCs are huge, what should we do?

- Divide each SCC having a large number of states to several smaller partitions.
- Abstract each partition.

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

重。 $2Q$

- **1** Find SCCs;
- 2 Abstract SCCs.

If the SCCs are huge, what should we do?

- Divide each SCC having a large number of states to several smaller partitions.
- Abstract each partition.

These steps could be repeated.

 $($ \Box \rightarrow $($ \Box \rightarrow

→ 重 × → 重 × …

÷.

Our algorithm

input : A DTMC $M = (S, s_{init}, Pr, AP, L)$, target states $G \subseteq S$ and a Bound *B* **output**: $P(s_{init} \models \Diamond G)$ Let $\mathcal C$ be the set of all nontrivial SCCs in $\mathcal M$; **while** |C| > 0 **do** Let $\mathcal{D} \in \mathcal{C}$: **if** $|\mathcal{D}| \leq B \vee |\mathcal{O}ut(\mathcal{D})| \leq 1$ then **Abs** (D) and $C \leftarrow C \ D$ **6 else** | Divide \mathcal{D} into a set of partitions denoted as \mathcal{A} ; **for** *each* $\mathcal{E} \in \mathcal{A}$ **do** $\text{Abs}(\mathcal{E})$; \vert Let \mathcal{D}' be the set of remaining states in \mathcal{D} ; $\mathsf{10}$ **if** $|\mathcal{D}'| \leq B \vee |\mathcal{D}'| = |\mathcal{D}|$ then **Abs** (D') and $C \leftarrow C \setminus D$ **12 else** \Box Let $\mathcal{C}_{\mathcal{D}'}$ be the set of all nontrivial SCCs in \mathcal{D}' ; $\mathcal{C} \leftarrow (\mathcal{C}\backslash\mathcal{D}) \cup \mathcal{C}_{\mathcal{D}'}$; **return** *VI*(M, *G*);

*S. Song***, L. Gui, J. Sun, Y. Liu, J. S. Dong: iFM 2013** Website of our group: [http://www.patroot.com](#page-0-0)

 Ω

- **1** This algorithm always terminates;
	- This can be proved via the total number of states in $\mathcal C$ is decreasing.

イロメ イ押 メイヨメ イヨメ

÷.

- **1** This algorithm always terminates;
	- This can be proved via the total number of states in $\mathcal C$ is decreasing.
- 2 The abstract has no affect of final results.
	- This has been proved in previous work.

Ħ E. Ábrahám, N. Jansen, R. Wimmer, J.-P. Katoen, B. **Becker** DTMC Model Checking by SCC Reduction. In *QEST*, pages 37-46, 2010.

 $($ \Box \rightarrow $($ \Box \rightarrow

医电子 化重子

 $2Q$

э

Divide Strategy

The divide-and-conquer approach's efficiency is highly dependent on how an SCC is divided. Assume $\mathcal E$ is a partition.

- \bullet ϵ should not have too many states.
- 2 $\mathcal E$ should not have too few states.
- \bullet The smaller $|Out(\mathcal{E})|$ is, the better reduction is achieved.

In practice, the structure of D could be arbitrary. This increases the difficulty of finding a general strategy for all cases.

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

÷.

Simple division method

The simplest division method is to try to set each partition to have the same number of states.

イロト イ押 トイヨ トイヨト

÷.

Simple division method

The simplest division method is to try to set each partition to have the same number of states.

- Pros
	- The number of states in each partition is easily controlled.
	- It can be very efficient in cases where the states in $\mathcal D$ has few transitions.

(ロ) (伊)

→ 重 → → 重 → …

B

Simple division method

The simplest division method is to try to set each partition to have the same number of states.

- Pros
	- The number of states in each partition is easily controlled.
	- It can be very efficient in cases where the states in $\mathcal D$ has few transitions.
- Cons
	- Cannot control the number of output states of each partition.
	- A predefined *B* may not be suitable for *D*'s structure.

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

B

Improved division method

Try to automatically decide the number of states in each partition. We set a lower bound B_l and an upper bound B_{l} for each partition.

- **1** B_l states will be grouped into \mathcal{E} , and $|Out(\mathcal{E})|$ is recorded.
- 2 Some states in $Out(\mathcal{E})$ are added into \mathcal{E} , and $|Out(\mathcal{E})|$ is updated (this step can be repeated).
- **3** The number of states in $\mathcal E$ should be always below B_{U} .

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

 $2Q$

э

Improved division method

Try to automatically decide the number of states in each partition. We set a lower bound B_l and an upper bound B_{l} for each partition.

- **1** *B_l* states will be grouped into \mathcal{E} , and $|Out(\mathcal{E})|$ is recorded.
- 2 Some states in $Out(\mathcal{E})$ are added into \mathcal{E} , and $|Out(\mathcal{E})|$ is updated (this step can be repeated).
- **3** The number of states in $\mathcal E$ should be always below B_{U} .
	- Pros
		- The number of states in $\mathcal E$ is under control.
		- The outputs of $\mathcal E$ are also manageable.

イロメ イ押 メイヨメ イヨメ

 $2Q$

э

- Our approach is independent from the topological order of SCCs.
- Even each partition in one SCC is also independent from others.

Parallel computation is suitable.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

B $2Q$

(ロ) (伊)

→ 重き (重き

 \equiv

 2990

We have implemented the algorithm into our model checking framework PAT, which supports explicit probabilistic model checking and can be freely downloaded at

http://www.patroot.com.

- \bullet 10+ modules
- 2600+ downloads from 60+ countries
- various OS supported

 $($ \Box $)$ $($ \Box $)$

医电子 化重子

÷.

In these experiments, we use the improved dividing strategy. Parameters are set according to our experience.

- $B = 300$: an SCC with more than 300 states should be divided.
- \bullet *B*_{*I*} = 100, *B*_{*I*} = 150: each group has states between 100 and 150.

We show the improvement via comparing to PAT itself, which was based on **value iteration** method previously.

 2990

÷.

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶ ...

A simple case

N + 2 states {*s*₀, *s*₁, ..., *s*_{*N*−1}, *s*_{*u*}, *s*_{*f*}} exist. Each state $\boldsymbol{s}_i, i \in [0..N-1],$ has probability 0.99 to reach $\boldsymbol{s}_{(i+1)\%n}$, and also has probability 0.005 to reach *s^u* and *s^f* separately.

*S. Song***, L. Gui, J. Sun, Y. Liu, J. S. Dong: iFM 2013** Website of our group: [http://www.patroot.com](#page-0-0)

4 0 8

 $2Q$

€

[Motivation](#page-2-0) [Background](#page-17-0) [Our Approach](#page-28-0) [Evaluations](#page-44-0)

[Conclusion and Future Work](#page-49-0)

Benchmark systems

BSS: Basic simple strategy \bullet ESS: Extend simple strategy \bullet CS: Randomized consensus \bullet

 \bullet BMR: The rate of model building (BM) time to total time.

*S. Song***, L. Gui, J. Sun, Y. Liu, J. S. Dong: iFM 2013** Website of our group: [http://www.patroot.com](#page-0-0)

4 ロ) (何) (日) (日)

÷.

 299

4 ロ) (何) (日) (日)

 \equiv

 2990

• Conclusion

- ¹ We proposed a divide-and-conquer approach to speed up reachability analysis of DTMCs.
- 2 We have implemented our approach in PAT.

• Future work

- **1** Find more efficient division strategies.
- ² Extend our approach to Markov Decision Processes (MDP).

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

÷.

References I

E. Ábrahám, N. Jansen, R. Wimmer, J.-P. Katoen, B. Ħ Becker DTMC Model Checking by SCC Reduction. In *QEST*, pages 37-46, 2010.

- **M.E. Andrés, P. R. D' Argenio, and P. V. Rossum.** Significant Diagnostic Counterexamples in Probabilistic Model Checking. *HVC*, pages 129-148, 2008.
- F. Ciesinski, C. Baier, M. Größer and J. Klein. E. Reduction Techniques for Model Checking Markov Decision Processes *QEST*, pages 45-54, 2008. (ロ) (伊) → 重 × → 重 × …

B

References II

- 量 M. Kwiatkowska, D. Parker, and H. Qu. Incremental Quantitative Verification for Markov Decision Processes. *DSN*, pages 359-370, 2011.
- J. P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen.

The Ins and Outs of the Probabilistic Model Checker MRMC.

QEST, pages 167-176, 2009.

C. Baier and J. Katoen. *Principles of Model checking*. The MIT Press, 2008.

ă,

Depth-First Search and Linear Graph Algorithms. *SIAM J. Comput.*, 1(2):146¨C 160, 1972.

- **J.** Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible Verification under Fairness. *CAV*, pages 709¨C714, 2009.
- **J.** Sun, S. Song and Y. Liu Model Checking Hierarchical Probabilistic Systems. *ICFEM*, pages 388-403, 2010.

 $($ \Box \rightarrow $($ \Box \rightarrow

→ 重 ▶ → 重 ▶

 $2Q$

э

THANK YOU! **www.patroot.com**

*S. Song***, L. Gui, J. Sun, Y. Liu, J. S. Dong: iFM 2013** Website of our group: [http://www.patroot.com](#page-0-0)

 $(1 - 4)$ $(1 -$

重。 299