Verification of Orchestration Systems
using Compositional Partial Order Reduction *

Tian Huat Tan', Yang Liu?, Jun Sun?® and Jin Song Dong?

! NUS Graduate School for Integrative Sciences and Engineering
tianhuat@comp.nus.edu.sg
2 School of Computing, National University of Singapore
{liuyang, dongj s}@comp .nus.edu.sg
3 Singapore University of Technology and Design
sunjun@sutd.edu.sg

Abstract. Orc is a computation orchestration language which is designed to
specify computational services, such as distributed communication and data ma-
nipulation, in a concise and elegant way. Four concurrency primitives allow pro-
grammers to orchestrate site calls to achieve a goal, while managing timeouts,
priorities, and failures. To guarantee the correctness of Orc model, effective ver-
ification support is desirable. Orc has a highly concurrent semantics which in-
troduces the problem of state-explosion to search-based verification methods like
model checking. In this paper, we present a new method, called Compositional
Partial Order Reduction (CPOR), which aims to provide greater state-space re-
duction than classic partial order reduction methods in the context of hierarchical
concurrent processes. Evaluation shows that CPOR is more effective in reducing
the state space than classic partial order reduction methods.

1 Introduction

The advent of multi-core and multi-CPU systems has resulted in the widespread use of
concurrent systems. It is not a simple task for programmers to utilize concurrency, as
programmers are often burdened with handling threads and locks explicitly. Processes
can be composed at different levels of granularity, from simple processes to complete
workflows. The Orc calculus [17] is designed to specify orchestrations and wide-area
computations in a concise and structured manner. It has four concurrency combinators,
which can be used to manage timeouts, priorities, and failures effectively [17]. The
standard operational semantics [29] of Orc supports highly concurrent executions of
Orc sub-expressions. Concurrency errors are difficult to discover by testing. Hence, it
is desirable to verify Orc formally. The highly concurrent semantics of Orc can lead to
state space explosion and thus pose a challenge to model checking methods.

In the literature, various state reduction techniques have been proposed to tackle
the state space explosion problem, including on-the-fly verification [15], symmetry re-
duction [7, 11], partial order reduction (POR) [8, 22, 12,28, 5, 23], etc. POR works by

* This research is supported in part by Research Grant IDD11100102 of Singapore University of
Technology and Design, IDC and MOE2009-T2-1-072 (Advanced Model Checking Systems).

Q_Pe
3O G

Before POR After POR

Fig. 1. Partial Order Reduction Fig. 2. Hierarchical Concurrent Processes
exploiting the independency of concurrently executing transitions in order to reduce the

number of possible interleavings. For example, consider the transition system in Fig-
ure 1 where #; and 75 are independent transitions. This means that executing either #1175
or tot1 from state s; will always lead to state so. POR will detect such independency, and
choose only # #5 for execution, thus reducing the explored state space. Classic POR al-
gorithms, such as [28, 12, 8,22, 5], work by identifying a subset of outgoing transitions
of a state which are sufficient for verification. In this paper, we denote such subsets as
ample sets — see [8, 5].

Many concurrent systems are designed using a top-down architecture, and concur-
rent processes are structured in a hierarchical way. In Figure 2, process P contains
subprocesses P; (i = 1, 2, etc.) that are running concurrently. Moreover, each process
P; also contains subprocesses P;; (j = 1, 2, etc.) that are running concurrently. We refer
to concurrent processes of this kind as hierarchical concurrent processes (HCP). There
are many real-life examples of HCP. Consider a browser that supports tabbed brows-
ing. Multiple browser windows could be opened at the same time, each browser window
could contain multiple opened tabs, and each opened tab could download several HTML
elements in parallel. Orc processes provide another example of HCP.

Classic POR algorithms, such as [28,12,8,22,5], assume that local transitions
within the participated processes are dependent. In the context of HCP (Figure 2), if
POR is applied on process P, transitions within processes P71, P2, etc. will be considered
as local transitions, and be assumed to be dependent. Nevertheless, many local transi-
tions may be independent. In this work, we propose a method called Compositional
Partial Order Reduction (CPOR), which extends POR to the context of HCP. CPOR
exploits the independency within local transitions. It applies POR recursively for the
hierarchical concurrent processes, and several possible ample sets are composed in a
bottom-up manner. In order to apply CPOR to Orc, we first define the HCP structure of
an Orc process. Subsequently, based on the HCP structure, we established some local
criteria that could be easily checked by CPOR algorithm. Experimental results show
that CPOR can greatly reduce the explored state space when verifying Orc models.

Paper Outline. Section 2 introduces Orc language. Section 3 elaborates on CPOR
and shows how it can be applied to Orc models. Section 4 gives several experimental
results. Section 5 surveys the related work. Finally, Section 6 discusses the extensibility
of CPOR with possible future work and concludes the paper.

2 Orchestration Language Orc

2.1 Syntax

Orc is a computation orchestration language in which multiple services are invoked to
achieve a goal while managing time-outs, priorities, and failures of services or commu-
nication. Following is the syntax of Orc:

Variable x ::= variable name

Value m = value
Parameter p == x|m
Expression E ::= M(p) — site call
| E|E — parallel
| E>x>E — sequential
| E<x<E — pruning
| E;E — otherwise

Site The simplest Orc expression is a site call M(p), where M is the service’s name
and p is a list of parameters. Sites are the basic units of Orc language. A site can be an
external service (e.g. Google site) which resides on a different machine. For example,
Google(“Orc”) is an external site call that calls the external service provided by Google
and its response is the search results for keyword “Orc” by the Google search engine.
A site can also be a local service (e.g. plus site) which resides on the same machine. For
example, a site call plus(1, 1) calls the local plus service and its response is the sum-
mation of the two arguments. Since a site in Orc is essentially a service, henceforth, we
would use the term site and service interchangeably. Some services maintain a state,
those services are denoted as stateful services. An example is Buffer site, which pro-
vides the service of First-In-First-Out (FIFO) queue. We denote the data structure that
constitutes the state of a stateful service as state object of the stateful service. A site call
(e.g. a dequeue operation on Buffer site) for a certain stateful service may change the
corresponding state object (e.g. a FIFO queue). Thus, multiple site calls with the same
arguments to the same stateful service might result in different responses. Services that
do not have any state are called stateless services. An example is plus site, which takes
two numbers as input and returns their summation. Multiple calls with the same argu-
ments to a stateless service will always result in the same response.

Combinators There are four combinators: parallel, sequential, pruning, and otherwise
combinators. The parallel combinator F | G defines a parallel expression, where ex-
pressions F and G execute independently, and its published value can be the value
published either by F or by G or both of them. The sequential combinator F > x > G
defines a sequential expression, where each value published by F initiates a separate
execution of G wherein x is bound to the published value. The execution of F is then
continued in parallel with all these executions of G. The values published by the se-
quential expression are the values published by the executions of G. For example,
(Google(“Orc”) | Yahoo(“Orc”)) > x > Email(addr,x) will call Google and Ya-
hoo sites simultaneously. For each returned value, an instance of x will be bound to it,
and an email will be sent to addr for each instance of x. Thus, up to two emails will
be sent. If x is not used in G, F > G can be used as a shorthand for F > x > G.
The pruning combinator F < x < G defines a pruning expression, where initially F
and G execute in parallel. However, when F needs the value of x, it will be blocked
until G publishes a value to bind x and G terminates immediately after that. For ex-
ample, Email(addr,x) < x < (Google(“Orc”) | Yahoo(“Orc”)) will get the fastest
searching result for the email sending to addr. If x is not used in F, F < G can
be used as a shorthand for F < x < G. The otherwise combinator F ; G defines
an otherwise expression, where F executes first. The execution of F is replaced by G

if F halts without any published value, otherwise G is ignored. For example, in the
expression (Google(“Orc”) ; Yahoo(“Orc”)) > x > Email(addr,x), Yahoo site is
used as a backup service for searching “Orc” and it will be called only if the site call
Google(“Orc”) halts without any result for “Orc”.

Functional Core Language (Cor) Orc is enhanced with functional core language (Cor)
to support various data types, mathematical operators, conditional expressions, func-
tion calls, etc. Cor structures such as conditional expressions and functions are trans-
lated into site calls and four combinators [17]. For example, conditional expression
if E then F else G, where E, F, and G are Orc expressions would be translated into
expression (if (b) > F | if(~ b) > G) < b < E before evaluation.

Example - Metronome Timer is explicitly supported in Orc by introducing time-
related sites that delay a given amount of time. One of such sites is Rtimer. For ex-
ample, Rtimer (5000) > “Orc” will publish “Orc” at exactly 5 seconds. Functional
core (Cor) defines functions using the keyword def. Following is a function that defines
a metronome [17], which will publish a signal value every ¢ seconds. signal is a value
in Orc that carries no information. Note that the function is defined recursively.

def metronome(t) = (signal | Rtimer(t) > metronome(t))

The following example publishes “tick’ once per second, and publishes “tock’ once per
second after an initial half-second delay.

(metronome(1000) > “rick”) | (Rtimer(500) >> metronome(1000) > “tock”)
Thus the publications are “tick tock tick - --” where “tick” and “tock” alternate each
other. One of the properties that we are interested is whether the system could publish
two consecutive “tick”’s or two consecutive “tock”s which is an undesirable situation.
In order to easily assert a global property that holds throughout the execution of an Orc
program, we extend Orc with auxiliary variables. The value of an auxiliary variable
could be accessed and updated throughout the Orc program. Henceforth, we will sim-
ply refer to the extended auxiliary variables as global variables. A global variable is
declared with the keyword globalvar and a special site, $GUpdate, is used to update a
global variable. We augment the metronome example with a global variable tickNum,
which is initialized to zero. tickNum is increased by one when a “tick” is published, and
is decreased by one when a “tock” is published.

globalvar tickNum = 0

def metronome(t) = (signal | Rtimer(t) > metronome(t))

(metronome(1000) > $GUpdate({tickNum = tickNum + 1}) > “tick”)

| (Rtimer(500) >> metronome(1000) > $GUpdate({tickNum = tickNum — 1})

> “tock”)

With this, we are allowed to verify whether the system could publish two consecutive
“tick”’s or two consecutive “tock”s by checking the temporal property such that whether
the system is able to reach an undesirable state that satisfying the condition (tickNum <
0V tickNum > 1).

2.2 Semantics

This section presents the semantic model of Orc based on Label Transition System
(LTS). In the following, we introduce some definitions required in the semantic model.

Definition 1 (System Configuration). A system configuration contains two compo-
nents (Proc,Val), where Proc is a Orc expression, and Val is a (partial) variable valua-
tion function, which maps the variables to their values.

A variable in the system could be an Orc’s variable, or the global variable which is
introduced for capturing global properties. The value of a variable could be a primitive
value, a reference to a site, or a state object. The three primitive types supported by
Orc are boolean, integer, and string. All variables are assumed to have finite domain.
Two configurations are equivalent iff they have the same process expression Proc and
same valuation function Val. Proc component of system configuration is assumed to
have finitely many values.

Definition 2 (System Model). A system model is a 3-tuple S = (Var, initg, P), where
Var is a finite set of global variables, initg is the initial (partial) variable valuation
function and P is the Orc expression.

Definition 3 (System Action). A system action contains four components (Event, Time,
EnableSiteType, EnableSiteld). Event is either publication event, written !m or internal
event, written T. EnableSiteType, EnableSiteld are the type and unique identity of the
site that initiates the system action. Time is the total delay time in system configuration
before the system action is triggered.

Every system action is initiated by a site call, and we extend the system action defined
in [29] with two additional components, EnableSiteType and EnableSiteld, to provide
information for CPOR. A publication event !m communicates with the environment
with value m, while an internal event 7 is invisible to the environment. There are three
groups of site calls. The first two groups are site calls for stateless and stateful services
respectively. And the third are the site calls for $GUpdate which update global vari-
ables. These three groups are denoted as stateless, stateful, and GUpdate respectively,
and those are the possible values for EnableSiteType. Every site in the system model is
assigned a unique identity which ranges over non-negative integer value. Discrete time
semantics [29] is assumed in the system. 7ime ranges over non-negative integer value
and is assumed to have finite domains.

Definition 4 (Labeled Transition System (LTS)). Given a model S = (Var, initg, P),
let X denote the set of system actions in P. The LTS corresponding to S is a 3-tuple
(C, init,—), where C is the set of all configurations, init € C is the initial system
configuration (P, initg), and — C C x X x C is a labeled transition relation, and its
definition is according to the operational semantics of Orc [29].

To improve readability, we write ¢ % ¢’ for (c,a,c’) € —. An action a € X is enabled
in a configuration ¢ € C, denoted as ¢ 2, iff there exists a configuration ¢’ € C, such
that ¢ % ¢’. An action a € ¥ is disabled in a configuration ¢ = (P, V), where ¢ € C, iff
the action a is not enabled in the configuration c, but it is enabled in some configurations
(P, V"), where V' # V. Act(c) is used to denote the set of enabled actions of a configu-
ration ¢ € C, formally, for any ¢ € C, Act(c) = {a € X | ¢ %}. Enable(c,a) is used to
denote the set of reachable configurations through an action a € X' from a configuration
¢ € C, that s, forany ¢ € C and a € X, Enable(c,a) = {c' € C | ¢ % ¢'}. Enable(c)
is used to denote the set of reachable configurations from a configuration ¢ € C, that is,

for any ¢ € C, Enable(c) = {c' € Enable(c,a) | a € X}. Ample(c) is used to denote
the ample set (refer to Section 3) of a configuration ¢ € C. AmpleAct(c) is defined as
the set of actions that caused a configuration ¢ € C transit into the configurations in
Ample(c), that is, for any ¢ € C, AmpleAct(c) = {a € ¥ | ¢ % ¢/, ¢’ € Ample(c)}.
PAct(c) is used to denote the set of enabled and disabled actions of a configuration c,
and Act(c) C PAct(c). We use TS to represent the original LTS before POR is applied
and TS to represent the reduced LTS after POR is applied. TS, is used to represent
the LTS (before any reduction) that starts from ¢, where c is a configuration in 7S. An
execution fragment | = co <5 ¢; 23 ... of LTS is an alternating sequence of configu-
rations and actions. A finite execution fragment is an execution fragment ending with a
configuration.

We are interested in checking the system against two kinds of properties. The first
kind is deadlock-freeness, which is to check whether there does not exist a configura-
tion ¢ € C in TS such that Enable(c) = &. The second kind is temporal properties that
are expressible with LTL without Next Operator (LTL-X) [5]. For any LTL-X formula
o, prop(¢) denotes the set of atomic propositions used in ¢. In the metronome example
which augmented with a global variable tickNum, prop(¢)={ (tickNum < 0), (tickNum >
1)}. An action a € X' is ¢-invisible iff the action does not change the values of propo-
sitions in prop(¢) for all c € C in TS.

2.3 Hierarchical Concurrent Processes (HCP)

The general structure of a hierarchical concurrent process P is shown graphically using
a tree structure in Figure 3. Henceforth, we denote such a graph as a HCP graph, or
simply HCP if it does not lead to ambiguity.

Level 0
Level 1

Level 2

Leveln-1

Leveln

Fig. 3. The general structure of HCP

Figure 3 shows that process Py contains subprocesses Pi, Ps, etc that are run-
ning concurrently. Process P in turn contains subprocesses P11, P12, etc that are run-
ning concurrently. This goes repeatedly until reaching a process P, which has no sub-
processes. Each process P in the hierarchy will have its associated level, starting from
level 0. A process without any subprocess (e.g. process P,) is denoted as terminal
process, otherwise the process is denoted as non-terminal process. Furthermore, process
Py at level 0 is denoted as global process, while processes at level i, where i > 0, are
denoted as local processes. The parent process of a local process P’ is a unique process
P such that there is a directed edge from P to P’ in the HCP graph. When P is the parent
process of P, P’ is called the child process of P. Ancestor processes of a local process
P’ are the processes in the path from global process to P'. Descendant processes of
process P are those local processes that have P as an ancestor process.

An Orc expression P could be viewed as a process that is composed by HCP.
This could be formalized by constructing the HCP according to syntax of P, assigning
process identity to each sub-expression of P, and defining how the defined processes
evolve during the execution of expression P. In the following, we illustrate this in de-
tail. An Orc expression can be either a site call or one of the four combinators and their
corresponding HCPs are shown in Figure 4. A site call is a terminal process node, while
each of the combinators has either one or two child processes according to their seman-
tics (refer to Section 2), and the HCPs of respective child process nodes are defined
recursively. We denote expressions A and B as LHS process and RHS process for each
combinators in Figure 4. For example, a pruning combinator (A < x < B) contains two
child nodes because its LHS process and RHS process could be executed concurrently.
Each of the process nodes in HCP is identified by a unique process identity (pid), and
node values in HCP are prefixed with their pid (e.g. pg, p1, etc.). In Figure 5, an expres-
sion (7 < S2) | (S3 < S4), where S1, Sa, S3, and Sy are site calls, could be viewed as
a process composed by HCP of three levels.

Poi(S1 << S;)|(S5<<Sy)
(PoA1B) (PoA <x<B)(PoA>x>8B)PoA ;B P,S,<< S,[P,Ss << SD
Site Call Parallel Pruning Sequential Otherwise (S1 << S2)|(S3 << S4)
Fig. 4. HCP of general Orc Expressions Fig. 5. An example

Consider a transition (P, V) % (P, V'), where a is some action. We abuse the
notation by using P and P’ to denote the HCPs before and after the transition. In fact, P’
could have different tree structures from P, and processes could be added or deleted in
P’. In order to have a clear relation of processes between P and P, we define the relation
of processes between P and P’ over each rule of the operational semantics of Orc [27],
some of which are presented in Figure 6 for illustration purpose. There are two HCPs
under each rule. HCPs on the left and right are the HCPs before and after triggering
the action initiated by respective rules. Two process nodes on different HCPs belong to
the same process if they have the same pid value, and an arrow is used to relate them.
Processes that could only be found in HCP on the right or left are the processes that
are newly added or deleted respectively. In SEQ1YV, the transition of f to f” produces an
output value m, and notation [m/x].g is used to denote that all the instances of variable

x in g are replaced with value m.
SYM1 SEQ1V ASYM2V DEF
Pof>x>g) (Paf >x>g| [mixlg) (Pt <x<g) (Pu:Imi 1) (PuE())(Pr [pAT)

@t@jgx@
o)

Fig. 6. Relation of Processes between P and P’

A site S is private in P1[P], if the reference of site S could not be accessed by all
processes other than process P; and its descendant processes under HCP graph of global
process P. Otherwise, site S is shared in process P1[P]. A site S is permanently private
in Pq|c], if for any configuration ¢’ = (P’, V') that is reachable by c, if P’ has Py as its
descendant process, site S must be private in process P [P’].

The example in Figure 7 shows an Orc process P = A | B. Variables userdb and
Sflightdb will be initialized to different instances of site Buffer, which provides the ser-

A = (userdb.put(“userl”) | userdb.put(“user2”)) < userdb < Buffer()
B = (flightdb.put(“CX510) | flightdb.put(“CX5117)) < flightdb < Buffer()

Fig. 7. Execution of Orc process P = A | B

vice of FIFO queue. In process A, two string values userl and user2 are enqueued in
the buffer referenced by userdb concurrently. Buffer site that is referenced by userdb
is private in A[P], since userdb could only be accessed by process A. Now consider
at some level j of HCP graph of global process P, where j > 1, we have processes
P;, = userdb.put(“userl”) and P;, = userdb.put(“user2”). Buffer site that is refer-
enced by userdb is shared in P;, [P], since userdb could be accessed by P;, which is not
a descendant process of P, .

3 Compositional Partial Order Reduction (CPOR)

The aim of Partial Order Reduction (POR) is to reduce the number of possible orderings
of transitions by fixing the order of independent transitions as shown in Figure 1. The
notion of indepedency plays a central role in POR, which is defined below by follow-
ing [13].

Definition 5 (Independency). Two actions a; and as in an LTS are independent if for
any configuration ¢ such that ay, as € Act(c):

1. ay € Act(c1) where ¢1 € Enable(c,ay) and a; € Act(ca) where co € Enable(c,as),
2. Starting from c, any configuration reachable by executing a; followed by as, can also
be reached by executing as followed by a;.

Two actions are dependent iff they are not independent.

Given a configuration, an ample set is a subset of outgoing transitions of the configura-
tion which are sufficient for verification, and it is formally defined as follow:

Definition 6 (Ample Set). Given an LTL-X property ¢, and a configuration ¢ € C in
TS, an ample set is a subset of the enable set which must satisfy the following condi-
tions [5]:

(A1) Nonemptiness condition: Ample(c) = & iff Enable(c) = &.

(A2) Dependency condition: Let co <> ¢1 3 ... 5 ¢, = t be a finite execution frag-
ment in TS. If a depends on some actions in AmpleAct(co), then a; € AmpleAct(cy) for
some 0 <i<n.

(A3) Stutter condition: If Ample(c) # Enable(c), then any oo € AmpleAct(c) is ¢-
invisible. .

(A4) Strong Cycle condition: Any cycle in TS contains at least one configuration ¢ with
Ample(c)=Enable(c).

To be specific, reduced LTS generated by the ample set approach needs to satisfy con-
ditions A1l to A4 in order to preserve the checking of LTL-X properties. However, for
the checking of deadlock-freeness, only conditions Al and A2 are needed [12]. Hence-
forth, our discussion will be focused on the checking of LTL-X property, but the reader
could adjust accordingly for the checking of deadlock-freeness.

Conditions A1, A3, and A4 are relatively easy to check, while condition A2 is the most
challenging condition. It is known that checking condition A2 is equivalent to checking
the reachablity of a condition in the full transition system TS [8]. It is desirable that we

could have an alternative condition A2’ that only imposes requirements on the current
configuration instead of all traces in TS, and satisfaction of condition A2’ would guar-
antee the satisfaction of condition A2. Given a configuration ¢, = (P,, V), and P, as
a descendant process of P,, with associated configuration c; = (P4, V), we define a
condition A2’ that based solely on ¢;, and its soundness will be proved in Section 3.3.

(A2’)Local Criteria of A2 For all configurations ¢, € Ample(cy) and ¢, = (pa, va)
the following two conditions must be satisfied:

(1)The enable site for the action a that enable ¢, must be either stateless site, or stateful
site private in p,[Pg];

(2)p, is not a descendant process of the RHS process of some pruning combinators or
the LHS process of some sequential combinators.

Notice that we define an ample set as a set of enabled configurations rather than a set of
enabled actions like [5]. The reason is due to in references like [5], action-deterministic
system is assumed. This entails that for any configuration ¢ € C and any action a € X/,
¢ has at most one outgoing transition with action a, formally, ¢ % ¢’ and ¢ % ¢ im-
plies ¢’ = ¢”. Therefore, the enabled configurations could be deduced by the enabled
actions. Nonetheless, an Orc system is not action-deterministic, the main reason is be-
cause some events in Orc are internal events that are invisible to the environment. By
defining ample set as a set of configurations, with their associated enabled actions, the
requirement of action-deterministic system is no longer needed.

3.1 Classic POR and CPOR

Classic POR methods assume that local transitions of a process are dependent, and in
the context of HCP, it means that actions within individual processes from level 1 on-
wards are simply assumed to be dependent. In Figure 8, three LTSs of the process P

No POR Classic POR

T N

CPOR
C Pyl P, Pl P, Cp,\p2>
Y2 Nz 3 : Lz o Y2

(a<<31P.{@2<<3)1P.{_@121Ps(P:](s10p << 1<<3) P @<<3)| sz(l 12)] Pz)((l «<3)| PD

Fig.8. LTS of Orc Process P = (P1 | P2),P1 = ((1]2) < 3),P2 = (4 < 6)

are given. No POR shows the set of all initial transitions of process P; classic POR
shows how the state-space of a parallel composition can be reduced when its compo-
nent processes are independent; and CPOR reduces the initial actions further by ex-
amining internal process structure. For simplicity, system configuration is represented
only by process expression. When no POR is applied, all interleavings of transitions
are considered, and there are five branches after the initial state. When the classic POR
is applied, since P; and P are active processes, assume that it checks process P first.
All transitions of P; are assumed to be dependent by the classic POR. For this reason
the resulting ample set of P is {((1 < 3) | P2),((2 < 3) | P2),((1 | 2) | P2)},
which is a valid ample set after checking for conditions A1-A4. Therefore, there are
three branches from initial state when classic POR is applied. Different from clas-
sic POR, when CPOR is applied, POR is again applied to process (1 | 2). We de-
fine Amples(P) as a set of ample sets of process P that satisfy conditions Al and A2,
but yet to be checked for conditions A3 and A4. Amples((1 | 2)) = {{1},{2}} and

Amples(Py) is Amples((1 | 2)) after restructuring by the semantics of Py, which is
{{1 « 3},{2 <« 3}}. Amples(P) is Amples(Py) after restructuring by the semantics of
P, whichis {{1 < 3 | P2}, {2 <« 3 | P2}}. Each ample set in Amples(P) will then be
checked for conditions A3 and A4, and both ample sets turn up to be valid, therefore
the ample set {1 < 3 | P2} is chosen nondeterministically to be the returned value.
Thus there is only a single branch after the initial state when CPOR is applied. There
are a total of 31, 14 and 5 states for LTS of process P in the situations where no POR,
classic POR and CPOR are applied respectively.

3.2 CPOR Algorithm

In this section, we discuss the procedures for CPOR as given in Algorithm 1. CAmple
returns an ample set which is a subset of enabled configurations from the configura-
tion ¢ = (P, V), and Visited is the stack of previously visited configurations. Each
configuration ¢, in the ample set, where ¢, = (Proc, Val), is associated with an ac-
tion a, = (Event, Time, EnableSiteType, EnableSiteld), which caused the transition
from ¢ to ¢,, that is ¢ Ga, c,. Henceforth, we use the dot-notation such as c¢,.Proc,
cqa-Event, etc to denote the component values of ¢, as well as the component values
of its associated action a,. P.Amples (line 2) is a set that stores ample set candidates
that satisfy conditions Al and A2, but yet to check for conditions A3 and A4. Proce-
dure enableSubProcs(P) (line 3) returns the set of enabled child processes according
to HCP graph of Orc expressions P as shown in Figure 4, with an exception that for
sequential process Py = A > x > B, it returns an empty set {} instead of {A}, and
for pruning process P, = A < x < B, it returns {A} instead of {A, B}. This exception
is applied in order to satisfy the condition A2’(2). Procedure fillAmpleRec(P,V) (line
17) retrieves the ample set candidates under valuation V and assigns it to P.Amples.
In line 18, Enable(c) where ¢ = (P, V) gives the set of all enabled configurations
from the configuration c¢. Procedure checkA2Local(config) checks whether configu-
ration config satisfies A2’(1). Procedure isPrivate (line 32) checks whether the site
with config.EnableSiteld as unique identity is private in Proc[Pg] where Proc is the
process component of config and Pg is the argument P of procedure CAmple pro-
vided by user, which is the global process that has Proc as descendant process. The
checking is done by syntax analysis. In Orc, P is a terminal process (line 20) iff it
is a site call. Procedure composeAmples(P, sP, V) (line 26) combines sP.Amples back
into P.Amples under valuation V. Procedure reformAmples (sP.Amples, P) (line 27) re-
structures configurations within sp.Amples by operational semantics of Orc. For ex-
ample, consider P = (1 +x < x < 2), and sP = 2. After making a transition,
sP.Amples = {{c}}, where c is the configuration (stop, @) with c.Event =12 . After
restructuring by reformAmples(sP.Amples, P), ¢ becomes (1 + 2, &), and c.Event = T,
according to rule ASYM2V as stated below.

(2,9) 2 (stop, @)

[ASYM2V |
1+x<x<2,2) 5 (1+2,9)
When P = sP, reformAmples(sP.Amples, P) will simply return sP.Amples. Sub-
sequently, ample sets that are empty sets are filtered away (line 28). We continue on
the discussion of procedure CAmple. To analyze whether an ample set ample is valid,

the algorithm checks whether all configurations within satisfy conditions A3 and A4
(line 9, 10). If it turns out to be true, a valid ample set is found, and it will be returned
immediately (line 14, 15). If no valid ample set has been found in line 3-15, all the
enabled configurations from current configuration ¢ = (P, V) will be returned (line 16).
Regarding checking of condition A3 (line 9), there are two kind of actions that might

1 procedure CAmple(P,V, Visited)

2 P.Amples .= &,

3 foreach sP € enableSubProcs(P) do // B2’ (2)
4 fillAmpleRec(sP,V);

5 composeAmples(P,sP, V),

6 foreach ample € P.Amples do

7 validAmple := true;

8 foreach config € ample do

9 if — config satisfies A3 // A3
10 V config € Visited // A4
11 then

12 validAmple := false;

13 L break;

14 if validAmple then

15 L return ample;

16 | return Enable((P,V));

17 procedure fillAmpleRec(P, V)
18 P.Amples := {{config : Enable((P,V))

19 | checkA2Local(config)}}; // BA2' (1)
20 if P is terminal process then

21 L composeAmples(P,P, V),

22 else

23 foreach sP € enableSubProcs(P) do

24 fillAmpleRec(sP,V);

25 L composeAmples(P,sP,V);

26 procedure composeAmples(P,sP,V)
27 P.Amples := P.Amples U reformAmples(sP.Amples, P);
28 | P.Amples := P.Amples \ {D}; // Al

29 procedure checkA2Local(config)
30 return(config.EnableSiteType is stateless \/
31 config.EnableSiteType is stateful N\
32 isPrivate(config.EnableSiteld)) ;
Algorithm 1: CAmple
not be ¢-invisible, which are actions that contain publication events or actions that
involved the update of global variables. Consider the metronome example, if we are
checking property like whether !tick event can be executed infinitely often, an action

a with a.Event =ltick is not ¢-invisible. Another example is when we are checking
whether tickNum < 0 is true in all situations, where tickNum is a global variable, an
action a with a.EnableSiteType = GUpdate is not ¢-invisible.

3.3 Soundness

Lemma 1. Given any two actions ay, and ay in the system, and let s1 and sy be the
enable sites of actions a1 and as respectively. If sites s1 and so are not descendant
processes of the RHS process of some pruning combinators and state objects of sites s1
and so are disjoint, then action a1 is independent of action as.

Proof. Actions a; and ay are dependent only when (a) action a; could disable action
as or vice versa or (b) starting from the same configuration, transitions ajas and asa;
could result in different configurations. Situation (a) could happen if site 51 could pos-
sibly modify the state object of site so or vice versa, or when sites s; and s are the
descendant processes of the RHS process of some pruning combinators. For the latter
case, consider x < x < (s1 | s2), if site s; published a value, site so will be disabled im-
mediately. Nevertheless, this case is ruled out by the assumption. Condition (b) could
happen when sites s; and s contain a common state object which they may modify and
depend on. Therefore, conditions () and (b) are the results of having a common state
object between sites 51 and so. This implies that if sites s; and so have disjoint state
objects, actions a; and ay are independent to each other.CJ end.

Lemma 2. Given a configuration ¢ = (P, V), and process Py as a descendant process
of P. If Py is not a descendant process of the LHS process of some sequential combina-
tors, then a site S that is private in P1[P), is permanently private in P1|c] as well.

Proof. We prove by inspecting each rule in the operational semantics of Orc [29]. Only
rule SEQ1V of operational semantics of Orc is possible to transfer the site reference
from a process p to other processes, while retaining process p. Consider HCPs under
rule SEQI1V in Figure 6, a site S that is private in P1[Pp] may not be private in P1[Ps],
since Ps might have the access to the reference of site S. Therefore, if we exclude this
situation by assuming P; is not a descendant process of the LHS process of some se-
quential combinators, we prove the lemma.J end.

We define several notions here. Given a configuration ¢, = (Pg, V,), and P, as a descen-
dant process of P,, with associated configuration ¢y = (Py, V). (ch is defined as the set
of configurations reachable by c, in LTS; P, is defined as {P [¢ = (P,V) Ac € C.};
HCP(]P’CK) is defined as the HCPs for each global process in P ; H, is defined as the
union of processes within each HCP in HCP(P,,); H,,[P,] is the set of processes that
contain process P, and its corresponding descendant processes in respective HCPs in
HCP(P,,), and H [Py] C H,,.

g

Lemma 3. [f an action a € Act(c,) satisfies A2’ then the action is independent of any
action b € Act(c’), where ¢’ = (P', V'), such that P' = H., /H,, [P}, and V' is any
valuation.

Proof. Assume an action a € Act(c,) satisfies A2’, and assume the action is dependent
to an action b € Act(c’). Let sites s, and s, be the enable sites of actions a and b

respectively. By A2°(1), site s, is a stateless site or stateful site that is private in p,[Pg].
Site s, could not be a stateless site since a stateless site does not have a state object,
and thus action a is trivially independent to any actions in the system by Lemma 1
and A2’(2). Therefore, site s, is a stateful site that is private in p,[P,]. By Lemma 2
and A2’(2), site s, is also permanently private in p,[c,] . By definition, state objects of
site s, and s;, are disjoint. By Lemma 1 and A2’(2), actions a and b are independent, a
contradiction.dd end.

Theorem 1. If any action a € Act(c,) satisfies A2’, then AmpleAct(c,) = Act(cy) sat-
isfies A2 for all traces in TS,..

Proof. Assume any action a € Act(cy) satisfies A2’, and AmpleAct(c,) = Act(c,) does

not satisfies A2 for some traces in 7S,,. This means that there exists a finite execution

a a a ap4-1 .
fragment [= ¢ = ¢; = ... =% ¢, — ... ,where actions ay,...,a, & Act(cq)

and action a,, depends on some actions in AmpleAct(cg) = Act(cq). Since Lemma 3
holds, action a,; must be from PAct(c,)/Act(cs), we denote the enable site of action
ap41 as S,4+1. Since site S, is disabled initially in c,, it means that it is enabled later
by a site call from a process p’ €]HL‘g / Hcg [P4]. For sites in process Py, site calls from a
process p’ € H., /H,,[P4] could only enable the sites that are shared in p4[P,], where P,
is the global process of p’. We denote the set of state objects of the sites that are shared
in py [P;,] as Dyjqre, and state object of S,11 is in Dg4pe. On the other hand, by Lemma
2 and A2’(2), any action a € Act(c4) is enabled by a site that is permanently private in
Palc,]- By definition, state object of the enable site of any action a € Act(c,) must not
be found in Dy,p.. Therefore, action a,1 is independent to all actions in Act(cy) by
Lemma 1 and A2’(2), a contradiction.[] end.

Theorem 2. Algorithm CAmple is sound.

Proof. To show the soundness of the algorithm, we need to show that the returned am-
ple set satisfies conditions A1-A4. Checking of condition Al is done at line 28. Con-
ditions A3 and A4 are checked at the global process level (line 9, 10) at CAmple since
they are only concerned with the property of global process configurations, i.e. whether
their actions are ¢-invisible and whether they have been visited before. By Theorem 1,
satisfaction of condition A2’ leads to satisfaction of condition A2. Condition A2’(1)
is checked at line 19. Condition A2’(2) is guaranteed by constraining the procedure
enableSubProcs(P) (line 3) not to return LHS process of a sequential process and RHS
process of a pruning process. [end.

4 Evaluation

Our approach has been realized in the ORC Module of Process Analysis Toolkit (PAT) [1].
PAT is designed for systematic validation of distributed/concurrent systems using state-
of-the-art model checking techniques [25, 26]. It can be considered as a framework for
manufacturing model-checkers. The data are obtained with Intel Core 2 Quad 9550
CPU at 2.83GHz and 4GB RAM.