
Symbolic Model-Checking of Stateful Timed CSP using
BDD and Digitization?

Truong Khanh Nguyen2, Jun Sun1, Yang Liu3 and Jin Song Dong2

1 ISTD, Singapore University of Technology and Design
sunjun@sutd.edu.sg

2 School of Computing, National University of Singapore
{truongkhanh,dongjs}@comp.nus.edu.sg

3 Temasek Lab, National University of Singapore
tslliuya@nus.edu.sg

Abstract. Stateful Timed CSP has been recently proposed to model (and verify)
hierarchical real-time systems. It is an expressive modeling language which com-
bines data structure/operations, complicated control flows (modeled using com-
positional process operators adopted from Timed CSP), and real-time require-
ments like deadline and within . It has been shown that Stateful Timed CSP is
equivalent to closed timed automata with silent transitions, which implies that
the timing constraints of Stateful Timed CSP can be captured using explicit tick
events, through digitization. In order to tackle the state space explosion problem,
we develop a BDD-based symbolic model checking approach to verify State-
ful Timed CSP models. Due to the rich language features, BDD-based system
encoding and verification is highly nontrivial. In this work, we show how to sys-
tematically encode Stateful Timed CSP models in BDD. Our approach consists of
two steps. The first step is to identify maximum primitive components of a given
system and then generate finite state machines (FSMs) from them, applying a set
of symbolic firing rules. These FSMs are then encoded in the standard way. The
second step is to compose the encoded components using a set of BDD-based
compositional functions. The proposed method has been implemented in the PAT
model checker. It supports properties like reachability, linear temporal logic, etc.
The effectiveness of our technique is evaluated with benchmark systems.

1 Introduction

Real-time systems are a class of systems whose correctness depends on the time at
which events occur. Examples of real-time systems ranges from simple timed protocols
(like Fischer’s protocol) to large complex embedded systems (like signaling systems
for high-speed trains). The reactions of these systems must obey all of the timing con-
straints. In other words, these systems must produce responses not only correctly but
also with exact timing. Any violation of these constraints may cause damages and risk
the human lives. Therefore it is immediately clear that verification real-time systems is
a crucial phase in the design of real-time systems.
? This research is partially supported by TRF project ‘Research and Development in the Formal

Verification of System Design and Implementation’.

Timed automata are an extension of finite-state automata equipped with finitely
many real-valued clock variables to keep track of time. They are often used to model
real-time systems. In timed automata, transitions and states may be labeled with clock
constraints. Clock constraints labeled with states, called state invariant, limit the amount
of time that may be spent at that state. Clock constraints labeled with transitions, called
transition guard, must hold for the transition to be taken. To specify properties, a real-
time invariant of CTL, e.g., Timed CTL (TCTL, for short) has been proposed.

Efficient automatic model-checking algorithms for real-time systems have been ob-
tained in recent years. Note that traditional model checking algorithms could not be
applied directly to real-time verification because time factors are modeled as continu-
ous and real-value variables. Zone abstraction [4], which groups clock valuations using
a convex constraint [4], has emerged as a popular approach and has been employed by
tools like UPPAAL. Other approaches have also been proposed, especially for a subset of
timed automata, which can be digitized (i.e., closed timed automata [5]). For instance,
Lamport [10] argued that model checking of real-time systems can be really simple if
digitization is adopted. Digitization translates a real-time verification problem to a dis-
crete one by using clock ticks to represent time elapsing explicitly. The advantage of
digitization is that the techniques which are developed for classic automata verification
can be applied without the added complexity of zone operations. Though digitization
does not preserve the continuous-time semantics of time-automata, it was proved to be
sound for a large class of verification problems [5].

Stateful Timed CSP has been recently proposed, as a complementary language to
timed automata, to model (and verify) hierarchical real-time systems. It is an expres-
sive modeling language which combines data structure/operations, complicated control
flows (modeled using compositional process operators adopted from Timed CSP), and
real-time requirements like deadline and within. In [21], it has been show that zone ab-
straction can be applied to Stateful Timed CSP by dynamically creating/deleting clocks.
Unsurprisingly, however, state space explosion remains as a huge challenge. In [19], it
has been show that Stateful Timed CSP is equivalent to closed timed automata with
silent transitions, which implies that the timing constraints of Stateful Timed CSP can
be captured using explicit tick events, through digitization. In this work, inspired by on
previous work on combining BDD and digitization [3, 13], we develop a BDD-based
symbolic model checking approach to verify Stateful Timed CSP. Due to the rich lan-
guage features, BDD-based system encoding and verification is highly nontrivial.

The contribution of the work is threefold. Firstly, we develop a systematic way of
encoding Stateful Timed CSP. A Stateful Timed CSP process can be encoded by two
ways: using FSMs and using compositional functions. Primitive components are trans-
lated to FSMs based on the Stateful Timed CSP semantics. These FSMs are encoded
in BDD and then composed gradually by a rich set of compositional functions. Sec-
ondly, we support a range of model checking algorithms. For instance, we are able to
verify LTL with the assumption of non-Zenoness. While checking whether or not an
execution is zeno is difficult for zone approaches [22, 6], in digitization, an execution
of a digitized system is non-Zeno if and only if it contains infinitely many clock ticks.
Therefore a digitized system is non-Zeno if time advances at least one time unit in all
its cycles. In other words, non-Zenoness assumption can be supported by requiring all

cycles to contain at least one tick transition. Lastly, we implement our approach in the
PAT model checker [20] and evaluate the performance of BDD-based symbolic model
checking with zone-based approaches with a number of systems. We show that our ap-
proach complements the zone abstraction approach [21] and offers significantly better
performance in a number of cases.

Related Work After the timed automata were introduced in [1], many tools and tech-
niques are proposed, for example, Different Bounded Matrices [4], Clock-Restriction
Diagrams [24], and Difference Decision Diagram [12]. Our work was inspired by the
digitization which was proposed in [5, 10]. However the difference in our symbolic
technique is the use of tick transitions to represent explicitly the timing constraints in-
stead of the use of clock variables. Based on this, a BDD encoding library for digitized
systems was developed [14]. This paper presents the extension which only focus on ver-
ification of Stateful Timed CSP. Our approach is similar to the two-level approach used
in FDR [16]. Basically FDR exploits a hybrid high-/low-level approach for calculating
the operational semantics of a process. The low level comprises all true recursions while
in the high level, processes are composed by parallel composition, hiding and renaming.
Identifying low-level processes in FDR is the same as finding the maximum primitive
components in our approach. However the ways to tackle the state space explosion in
FDR and in our approach are different. In the compiling process on high-level called
super compiling of FDR, a single LTS is built on-the-fly from other LTSs based on the
calculating a set of rules. In contrast in our approach, maximum primitive components
are combined by BDD-based compositional functions. Our work in this paper extends
the works in [16] because while two-level approach is used to verify un-timed systems,
our approach is able to verify real-time systems.

2 Stateful Timed CSP

In this section, we briefly introduce the syntax and the semantics of Stateful Timed CSP
processes. The readers are referred to [19] for a complete list of syntax and semantics.
Let the label a describe the name of events which are not tick and can be either an
external event, a termination event X or an internal event tau , the label c describe
channel name and tick denote the passage of one time unit.

A Stateful Timed CSP model is a 3-tuple (Var , σ0,P0) where Var is a set of finite-
domain global variables; σ0 is the initial valuation of Var (which maps one variable to
one value only) and P0 is a process. A process is a block of computations, which can
be defined under Backus-Naur form as Fig. 1.

Process Stop could not make any progress and must still be in the same state af-
ter any time period has elapsed. Process Skip is ready to terminate and becomes Stop.
However some time may elapse before this termination. Process Event Prefixing a → P
prepares to engage the event a and behaves as P afterward. Similar to Skip, delay on
this event may occur. Urgent Event Prefixing a � P , on the other hand, requires event
a to occur as soon as it is enabled. Process Data Operation Prefixing a{program} → P
performs the program with the event a . Note that program can include from simple
assignments to complicated sequential structures like if , while and is executed atom-
ically with the event. Process Conditional Choice, defined as if(b){P} else {Q} will

P = Stop | Skip – primitives
| a → P – event prefixing
| a � P – urgent event prefixing
| a{program} → P – data operation prefixing
| if(b){P} else {Q} – conditional choice
| P | Q – general choice
| P \X – hiding
| P ; Q – sequential composition
| P ‖ Q – parallel composition
| c?{program} → P | c!{program} → P – Channel Input/Output
| Q – process referencing
| Wait [d] – delay*
| P timeout [d]Q – timeout*
| P interrupt [d]Q – timed interrupt*
| P within[d] – timed responsiveness*
| P deadline[d] – deadline*

Fig. 1. Stateful Timed CSP Process Constructs

behave as P or as Q based on the evaluation of the expression b. Process Unconditional
Choice P | Q offers an (unconditional) choice between P and Q4. Sequential composi-
tion P ; Q behaves as P until P terminates and then behaves as Q immediately. Process
P\X hides occurrences of events in X from the environment. In other words, any event
in X engaged by P becomes invisible event τ . Parallel composition of two processes
P and Q is written as P ‖ Q , where P and Q may communicate via event synchro-
nization (following CSP rules [7]) or shared variables. Notice that if P and Q do not
communicate through event synchronization, then it is written as P‖|Q , which reads
as ‘P interleave Q’. In addition to multi-party synchronization based on event names,
Stateful Timed CSP also provides pairwise synchronization via channel communica-
tions. Transitions labeled with channel input (or channel output) of a process can not be
taken on its own but must be matched by transitions labeled with corresponding channel
output (channel input) of another process running in parallel with it. A process may be
given a name, written as P =̂ Q , and then referenced through its name. Recursion is
allowed by process referencing.

In addition to two traditional timed process constructs Delay (Wait), and Timeout
(timeout) from Timed CSP, Stateful Timed CSP includes three new process constructs
Time Interrupt (interrupt), Timed Responsiveness (within) and Deadline (deadline).
This extension allows us to capture common real-time system behavior patterns easily
(all timed process constructs are marked with * in Figure 1). Let d ∈ R+. Process
Wait [d] idles for exactly d time units before terminating. Process P timeout [d]Q im-
poses a constraint on the process P to engage the first visible event within d time
units. Otherwise after d time units, process Q takes the execution control. In process
P interrupt [d]Q , if P terminates before d time units, P interrupt [d]Q behaves ex-

4 For simplicity, we omit external and internal choices [7] in the discussion.

actly as P . Otherwise, P interrupt [d]Q behaves as P until d time units and then Q
takes over. In contrast to P timeout [d]Q , P may engage in multiple visible events be-
fore it is interrupted. Process P within[d] requires process P to engage an visible event
with in d time units. In process P deadline[d], P must terminate within d time units,
possibly after engaging in multiple visible events. Notice that a timed process construct
is always associated with an integer constant d which is referred to as its parameter.

Example 1. We use Fischer’s mutual exclusion protocol [9] to illustrate system model-
ing using Stateful Timed CSP. The protocol is designed to guarantee mutually exclusive
access to a critical section among competing processes P(i) where i ∈ [1..n] is the
unique identifier of that process. Each process P(i) executes the following algorithm
where lock is a shared variable, and initialized with the value 0:

repeat
await(lock = 0);
lock := i
delay

until (lock = i);
critical section;
lock := 0;

Note that await (cond) is an abbreviation for while (¬ cond) do skip and delay corre-
sponds to an explicit delay statement. The role of the delay statement is that it guaran-
tees while it delays itself, other processes after passing the await statement must finish
the assignment lock := i . The correctness of the protocol depends on the assumptions
about the time taken to read and write to the shared variable lock , and the delay length.
It was shown that the mutual exclusion is guaranteed if the upper bound a on the time
taken at the assignment lock := i is less than the lower bound b on the delay length. Be-
cause other reading and writing statements to the shared variable lock is not important,
we will not impose any timing constraint on them. The protocol can be modeled as a
Stateful Timed CSP model (Var , σ0,Fischer) where Var = {lock} and σ0(lock) = 0
and process Fischer is defined as: P(1)‖| · · · ‖|P(n) where

P(i) =̂ if (lock = 0){
(setLock{lock := i} → Skip) deadline[a];
Wait [b];
if (lock = i){

Critical(i)
}else{

P(i)
}

};
Critical(i) =̂ enter → exit{lock := 0} → P(i);

Process Fischer is the Interleave composition of P(1)‖| · · · ‖|P(n). Each process
P(i) has an unique identifier described as i . As we can see in the model, timing con-
straints on each operation can be translated straightforwardly using the set of timed

process constructs. For example, (setLock{lock := i} → Skip) deadline[a] imposes
a constraint on the event setLock , i.e., it must occur within a time units. The delay
statement which delays at least b time units can be expressed as Wait [b]. Note that
after waiting exactly b time units in Wait [b], the process P(i) behaves as the process
if(lock = i){· · ·}. Since we do not put any constraint on this process, it can idle as long
as it wants. Therefore in total the process P(i) can delay at least b time units before
entering the critical section. 2

There are two approaches to verify Stateful Timed CSP. One is based zone abstrac-
tion, which has been proposed in [19]. The other is through digitization, since it has
been proved that Stateful Timed CSP is equivalent to some variant of closed timed au-
tomata [19]. On one hand, while zone abstract works well in many examples, its com-
plexity is exponential in the number of clocks and its performance in practice can be
strongly related to ratio of constants appearing in the clock constraints. For instance, in
the Leader Algorithm (which has a very small maximal constants of clock constraints),
Uppaal’s execution time is strongly dependent on the ratio MsgDelay/Period [10].
Specifically for ratios greater than 0.6, Uppaal easily runs out of memory. On the other
hand, though digitization suffers from large clock upper bounds (which imply a large
number of tick events), it is not affected by the ratio of the constants. Furthermore,
some problems like the non-Zenoness checking problem are much easier with digitiza-
tion. We thus proposed an approach complementary to the zone abstraction approach
in [19], using BDD and digitization to verify Stateful Timed CSP.

3 BDD Encoding

In this section, we show how we systematically encode Stateful Timed CSP processes
in BDD. There are two ways. One is to generate an FSM for each Stateful Timed CSP
process and encode the FSM in the standard way. The other is to define a set of BDD
compositional functions according to the process construct semantics and then encode
Stateful Timed CSP processes into BDDs directly without the FSM construction. Both
have their own advantages and therefore are used in different cases.

We remark that Stateful Timed CSP is expressive enough so that a process expres-
sion generated by the operational semantics may be unbounded. For example, define
P0 = e → (P0‖|Pnew) which forks a process Pnew every time e occurs. The resul-
tant process therefore may contain unboundedly many copies of Pnew . In this work, we
assume that a process always has a bounded length, following [17, 15].

3.1 Encoding Stateful Timed CSP Processes with FSMs

An FSM is a tupleM = (Var ,S , init ,Act ,T) such that Var is a set of finite-domain
variables; S is a finite set of control states; init ∈ S is the initial state; Act is the
alphabet of events and channels; and T is a labeled transition relation. A transition label
is of the form [guard]evt{prog}where guard is an optional guard condition constituted
by variables in Var ; evt is either an event name, a channel input/output or the special
tick event (which denotes 1-unit elapsed time); and prog is an optional transaction, i.e.,

s0 s1

s2

s3

s4s5s6

[lock = 0] setLock{lock := i}

setLock{lock := i}

[lock ≠ i]

tick

tick

tick

tick

[lock = i] enter

exit {lock := 0}

tick

tick

Fig. 2. The FSM of Process P(i)

a sequential program which updates global/local variables. A transaction (which may
contain program constructs like while-do) associated with a transition is to be executed
atomically. A non-atomic operation can be broken into multiple transitions. A transition
is possible if the guard is true given current valuation σ of Var . Moreover a transition
labeled with channel input/output can not occur by itself but must be synchronized with
the transition labeled with corresponding channel output/input.

The operational semantics of Stateful Time CSP allows us to interpret Stateful Time
CSP processes as FSMs. For example, we can manually draw the FSM shown in Fig. 2
for the process P(i) of Fischer’s protocol in the Example 1 with a = 1 and b = 2.
However translating from a Stateful Time CSP process to an FSM in general is not
trivial. In this following, we show how to systematically build the corresponding FSM
from a Stateful Timed CSP process. This approach relies on symbolic firing rules, which
are different from concrete firing rules in [21] as variables valuations are irrelevant.
Specifically the symbolic firing rules are used to generate the whole control flow of a
certain process. In other words, the valuation of variables and the effect of transactions
are ignored at this step, but they will be considered when transactions are encoded
in BDD. For instance, the symbolic firing rule of process Data Operation Prefixing
Q = b{x := x + 1} → R says that at the process Q , if the transition labeled with
b{x := x +1} is taken, it will behave as R. In contrast concrete firing rules say, e.g., at
the process Q , suppose the current value of x is 0, then after the transition is taken, it
will be have as R and the value of x becomes 1. The concrete firing rules, therefore, are
used to generate on-the-fly the whole state space explicitly. So different uses of firing
rule are suitable for different purposes. In this work, symbolic firing rules are used to
generate the corresponding FSM systematically and effectively. Our symbolic firing
rules follow the form in [18]:

antecedent 1
· · ·
antecedent n

[side condition]
conclusion

The conclusion can be deduced if all the antecedents are true and the side condition
is also true. In the case where antecedents or side condition are missing, they are con-
sidered as vacuously true. A number of conclusions which can be drawn from the same
set of antecedents and side condition can be grouped below the line one after the other.

The FSM generation procedure basically works as follow. Each process P is mapped
with a state in the FSM called ‘state P ’ and this state is also the initial state of that pro-
cess’s FSM. There is a transition labeled with [guard]evt{prog} from state P to state

P ′ when the relation P
[guard]evt{prog}−−−−−−−−→ P ′ can be deduced from the rules. The sym-

bolic firing rules are applied until there is no new state generated. In the following,
we present the sample symbolic firing rules of Event Prefixing, Interleave, Delay, and
Timed Responsiveness process constructs.

(a → P)
a−→ P (a → P)

tick−→ (a → P)

P0
[g]a{p}−−−−−→ P ′

0
[a 6= X]

P0‖|P1
[g]a{p}−−−−−→ P ′

0‖|P1

P1‖|P0
[g]a{p}−−−−−→ P1‖|P ′

0

P0
tick−→ P ′

0

P1
tick−→ P ′

1

P0‖|P1
tick−→ P ′

0‖|P ′
1

P0
[g0]X{p0}−−−−−−→ P ′

0

P1
[g1]X{p1}−−−−−−→ P ′

1

P0‖|P1
[g0∧g1]X{p0; p1}−−−−−−−−−→ P ′

0‖|P ′
1

P0
[g0]c?{p0}−−−−−−→ P ′

0

P1
[g1]c!{p1}−−−−−−→ P ′

1

P0‖|P1
[g0∧g1]c{p0; p1}−−−−−−−−−→ P ′

0‖|P ′
1

P1‖|P0
[g0∧g1]c{p0; p1}−−−−−−−−−→ P ′

1‖|P ′
0

[t ≥ 1]

Wait [t]
tick−→Wait [t − 1] Wait [0]

τ−→ SKIP

P0
a−→ P ′

0

P0 within[t]
a−→ P ′

0

P0
τ−→ P ′

0

P0 within[t]
τ−→ P ′

0 within[t]

P0
tick−→ P ′

0
[t ≥ 1]

P0 within[t]
tick−→ P ′

0 within[t − 1]

Fig. 3. Sample Symbolic Firing Rules

– Given any process Event Prefixing a → P , there is a transition labeled with event
a from the state a → P to the state P . In addition, there is a transition label with
event tick looping at the state a → P . For the events marked as urgent, this looping
transition labeled with event tick is not available. It forces the process to engage
the event without any delay.

– Based on rules of process Interleave, all of the subprocesses in the Interleave com-
position must synchronize with the terminationX and tick events. Moreover chan-
nel in transition labeled with c? from one process can be combined with channel
out transition labeled with c! from another process to be promoted as c. When
transitions are synchronized, we constraint transactions of these transition are not
conflict and the execution order of transactions are not important. Other events oc-
cur interleave. In addition in the symbolic firing rules of this process and also of
other processes, tick transitions are never attached with any guard condition and
any transaction. They are simple as a direct sequence of the use tick transitions to
explicitly represent the timing constraints. This simplicity helps us to have more
optimal BDD encoding of the tick transitions.

– Tick transitions are used to track the passage of one time unit in the symbolic firing
rules of process Delay Wait [t]. Specifically there is a transition labeled with tick
from the state Wait [t] to state Wait [t − 1]. After delaying itself, it will behave as
SKIP by the τ transition from state Wait [0] to state SKIP .

– The last three rules are the symbolic firing rules of process construct Timed Re-
sponsiveness P0 within[t]. These rules are self-explanatory. Tick transitions are
used to track the passage of time. Unless a visible event is engaged, the timed re-
sponsiveness condition is not resolved.

Example 2. Process P(i) of Fischer’s protocol in the Example 1 is used again as illus-
tration. However for simplicity all the states are renamed to s0, · · · , s6 and we will ex-
plain the FSM generation procedure starting at process Critical(i) whose correspond-
ing state is the state s5. According to the firing rules of process Event Prefixing in Fig.
3, in the FSM of the process P(i), there is a transition labeled with [lock = i]enter
from the state Critical(i) (state s5) to state exit{lock := i} → P(i) (state s6), and a
transition labeled with tick looping at the state of process Critical(i) (state s5). Then
by applying those firing rules again for the process exit{lock := i} → P(i), there is
another transition labeled with exit{lock := i} from the state exit{lock := i} → P(i)
(state s6) back to the state P(i) (state s0), and a transition labeled with tick looping at
the state exit{lock := i} → P(i) (state s6). The FSM generation procedure is stopped
because there is no new state created. 2

Before giving explanation how to encode an FSM, we will briefly describe how to
encode a finite set. Essentially given any finite set X , encoding X is to enumerate el-
ements of X in binary and represent them as Boolean functions. Therefore to encode
X , we need n boolean variables x0, · · · , xn−1 where n = dlog2 |X |e. Then each ele-
ment in X is mapped with a bit vector (x0, · · · , xn−1) by an injective encoding func-
tion fX : X → {0, 1}n . Note that this mapping is fixed throughout the BDD encod-
ing. For instance, encoding the set of four elements X = {a, b, c, d} requires two
boolean variables x0 and x1. The encoding functions fX is defined as fX (a) = (0, 0),

fX (b) = (0, 1), fX (c) = (1, 0), and fX (d) = (1, 1). As a result the predicate of the
subset Y = {a, b} is ((x0, x1) = fX (a) ∨ (x0, x1) = fX (b)). For simplicity we will
use the label x to denote the bit vector (x0, · · · , xn−1). Therefore the predicate of the
subset Y can be rewritten shortly as (x = fX (a) ∨ x = fX (b)). Using this technique,
we can encode the set of states and the set of event names and channel names in an FSM.
Moreover we can also encode all the data types whose domain is finite, e.g., boolean,
integer, array of booleans, and array of integers. To encode transitions, each variable
x in −→V ∪ −→v has another copy called x ′ which denotes the variable x’s value after the
transition.

The BDD encoding of an FSM, referred to as a BDD machine, is a tuple B =
(
−→
V ,−→v , Init ,Trans,Out , In,Tick). −→V is a set of unprimed Boolean variables encod-

ing global variables, event names and channel names, which are fixed for the whole
system before encoding. −→v is a set of variables encoding local variables and local con-
trol states; Init is a formula over −→V and −→v encoding the initial valuation of the vari-
ables. Trans is the encoding of transitions excluding synchronous channel input/output
and tick-transitions. Out (In) is the encoding of synchronous channel output (input).
Note that transitions in Out and In are to be matched by corresponding transitions in
In and Out respectively from the environment and are thus separated from the rest of
the transitions. Tick is also the encoding of transitions labeled with tick . Then the final
transition function of an FSM is taken from Trans and Tick . In other words, it can
engage an action or idle one time unit. We still calculate Out and In and separate them
from Trans and Tick because transitions from Out and In can be useful if they are
synchronized.

Let BDD machine B = (
−→
V ,−→v , Init ,Trans,Out , In,Tick) be the encoding of an

FSMM = (Var ,S , init ,Act ,T) where

– −→V = V1 ∪ Events where V1 and Events = {event0, · · · , eventn−1} are the sets
of boolean variables to encode global variables and the alphabet Act respectively.
Let event denote the bit vector (event0, · · · , eventn−1).

– −→v = v1 ∪ States where v1 and States = {state0, · · · , statem−1} are the sets
of boolean variables to encode local variables and the set of states S respectively.
Similarly let state denote the bit vector (state0, · · · , statem−1). Moreover for any
global or local variable x , let the same label x denote the corresponding bit vector
of boolean variables to encode that variable. Note that these labels x are different.
The former x is the variable declared in the model while the latter x is a shorthand
for a bit vector in the BDD encoding functions.

– Init = (state = fS (init))
– Trans =

∨
(state = fS (s0) ∧ gbdd ∧ event ′ = fAct(e) ∧ progbdd ∧ state ′ =

fS (s1)) for all transitions from state s0 to state s1 labeled with [g]e{prog} (where
e 6= tick). For simplicity, we skip how we encode guard expression g to gbdd and
program block prog to progbdd . Interested readers can refer to [13].

– Out =
∨
(state = fS (s0) ∧ gbdd ∧ event ′ = fAct(e) ∧ progbdd ∧ state ′ =

fS (s1)) for all transitions from state s0 to state s1 labeled with a synchronous chan-
nel output e , guarded with g and attached with transaction prog .

– In =
∨
(state = fS (s0) ∧ gbdd ∧ event ′ = fAct(e) ∧ progbdd ∧ state ′ = fS (s1))

for all transitions from state s0 to state s1 labeled with a synchronous channel input
e , guarded with g and attached with transaction prog .

– Tick =
∨
(state = fS (s0) ∧ event ′ = fAct(tick) ∧ state ′ = fS (s1)) for all tick

transitions from state s0 to state s1.

Example 3. The BDD machine B = (
−→
V ,−→v , Init ,Trans,Out , In,Tick) of the FSM

in Fig. 2 is as follow:

– −→V = Lock ∪{event0, event1}where Lock is the set of boolean variables to encode
the shared variable lock .

– −→v = {state0, state1, state2}. Note that the process parameter i in the definition
of P(i) is constant and is replaced with its value before the encoding. In the below
encoding functions of Trans and Tick , we still keep i to show generally how all
processes P(i) in the Fischers’ protocol are encoded.

– Init = (state = fS (s0))
– Trans = (state = fS (s0) ∧ lock = 0 ∧ state ′ = fS (s1))
∨ (state = fS (s1) ∧ event ′ = fAct(setLock) ∧ lock ′ = i ∧ state ′ = fS (s3))
∨ (state = fS (s2) ∧ event ′ = fAct(setLock) ∧ lock ′ = i ∧ state ′ = fS (s3))
∨ (state = fS (s5) ∧ lock 6= i ∧ state ′ = fS (s0))
∨ (state = fS (s5) ∧ lock = i ∧ event ′ = fAct(enter) ∧ state ′ = fS (s6))
∨ (state = fS (s6) ∧ event ′ = fAct(exit) ∧ lock ′ = 0 ∧ state ′ = fS (s0))

– Out = In = false
– Tick = (state = fS (s0) ∧ event ′ = fAct(tick) ∧ state ′ = fS (s0))
∨ (state = fS (s1) ∧ event ′ = fAct(tick) ∧ state ′ = fS (s2))
∨ (state = fS (s3) ∧ event ′ = fAct(tick) ∧ state ′ = fS (s4))
∨ (state = fS (s4) ∧ event ′ = fAct(tick) ∧ state ′ = fS (s5))
∨ (state = fS (s5) ∧ event ′ = fAct(tick) ∧ state ′ = fS (s5))
∨ (state = fS (s6) ∧ event ′ = fAct(tick) ∧ state ′ = fS (s6)) 2

3.2 Encoding Stateful Timed CSP Processes With Compositional Functions

By using the approach presented in the last section, in theory we can translate any
Stateful Timed CSP process to an FSM and encoding it. However we do not apply that
approach to generate the FSM of parallel processes. Because in the FSM of a parallel
composition, the numbers of states and transitions grow exponentially with the number
of subprocesses running in parallel. Especially it becomes completely redundant when
guards and transactions of the transitions in a certain sub-process are encoded to BDD
many times. For example, if we apply the FSM generation procedure to the process
P1‖|P2, suppose the state of that FSM is of the form (s1, s2) where s1, and s2 are
states in the FSMs of P1 and P2 respectively. For any transition t from state s1 to
s ′1 in the FSM of P1, there is a corresponding transition from state (s1, s2) to state
(s ′1, s2) in the FSM of P1‖|P2. Obviously the guard and the transaction of the transition
t will be encoded m times where m is the number of states in the FSM of P2. These
overheads make encoding of parallel processes with FSMs inefficient. Therefore we
provide compositional functions to encode parallel processes without translating it to
FSMs. As a result, compositional functions for all kinds of processes are required to be
provided because after using the compositional function, the FSM is no longer available
and only compositional functions can be used.

In the following, we will show how to encode two kinds of Stateful Timed CSP pro-
cesses: Interleave and Timed Responsiveness processes with compositional functions.
We fix two BDD machines Bi = (

−→
V ,−→v i , Initi ,Transi ,Outi , Ini ,Ticki), i ∈ {0, 1},

which are the encoding of processes Pi . −→v 0 and −→v 1 are disjoint and −→V is always
shared. Symbolic firing rules of Interleave and Timed Responsiveness process con-
structs in Fig. 3 can be refered to follow the compositional encoding. Interested readers
can refer to [13] for the complete list.

Interleave: Process Interleave can contains 2 or more subprocesses running in parallel.
Different from process Parallel these processes are only synchronized in termination
event X (still has pairwise synchronization in channel communication like Parallel).
Let B = (

−→
V ,−→v , Init ,Trans,Out , In,Tick) be the BDD machine encoding of the

Interleave composition of two processes P0 and P1 such that:

– −→v = −→v 0 ∪ −→v 1;
– Init = Init0 ∧ Init1.
– Trans =

∨
i∈{0,1}[(Transi ∧ event ′ 6= fAct(X) ∧ −→v 1−i = −→v ′1−i) ∨ (Ini ∧

Out1−i) ∨ (Transi ∧ Trans1−i ∧ event ′ = fAct(X))]. Trans includes 3 kinds of
transitions: local transitions from each component, synchronous channel commu-
nication and synchronous termination transition. (−→v 1−i = −→v ′1−i) denotes that the
local variables of B1−i are unchanged.

– In =
∨

i∈{0,1}(Ini ∧ −→v 1−i = −→v ′1−i)
– Out =

∨
i∈{0,1}(Outi ∧ −→v 1−i = −→v ′1−i)

– Tick = Tick0 ∧ Tick1

Within: In P0 within[t] process, process P0 is forced to engage a visible event within
the given t time units. Let B = (

−→
V ,−→v , Init ,Trans,Out , In,Tick) be the BDD ma-

chine encoding of P0 within[t] where

– −→v = −→v 0 ∪ {clk}, −1 ≤ clk ≤ t records the number of elapsed time units so far
and clk = −1 indicates an visible action is engaged.

– Init = (Init0 ∧ clk = 0)
– Trans = clk ≤ t ∧ Trans0 ∧ [(event 6= fAct(τ) ∧ clk ′ = −1) ∨ (event ′ =
fAct(τ) ∧ clk ′ = clk)]

– In = clk < t ∧ In0 ∧ clk ′ = −1
– Out = clk < t ∧ Out0 ∧ clk ′ = −1
– Tick = Tick0 ∧ [(clk ≥ 0 ∧ clk < t ∧ clk ′ = clk + 1) ∨ (clk = −1 ∧ clk ′ =
−1)]

Note that a channel communication is clearly a visible event. Thus if channel commu-
nication occurs, variable clk is assigned -1 to mark the happening of that visible event.

As we can observe, except parallel processes, encoding processes with composi-
tional functions is not as optimal as with FSMs. Unlike encoding with FSMs, many
auxiliary variables are introduced in the encoding with compositional functions to con-
trol the flow, for example, clk variable in Timed Responsiveness to record the number
of elapsed time units. Therefore our strategy for encoding a Stateful Timed CSP pro-
cess is to find its maximum primitive components which can be translated to FSMs and

then encode these FSMs as BDD machines. Identifying the maximum primitive com-
ponents is straightforward because maximum primitive components are the maximum
components whose definitions do not contain Parallel/Interleave process construct. Fi-
nally these BDD machines are composed to achieve the final BDD machine of the given
process. For instance, in Example 1, the identified maximum primitive components are
n processes P(i) where i ∈ {1, · · · ,n}. Next, FSMs translated from these subpro-
cesses are encoded as BDD machines, which are then composed using the Interleave
compositional function to generate the BDD encoding of the process Fischer .

3.3 Limitations on BDD encoding

Stateful Timed CSP is too expressive to be fully encoded. Consequently there are some
Stateful Timed CSP processes which are not possible to be encoded. Firstly processes
having varying parameters are not supported. An example of processes having a varying
parameter is P(i) = a → P(i + 1). The reason of this limitation is because of the
update of the parameter i := i + 1 when the process starts to behave as P again.
This update must be done somewhere before the process behaves as P again. There
are two possible ways to deal with this, one is to attach the parameter updates on the
immediately precedent event (in this example it is the event a), another is to create a
separate transition to update the process parameters. However both ways have problems
which may change the semantics of the defined process. In the first way, these parameter
updates could conflict with each other at the precedent event. An illustration of this
problem is Q = a → (P(1) | P(2)) where after event a, there is a choice between
P(1) and P(2). Therefore we have two conflict updates of the process parameter i of
process P , i := 1 and i := 2. In the second way, by introducing new transitions which
updates process parameters, there is a question on the semantics of these transitions,
specifically whether these transitions can resolve the choice. If these transitions do not
resolve the choice, in the last example, two transitions which update i := 1 and i := 2
respectively can happen before the choice is resolved. This is similar to the problem in
the first way where there are conflicts between these parameter updates. On the other
hand, if these transitions can resolve the choice, suppose that in the last example, P(1)
could not engage any event while P(2) can, then the process can take the transition
which updates i := 1 and resolve the choice in favor of the process P(1). After that
the process becomes deadlock. However this could not happen because since P(1) is
deadlock, the choice must be resolved in favor of P(2).

Secondly encoding with compositional functions could not be applied to recursive
processes, e.g., P = a → P . Based on the Stateful Timed CSP semantics, encoding
with compositional function is used to achieve the encoding of a process based on
the known encodings of subprocesses. Therefore it is obvious that using compositional
functions on a process whose definition has a reference call to itself is not possible and
will create an infinite recursive calls of the compositional functions.

In summary there are two restrictions on BDD encoding of Stateful Timed CSP. One
restriction is that processes must have constant parameters. However there is a small
number of models requiring varying parameters. Moreover global variables can be used
to alleviate the restriction. By promoting each varying process parameter with a corre-
sponding global variable and manually attaching the update of those global variables to

the suitable events, an equivalent model can be achieved. The other restriction is that
compositional encoding is not available for recursive processes and yet this restriction
is inevitable. Remember that introducing compositional functions is to optimize the en-
coding of the parallel process which is the main cause of the state space explosion. After
the use of compositional functions, only encoding by compositional functions is pos-
sible. However in our experience often the recursive processes do not contain parallel
composition. Consequently these processes can be encoded using FSMs.

4 Implementation and Evaluation

Our technique has been implemented as part of the PAT framework [20]. It is based
on the CUDD package, with about thirty classes and thousands of lines of C# code.
The implementation includes two parts: encoding and verification. The encoding part
has functions to generates the FSM from Stateful Timed CSP processes. The advantage
of our technique is that the FSM generation procedure is very simple, yet systematical
and efficient. For each process construct we only need to define what transitions can be
taken from that process and then these transitions are added from the state of the current
process. This procedure is called recursively in subsequent processes. In addition to the
FSM generation procedure, the encoding part also contains a function to encode an
FSM and a set of compositional functions for all process constructs. The second part
is the verification which supports a range of properties, e.g., reachability and deadlock
analysis or LTL. Verification of LTL is based on a symbolic implementation of the
automata-based approach [8, 23]. By using digitization technique, verification of real
time system, specifically Stateful Timed CSP becomes feasible. Digitization translates a
real-time verification problem to a discrete one by using clock ticks to represent elapsed
time. Therefore the current model checking algorithm for concurrent systems can be
applied without the added complexity of zone operations. Moreover verification of LTL
with non-Zenoness assumption can also be supported by converting the non-Zenoness
assumptions as justices conditions (weak fairness) [8]. In the following, we evaluate
our technique in verification Stateful Timed CSP by comparing its performance with the
zone-based approach in PAT in many examples. All models are available online [13].
The test bed is a PC with Intel Core 2 Duo E6550 CPU at 2.33GHz and 3GB RAM.

According to the experiment results in Table 1, in the verification of three mu-
tual exclusion protocols Fischer’s protocol [9], AT92 [2], and LTS92 [11], BDD-based
approach consistently outperforms Zone-based approach. BDD-based approach is not
only faster but also uses less memory than Zone-based approach. For instance, in Fis-
cher protocol of 6 processes, zone-based approach takes more than 1000 seconds and
215 MBs while BDD-based takes only 6 seconds and 101 MBs. Moreover zone-based
approach runs out of memory with Fischer protocol of 7 processes, yet BDD-based
approach can verify the protocol of up to 12 processes. However in the verification of
Train Controller, zone-based approach is much better than BDD-based approach. For
instance, in the Railway Controller with 6 trains, zone-based approach only takes 4
seconds and 18 MBs but BDD-based approach takes 905 seconds and 1458 MBs. The
reason for this considerable change in performance of BDD-based approach is because
of two issues. First the size of BDDs is very sensitive to large clock values. In this

Model #Processes Zone BDD
Time (s) Memory (MB) Time (s) Memory (MB)

Fischer 5 44 19 2 43
Fischer 6 1283 215 6 101
Fischer 7 x x 17 231
Fischer 12 x x 1112 1353
AT92 3 7 26 1 22
AT92 4 770 524 2 36
AT92 5 x x 14 163
AT92 8 x x 2880 1684
LS92 4 2 13 1 24
LS92 5 1292 76 1 35
LS92 6 x x 3 57
LS92 15 x x 996 1406

Railway Controller 5 1 10 51 650
Railway Controller 6 4 18 905 1458
Railway Controller 7 24 18 x x
Railway Controller 8 201 557 x x

Table 1. Compare Zone-based Approach and BDD-based Approach

benchmark, we set the maximal clock constant to small values, e.g., 4 for Fischer’s pro-
tocol and 3 for others. Second the size of BDDs is also very sensitive with the FSMs of
processes. After examining many examples, we find that there are some models where
it is difficult to fully take advantage of the data-sharing capability of BDDs. This is
the reason why although we have reduced the maximal clock constants to a very small
value, the BDD-based approach’s performance is still much poorer than zone-based ap-
proach in the Railway Controller example. In contrast if data-sharing occurs a lot in
BDDs, the efficiencies of BDD would be higher. This can be shown when we increase
the maximal clock constants of the first three protocols up to 20, BDD-based approach
still outperforms zone-based approach. Specifically BDD-based approach can verify
Fischer’s protocol of 10 processes, AT92 of 5 processes and LTS92 of 8 processes. In
summary there are some models where zone-based approach performs well while there
are other models where BDD-based approach performs well. This experiment shows
that these two approaches complements each other.

5 Conclusion

We have illustrated our approach to verify Stateful Timed CSP by using BDD and dig-
itization. We have also presented how Stateful Timed CSP processes are systematically
encoded with FSMs and compositional functions. Furthermore our experiments show
that there is no superior approach but these approaches have different but complemen-
tary advantage.

References
1. R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer Science,

126:183–235, 1994.
2. R. Alur and G. Taubenfeld. Results about Fast Mutual Exclusion. In IEEE Real-Time Systems

Symposium, pages 12–22, 1992.
3. D. Beyer, C. Lewerentz, and A. Noack. Rabbit: A Tool for BDD-Based Verification of Real-

Time Systems. In CAV, volume 2725 of LNCS, pages 122–125, 2003.
4. D. L. Dill. Timing Assumptions and Verification of Finite-State Concurrent Systems. In

Automatic Verification Methods for Finite State Systems, pages 197–212, 1989.
5. T. A. Henzinger, Z. Manna, and A. Pnueli. What Good Are Digital Clocks? In ICALP,

volume 623 of LNCS, pages 545–558. Springer, 1992.
6. F. Herbreteau, B. Srivathsan, and I. Walukiewicz. Efficient Emptiness Check for Timed

Büchi Automata. In CAV, volume 6174 of LNCS, pages 148–161, 2010.
7. C. A. R. Hoare. Communicating Sequential Processes. International Series in Computer

Science. Prentice-Hall, 1985.
8. Y. Kesten, A. Pnueli, and L.-o. Raviv. Algorithmic Verification of Linear Temporal Logic

Specifications. In ICALP, pages 1–16. Springer, 1998.
9. L. Lamport. A Fast Mutual Exclusion Algorithm. ACM Trans. Comput. Syst., 5(1):1–11,

1987.
10. L. Lamport. Real-Time Model Checking Is Really Simple. In CHARME, volume 3725 of

LNCS, pages 162–175. Springer, 2005.
11. N. A. Lynch and N. Shavit. Timing-Based Mutual Exclusion. In IEEE Real-Time Systems

Symposium, pages 2–11, 1992.
12. J. B. Møller, H. Hulgaard, and H. R. Andersen. Symbolic Model Checking of Timed Guarded

Commands Using Difference Decision Diagrams. J. Log. Algebr. Program., 52-53:53–77,
2002.

13. T. K. Nguyen, J. Sun, Y. Liu, J. S. Dong, and Y. Liu. BDD-based Discrete Analysis of Timed
Systems. http://www.comp.nus.edu.sg/%7Epat/bddlib, 2012.

14. T. K. Nguyen, J. Sun, Y. Liu, J. S. Dong, and Y. Liu. Improved BDD-based Discrete Analysis
of Timed Systems. In FM, pages 326–340, 2012.

15. J. Ouaknine and J. Worrell. Timed CSP = Closed Timed Safety Automata. Electrical Notes
Theoretical Computer Science, 68(2), 2002.

16. H. Palikareva, J. Ouaknine, and B. Roscoe. Faster FDR Counterexample Generation Using
SAT-Solving. ECEASST, 23, 2009.

17. A. W. Roscoe, P. H. B. Gardiner, M. Goldsmith, J. R. Hulance, D. M. Jackson, and J. B.
Scattergood. Hierarchical Compression for Model-Checking CSP or How to Check 1020

Dining Philosophers for Deadlock. In TACAS, volume 1019 of LNCS, pages 133–152, 1995.
18. S. Schneider. Concurrent and Real-Time Systems: The CSP Approach. Wiley, 2000.
19. J. Sun, Y. Liu, J. S. Dong, Y. Liu, L. Shi, and E. André. Modeling and Verifying Hierarchical

Real-time Systems using Stateful Timed CSP. TOSEM, 2012. to appear.
20. J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible Verification under Fairness.

In CAV, volume 5643 of LNCS. Springer, 2009.
21. J. Sun, Y. Liu, J. S. Dong, and X. Zhang. Verifying Stateful Timed CSP Using Implicit

Clocks and Zone Abstraction. In ICFEM, volume 5885 of LNCS, pages 581–600, 2009.
22. S. Tripakis. Verifying Progress in Timed Systems. In 5th Inter. AMAST Workshop ARTS on

Formal Methods for Real-Time and Probabilistic Systems, pages 299–314. Springer, 1999.
23. M. Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Program Verifi-

cation. In LICS, pages 332–344. IEEE Computer Society, 1986.
24. F. Wang. Symbolic Verification of Complex Real-Time Systems with Clock-Restriction

Diagram. In FORTE, pages 235–250, 2001.

