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Abstract. Model checkers, like any complex software, are subject to bugs. Un-
like ordinary software, model checkers are often used to verify safety critical
systems. Their correctness is thus vital. Verifying model checkers is extremely
challenging because they are always complicated in logic and highly optimized.
In this work, we propose a code contract combined approach for checking model
checkers and apply it to a home-grown model checker PAT. In this approach,
we firstly embed programming contracts (i.e., pre/post-conditions and invariants)
into its source code, which can capture correctness of model checking algorithms,
underlying data structures, consistency between different model checking param-
eters, etc. Then, interface models of complicated data structures and graphical
user interfaces (GUI) are built and model checked. By linking the interface mod-
els with actual source codes and exhausting all execution sequences of interface
models using PAT, we model check PAT using itself ! Our experience shows that
the approach is effective in identifying common bugs or subtle flaws that result
from extremely improbable events.

1 Introduction

After two decades of development, model checking [8] has emerged as an effective
method for verification of critical systems. It has established as a system validation
method complementing standard techniques like simulation and testing. There have
been a number of recent successful stories. The static driver verifier which uses the
SLAM verification engine has been reported to find many driver model violations [1].
In 2009, it was reported that model checking has been used to replace testing in Intel
CoreTM i7 processor (with millions of registers) execution engine validation [17].

Model checkers, like any non-trivial software, are subject to bugs. This is evidenced
by the bug collection for established model checkers like SPIN [14] and NuSMV [7].
Model checkers are, nonetheless, distinguished from ordinary software due to their very
nature. Firstly, they are always complicated in computational logic. Many complicated
model checking algorithms, in the name of efficiency, have been proposed to verify a
variety of system properties. Furthermore, sophisticated state reduction techniques are
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often applied, for instance, partial order reduction [22], symmetric reduction [10], data
abstraction [2], or their combinations. Secondly, because efficiency is essential, model
checkers are often highly optimized, which implies that they may not be designed for
rigorous system maintenance or testing. Lastly, because model checking techniques are
developing rapidly, model checkers are often updated frequently. This is evidenced by
the update history of popular model checkers like SPIN, Uppaal, and so on.

Model checkers are often applied to safety critical systems. If a property is falsified,
correctness of the model checker can be validated by checking whether the counterex-
ample is a real one. It is when a property is claimed true - which is often the last act of
formal verification, the correctness of the model checker must be assumed in order to
trust the verification result. Given the importance of model checkers, it is essential to
verify them formally or at least develop ways to systematically improve their quality.

There are multiple candidate approaches. First, theorem proving can be used to
prove the correctness of model checking algorithms. It is, however, unpractical in ver-
ifying model checkers. The second candidate is push-button software verification tech-
nique like model checking. Still, completely verifying model checkers is beyond the ca-
pability of state-of-art model checking solutions. One important factor is their size. For
instance, NuSMV has about 180 KLOC and SPIN has more than 30 KLOC. The cur-
rent software verification tools can handle programs (often from constrained scenarios)
up to tens of KLOC and often require manual simplifications of the code under anal-
ysis [21]. Furthermore, state-of-art software verification (e.g., the SLAM project [1])
relies on building an abstract finite state model from a program using predicate abstrac-
tion, which is highly non-trivial and expensive. Given that model checkers are often
updated frequently, this approach is unpractical.

Contribution In this work, we take the challenge of systematically validating a real-
world model checker PAT [27]. PAT is a self-contained framework for system modeling,
simulation and verification. After years of development, PAT has more than 600 KLOC,
thousands of test cases as well as a list of discovered bugs. In order to systematically
improve PAT’s quality, we propose an approach which combines code contracts with
model checking techniques. The contracts serve a correctness specification and model
checking is used as an effective technique to search for contract violations as well as
violations of additional critical properties. Formally developing and validating a formal
verification system itself is the fundamental approach to increase user’s confidence in
the formal tools like model checkers. Though we cannot completely verify PAT, the
approach is effective and scalable.

Approach After evaluating our options, the following approach is developed. Firstly,
given that PAT is developed using C# in .NET, we make use of the code contracts
project [4] and systematically express coding assumptions in the source codes. The code
contracts take the form of object invariants, method precondition and post-conditions.
They are used to improve testing via runtime checking as well as enable static contract
verification. In our approach, the contracts serve as a partial correctness specification
of PAT. All test cases are then executed to make sure that code contract violation is
absent. We highlight that code contracts are not only used to capture coding assump-
tions on data structures or model checking algorithms but also assumptions on GUI.



Like any model checker, PAT supports many options to apply model checking in dif-
ferent settings, for instance, whether to use Depth-First-Search (for memory saving) or
Breadth-First-Search (for shortest counterexamples); whether to apply partial order re-
duction; whether to apply fairness consumption while verifying liveness properties; etc.
The options may conflict with each other. For instance, fairness is irrelevant when the
property is safety; partial order reduction is not sound when strong fairness is assumed.
The options are carefully controlled through complicated logic on user interfaces, which
can be specified by code contracts.

In order to achieve another level of assurance, we develop interface models (in PAT’s
input language) to capture all possible scenarios in which PAT or part of it is executed.
For instance, for any complicated underlying data structure, we develop an interface
model which subsumes all possible ways that PAT interacts it. Models can also be de-
veloped to capture all possible ways of users interacting with PAT through GUI. The
models allow us to systematically generate test cases and, better, apply model checking
techniques. PAT is firstly extended to support user defined C# library, i.e., an object or
method defined the C# library can be invoked as part of a model. This creates a way
of linking events of the interface models with actual codes of PAT. A transition of the
model is thus the result of executing certain code fragments of PAT. For instance, the
event of clicking certain button in the model for user behaviors generates an actual but-
ton clicking event. The models are then model checked using PAT - so that all possible
sequences of executing PAT codes are verified against the embedded code contracts
and, in addition, properties of entire system execution history. Notice that in order to
model checking the interface model for a data structure, because a data structure may
often take infinite different value, empirical studies are applied to discover reasonable
bounds for the values. Interface models can be developed and verified for any part of
PAT, which makes this approach compositional.

We remark that the interface models may contain concurrency, which makes model
checking meaningful as well as challenging. Firstly, PAT supports parallel model check-
ing [20], which makes use of multiple CPUs to explore different parts of a system
concurrently. As a result, the underlying data structure may be accessed concurrently.
Secondly, PAT supports multi-threaded graphic user interface and therefore multiple
simulators and model checkers can be opened simultaneously, which leads to concur-
rent executions. By model checking the interface models, contract violations which are
the result of unlikely event sequences can be discovered systematically. For instance,
bugs on GUI which are the result of a particular sequence of button clicking on multi-
ple PAT windows have been discovered. Even though this paper is focusing on model
checking the model checker itself, the approach of combining code contracts with the
model checker is much more general and this approach can be applicable for checking
many C# software systems.

2 PAT Background

PAT (Process Analysis Toolkit) [27] is developed as a self-contained environment to
support system modeling, simulation and verification. It has user friendly model edi-
tor, animated simulator as well as fully automated model checking facility. PAT offers



Fig. 1. PAT Architecture

a library of various model checking techniques for checking deadlock-freeness, lin-
ear temporal logics (with a variety of fairness), and refinement checking. Advanced
state reduction techniques have been implemented, e.g., partial order reduction, process
counter abstraction, parallel model checking. PAT has been used to model and verify a
variety of systems. Previously unknown bugs have been discovered [19].

As shown in Fig. 1, PAT adopts a layered design to support analysis of different do-
mains. For each supported domain (e.g., distributed systems, real-time systems, service
oriented computing and so on), a dedicated module is created in PAT, which identi-
fies the specialized language syntax, well-formness rules as well as formal operational
semantics. The operational semantics translates a model into LTS (Labeled Transition
Systems)3 at runtime. LTS serves as a shared implicitly internal representation of the
models, which can be automatically explored by the verification algorithms or used for
simulation. To perform model checking on LTSs, the number of states in the LTSs must
be finite. For systems with infinite states (e.g., with real time clocks or infinite number
of processes), abstraction techniques are needed. Example abstraction techniques which
have been realized include process counter abstraction, clock zone abstraction, environ-
ment abstraction, etc. Depending the property to verify, a proper verification algorithm
is invoked. The algorithm performs on-the-fly exploration of an LTS. If a counterexam-
ple is identified during the exploration, it can be animated in the simulator. This design
allows new modules to be easily plugged in and out, without recompiling the core sys-
tem. This design achieves extensible architecture as well as module encapsulation.

Notice that the library of model checking algorithms as well as the GUI are shared
by all modules. Their correctness are thus vital. The algorithms heavily reply on mul-
tiple highly complicated data structures, i.e., the one for system configuration; the one
for compact representation of the system transition relation; the one for constraints on
system clocks; etc. Not only the data structures must function correctly but also they
must function efficiently. They are highly optimized, which implies that they may not
be designed for rigorous system maintenance. For instance, having object orientation
and recursion may not be feasible. The logic for controlling GUI is highly nontrivial as
well. This is because the GUI controls different options for invoking the model check-

3 To be precise, it is a Markov Decision Process when probabilistic choices are involved.



ing algorithms. Different modules may employ different abstraction techniques which
conflict with certain group of model checking algorithms. For instance, over approxi-
mation of system graph conflicts with valid result for deadlock-freeness checking, i.e.,
an over approximated state graph is deadlock-free does not imply anything about the
ordinary state graph. In such a case, if an abstraction which results in over approxi-
mation (e.g., predicate abstraction) is detected, verification result for deadlock-freeness
checking must be modified properly.

PAT has been heavily tested with thousands of black-box test cases, and used daily
by research and industry users. Nonetheless, bugs are still reported from time to time.
Main reason for these bugs is that PAT is constantly under revision. As coding assump-
tions are often made in order to gain efficiency, code modification or function extension
in one part of PAT often leads to coding assumption breaking in other parts, which re-
sults in new bugs. Currently, PAT has more than 600 KLOC, more than 1300 classes, 6
modules and more than 10K builds. PAT has attracted more than 800 registered users
from more than 180 organizations. In summary, after years of development, PAT be-
comes a huge software package which requires systematically quality control.

3 Embedding Code Contracts

Code contracts [4] take the form of object invariants, preconditions, post-conditions and
assertions. In a systematic way, it offers programming by design. Code contracts can be
integrated into existing coding projects seamlessly, which makes them more attractive
than approaches like SPEC#. Contracts are validated at run-time4. In the PAT project,
coding assumptions are everywhere. One reason is that assumptions often make it pos-
sible to significantly simplify codes, which leads to faster model checking. Code con-
tracts are used to capture coding assumptions on operational language semantics, model
checking algorithms, underlying data structures, GUI, static model analysis functions,
etc. In the following, we illustrate how code contracts are embedded systematically in
PAT using two examples, one for a complex data structure which is essential to model
checking real-time systems and the other for a user interface. Embedding code con-
tracts is the first and the most essential step in our approach. They serve partially as a
correctness specification of PAT.

Example 1 (Contracts for the DBM Class). Practical systems which interacts with the
physical environment are often subject to quantitative timing constraints. For instance,
a pacemaker must react to an abnormal heart condition within a critical time frame.
Model checking real-time systems often involves manipulating constraints on multiple
real-valued clocks. A timing constraint in PAT is the conjunction of multiple simple
constraints. A simple constraint is of the form c ∼ d where c is a clock; d is a rational
number; ∼ is a binary operator like ≥, ≤, etc. Multiple simple constraints may conflict
with each other and thus make their conjunction unsatisfiable. For instance, the con-
junction of c1 ≥ 5 and c2 ≤ 1.5 is unsatisfiable if c2 is started within 3 seconds after
c1 is started (so that c1 − c2 ≥ 3). During system exploration, the constraints must be

4 Contracts supports static analysis as well, which is helpful but largely irrelevant to this work.



stored, updated and solved efficiently. In PAT, this is achieved by techniques based on
Difference Bound Matrix (DBM [9]).

Given n clocks c1, c2, · · · , cn , a DBM contains n + 1 rows, each of which contains
n + 1 elements. Let d i

j represent entry at i -th row and j -th column in the matrix. d i
j

represents the difference between clock ci and cj . A DBM represents the following
constraint: ∀ i : 0 . . n. ∀ j : 0 . . n. ci − cj ≤ d i

j where c0 is set to be 0 all the time.
The most important property of DBM is that there is a relatively efficient procedure to
compute the tightest bound on each clock difference, which can be used to tell whether
the constraint represented by the DBM is satisfiable or not. If the clocks are viewed as
vertices in a weighted graph and the clock difference as the label on the edge connecting
two clocks, the tightest clock difference is the shortest path between the respective ver-
tices. The Floyd-Warshall algorithm [11] thus can be used to compute the tightest clock
differences. A DBM which contains only tightest bounds is said to be in its canonical
form. Given a DBM in canonical form, checking whether the constraint is satisfiable or
not is as easy as checking if entry d0

0 is positive.
DBM is implemented as a stand alone class of 1.5 KLOC. It makes use of some

other simple data structures. Fig. 2 shows partially the signature of the DBM class, i.e.,
public methods and three relevant variables. Matrix is a two dimensional array storing
the matrix itself; IsCanonicalForm is boolean flag to indicate whether the matrix is in
its canonical form; Clocks maintains a list of active clocks. Sample code contracts are
presented and underlined in Fig. 2. The invariant (line 5 to 7) states that either the DBM
is not in its canonical form or if it is, then applying an alternative method for calculating
the tightest bounds (which is implemented as method isCF ()) makes no change.

Many of the methods require that the DBM must be in its canonical form before
their execution. One example is RemoveClocks which removes in-active clocks and
together with constraints on them. If the DBM is not in its canonical form, removing
clocks might weaken the constraint. For instance, if the constraint is c1 ≥ 3 and c2 ≤ 6
and c1 − c2 ≤ 1 (which implies c1 ≥ 5), removing c2 results in a weaker constraint
c1 ≥ 3. Fig. 2 shows how the pre-condition (line 16 and 17) as well as post-condition
is coded as contracts (line 18 and 19). The precondition states that the DBM must be
in its canonical form and the clocks to remove must be present, while the simplified
postcondition states that only the clocks in activeClocks remain and the DBM remains
in its canonical form. Notice that the postcondition is incomplete.

Efficiency is essential to any model checker. Keeping a DBM always in its canonical
form (by calling method GetCanonicalForm every time the matrix is modified by
AddClock , AddConstraint , etc.) is infeasible given that the Floyd-Warshall algorithm
is cubic in the number of clocks. Preferably, method GetCanonicalForm shall only be
invoked when necessary, i.e., in method IsSatisfiable. The pre-condition of the methods
thus must be ensured by invoking the methods in particular orders. The assumptions on
orders of method invocation can be referred as class interface contracts. To the best
of our knowledge, such contracts are not supported by the code contracts project. It is
supported, recently by the SPEC explorer project for model-based testing [3]. In the
next section, we show that we can build an interface model to capture class interface
contracts, and then not only generate test cases from the model but also verify the
models against meaningful properties. 2



public sealed class DBM {
1. private List〈List〈int〉〉Matrix ; //the matrix itself

2. private bool IsCanonicalForm = true; //a boolean flag

3. private List〈int〉Clocks; //a list of clocks

4. //Contract Invariant Method

5. protected void ObjectInvariant() {
6. Contract.Invariant(!IsCanonicalForm || (IsCanonicalForm && isCF()));

7. }
8. //methods

9. public void AddClock(byte cID) { · · ·} //add a new clock

10. public void ResetClock(byte cID){ · · ·} //reset an existing clock

11. private void GetCanonicalForm() { · · ·} //Floyd-Warshall algorithm

12. public void AddConstraint(byte cID, OperationType op, int constant){ · · ·}
13. public void Delay(){ · · ·} //let arbitrary time pass

14. public bool IsSatisfiable(){ · · ·} //check satisfiability

15. public DBM RemoveClocks(List〈byte〉 activeClocks) { //remove clocks

16. Contracts.Requires(IsCanonicalForm, “precon, failed.”);

17. Contracts.Requires(Clocks.containsAll(activeClocks), “precon. failed.”);

18. Contracts.Ensures(Matrix .Count == Clocks.Count && · · ·&&

19. IsCanonicalForm, “postcondition failed.”);

20. · · ·
21. }
22. · · ·
23.}

Fig. 2. DBM Contracts

Example 2 (Contracts for GUI). There are dozens of windows that users can interact
with PAT, e.g., a featured editor which has many advanced editing functions; a simula-
tor which allows user to perform different simulation functions; and a model checking
window which controls all options for applying model checking. Given that PAT sup-
ports a library of model checking algorithms as well as optimization techniques, there
could be a large combinations of options to choose from when a specific model check-
ing problem is presented. For instance, whether it should be LTL model checking or
refinement checking; or whether to apply nested DFS or SCC-based search for LTL
model checking; or whether the LTL model checking should be based on generating
Büchi automata. There are more than 5 options for generating Büchi automata from
LTL alone [12]! The options are all controlled by enabling/disabling GUI components,
which as a result has a complicated and error-prone control logic. The constraints are
naturally captured using object invariants associated with the GUI components.

Fig. 3 illustrates the idea with one invariant associated with one checkbox in the
model checking window. The checkbox, once checked, requires the model checking
algorithm to produce one shortest witness trace (often as a counterexample). If the se-
lected property is a safety property (e.g., a reachability condition, deadlock-freeness,



1. protected void ObjectInvariant() {
2. Contract.Invariant(checkBox ShortestTrace Invariant());

3. · · · ;
4. }
5. private bool checkBox ShortestTrace Invariant() {
6. if (Label SelectedAssertion ! = null)

8. if ((AssertionType)cb item.Tag == AssertionType.Liveness) {
9. return !CheckBox ShortestTrace.Checked

&& !CheckBox ShortestTrace.Enabled;

10. } else { return CheckBox ShortestTrace.Enabled; }
14. return true;

15.}

Fig. 3. GUI Contracts

refinement relationship), breadth-first-search based reachability analysis or refinement
checking is applied. If the selected property is a liveness property, the checkbox must be
unchecked and disabled. This is because a counterexample to a liveness property must
be an infinite trace (which forms a loop in finite state systems). Instead, other GUI com-
ponents like a dropdown list for fairness options, which only makes sense with liveness
properties, must be enabled for selection.

In this example, the invariant states that if an assertion has been selected (from a ta-
ble, which triggers update of a label Label SelectedAssertion to reflect user’s choice),
and the selected property is a liveness property, then the checkbox must be disabled.
Notice that this invariant is relaxed during the process of GUI updating. 2

The contracts serve partly as a specification of the program. Once the code contracts
are embedded, we firstly re-run all the test cases checking for contract violations. Our
experience suggests that it is indeed possible that a test case is successful (i.e., causes
no exception and produces correct output) but triggers violation of contracts during
execution. One of the reasons is that the pre-condition may be irrelevant to the cor-
rectness of the output in certain cases. Detecting such cases are nevertheless useful as
it helps to either find bugs or refine the specification (e.g., weakening the contract for
pre-condition).

Because PAT is frequently updated, relevant code contracts must be updated as well.
Coding assumptions may often change when a system evolves. Coding them explicitly
as part of the system allows us to quickly detect bugs which are due to changing coding
assumptions (refer to an example in Section 5).

4 Model Checking PAT

While code contracts are good at capturing intra-class coding assumptions, they are not
good at capturing class level or even inter-class coding assumptions. For instance, the
DBM class in PAT is designed to function correctly only under the assumption that its
methods shall only be invoked in certain orders. In general, making such assumptions
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Fig. 4. DBM Model

may not be reasonable. It is, however, common to model checkers as the assumptions
may often be useful for the sake of efficiency. To test classes with implicit assumptions,
all meaningful test cases must obey the assumptions. Otherwise, contract violation or
even exceptions that are irrelevant to the correctness of the system may be reported. An
interface model thus can capture all class-level or inter-class coding assumptions.

Interface Modeling In the following, we develop interface models to capture all valid
ways of interacting with certain components of PAT or PAT as a whole. We illustrate
the idea using two interface models.

Example 3 (Interface Model for DBM). Fig. 4 presents an interface model for the DBM
class. The model takes the form of a finite state machine, possibly with auxiliary vari-
ables. The transitions are labeled with public methods of the DBM class. The model in
Fig. 4 captures multiple class level assumptions.

For instance, method RemoveClocks is always be invoked after IsSatisfiable (and
a method for collecting all active clocks defined in a separate class, which is omitted
for the sake of space). Method IsSatisfiable invokes GetCanonicalForm internally
and therefore it is unnecessary in method RemoveClocks to apply the Floyd-Warshall
algorithm or even check whether variable IsCanonocal is true or not - it is always
true. Similarly, this is also the case for ResetClock . Notice that this model is open to
environmental inputs on the method parameters. 2

Example 4 (Interface Model for GUI). The following presents an interface model for
any user interface class. Let com be any GUI component (e.g.,any button), which users
can interact with.

[com.Visible && com.Enabled]com.Click()

The model states that as long as com is visible and enabled, users can interact with
it. Informally speaking, it means that no coding assumptions shall be placed upon the
users and all user behaviors must be properly handled! Notice that this model can be
generated automatically from the signature of any GUI class.

Users can interact with multiple user interfaces simultaneously. Therefore, the in-
terface model for PAT contains the parallel composition of multiple interface models.
Furthermore, the interface models may communicate with each other. 2

Once we have the model, the task of verifying this part of the system breaks into two
sub-tasks. Firstly, we need to guarantee that in the real system, interactions with the ob-
jects (of the class or classes) are permitted by the model. In this project, this is achieved



with the expert knowledge of the PAT developers. In general, techniques like program
slicing [29] may help, or a run-time monitor program, much like the monitor for code
contracts, can be used to detect violation of class interface violation. Secondly, we
need to guarantee that the system functions correctly given any behavior allowed by
the model. One way of checking that is to systematically generate test cases from the
models and execute the test cases while looking for exceptions or code contracts vio-
lation [3]. Alternatively, we can model checking the models! By model checking, code
contracts which are related to the entire system execution history (e.g., liveness proper-
ties) can be stated as a property and then formally verified. The models can be captured
as PAT models and, hence, we can model check the models using PAT itself!

Supporting Runtime C# In order to verify actual source codes, firstly we extend PAT
to support dynamic loading of C# code inside a model. Our approach is to compile a
C# program into a dynamic-link library (DLL) and use it during system exploration
via reflection. By following pre-defined API, any C# class can be invoked dynamically
in an interface model in PAT. Furthermore, the C# class may contain code contracts.
PAT provides a contracts compilation option to automatically compile the code using
contracts rewriter compiler. Any contract violation or run-time exception is presented as
a runtime error to the users during model checking. In other words, ordinary PAT codes,
with coding assumptions, can now become part of a PAT model with little modification.

Checking PAT The following approach is adopted to model check PAT. Firstly, an in-
terface model of a PAT component is written as a PAT model; the relevant C# source
codes, with code contracts embedded, are compiled into an external DLL and then PAT
is used to enumerate all possible behaviors of the model. If any event sequence triggers
a violation of code contracts or exceptions, then a possible bug is detected. Because it
is the actual code which is being executed during model checking, a discovered bug
corresponds to an actual bug.

Like testing, this approach is incremental - a self-contained class can be firstly mod-
eled and checked and then classes which rely on it can be modeled and checked. If the
states searching in the model checking is viewed as simply a systematic way of gener-
ating test cases, this approach is closely related to work on model-based testing. It is,
however, more than testing. For model checking, meaningful properties, which are im-
plied from the correctness of system and cannot be validated by testing, can be verified.
In general, this approach is as challenging as verification software. Many challenges
like infinite data value and asynchronous thread execution must be dealt with. In the
following, we use the two examples to illustrate relevant issues and our remedies.

Example 5 (Model Checking the DBM Class). A model may be open to environmental
inputs. For instance, given the model for DBM class presented in Fig. 4, a clock must be
supplied when an event linked to method AddClock is invoked; or a simple constraint
must be supplied when invoking method AddConstraint . In order to model check the
model, it must be closed by supplying an environment. In general, there are infinite
possible clocks or constraints. This problem is solved by applying empirical studies to
discover reasonable bounds for the values.

Given the DBM model, we need to fix a finite set of clocks (so that x ,m,n in Fig. 4
have finite values) as well as a finite set of constants for forming clock constraints



#DBM #Clocks #Constants Reachability/deadlock Every clock is bounded
#States Time (s) #States Time (s)

1 1 6 7375 1.55 63641 31.4
1 1 7 12947 3.12 127362 74.1
1 1 8 21235 5.88 234254 157
1 1 9 33007 10.3 403274 310
1 2 6 473328 168 5918993 5036
1 2 7 1104560 449 15783113 15831
1 3 3 222903 64.1 2016851 1264
1 3 4 1532935 572 17659797 15431
2 1 3 511225 172 ? ?

Table 1. Experiments: Reachability/deadlock-freeness

(so that y has finite values). It is discovered that for most of the real-world real-time
systems verified by PAT, the number of clocks are often limited to a small number
(e.g., 10 or less). This is not surprising as PAT is optimized to minimize the number of
clocks [28] - recall that Floyd-Warshall algorithm is cubic in the number of clocks. PAT
only introduces a clock whenever necessary; a clock is shared as much as possible and
a clock is removed as soon as possible. Furthermore, there are only a relatively small
number of constants for forming clock constraints in most cases. Once we fix the clocks
and constants, we have a finite model which is subject to model checking.

Because PAT supports parallel model checking, any data structure used by the model
checking algorithms may be accessed in parallel by multiple threads. This may create
problems like race condition. Even if the objects are not shared by the threads, static
variables or references which are accessed by the objects directly or indirectly are al-
ways shared. Static variables allow quick access of information. They, however, must
been properly locked and unlocked if accessed concurrently. We thus extend the model
to capture concurrent accessing of data objects, e.g., the DBM, by composing multiple
copies of the interface models in parallel. Furthermore, the exact locking mechanism
used in PAT has been modeled and reflected in the model as well. Different properties
can be formulated and model checked against the interface models. In general, a prop-
erty is necessary condition of the correctness of the PAT. By verifying that the properties
are true, we gain confidence in the system’s correctness.

In the following, we illustrate three important properties of DBM and use PAT to
model check the respective model. Firstly, an unsatisfiable reachability condition is
model checked, which triggers exploration of the complete state space. This allows us
to verify that the embedded code contracts are satisfied in all system configurations. In
addition, we verify that the DBM model is deadlock-free. This is particularly interest-
ing with more than one DBM objects - it should not be that two DBM objects are both
waiting to access a shared object. The experiment results are summarized in column
“Reachability/deadlock” of Table 1. The results are obtained on a PC with Intel Xeon
4-Core CPU*2, 32 GB memory, with fixed number of DBM objects, number of clocks
and number of constants. This property is verified using an on-the-fly reachability anal-
ysis algorithm in PAT. After correcting serval bugs, the result is eventually all false, as



#DBM #Clocks #Constants #States Result Fairness Time (s)
1 2 3 58234 false no fair 26.7
1 3 3 1445821 false no fair 2229
1 1 3 1676 false weak fair 0.575
1 2 3 12372 false weak fair 26.7
1 3 3 1445821 false weak fair 2223
1 1 3 1676 false strong fair 0.643
1 2 3 58234 false strong fair 29.7
1 3 3 1445821 false strong fair 2348
1 1 3 5020 true global fair 2.19
1 2 3 148860 true global fair 353
1 3 3 3462673 true global fair 244733

Table 2. Experiment C: Every clock always eventually expires

expected. Secondly, a property stating that every clock is bounded is verified to confirm
a fundamental theorem that every clock can take only finite different ranges (which is
known as zones [27]). The theorem is one of two necessary conditions to guarantee
that model checking of real-time systems in PAT is always terminating. It is an impor-
tant property of DBM which can be proved from the formal semantics of the real-time
system modeling language supported in PAT [27]. The experiment results are summa-
rized in column “Every clock is bounded” of Table 1, where a question mark means
out of memory. Lastly, Table 2 summarizes our experiments on verifying the other nec-
essary condition, which too can be proved from the semantics model. Intuitively, the
property states that every clock always eventually expires. We highlight this is a live-
ness property which cannot be validated by testing. It is captured as an LTL formula
and verified using the automata-based verification algorithm in PAT. Furthermore, this
property is valid only under certain fairness constraint [27], which intuitively says that
there are only finitely many system actions within one time unit. Notice that verifying
LTL properties with strong fairness is a unique feature of PAT.

If a counterexample is generated, a unit test case is generated from the counterexam-
ple straightforwardly (since the counterexample is a sequence of method calls with input
values) so as to locate the bug. As expected, the experiments show that model check-
ing suffers from the state space explosion problem, e.g., parallel execution of multiple
DBM objects results in huge number of system configurations. Furthermore, because of
the bounds, only part of all possible behaviors are examined. Nonetheless, large number
of system executions are examined systematically (with blind cases) against complex
properties, which greatly increase our confidence in system correctness. Furthermore,
because of the empirical studies, we focus on common cases and therefore reduce the
probability of producing wrong results in common practice of PAT. 2

Example 6 (Model Checking the GUI). In order to model check PAT as a whole, we
build a model to capture all possible ways of users interacting with PAT. The model is
composed of each and every user interface model in the order which users can interact
with them. Each event in the model is linked to an actual GUI event which triggers



execution of PAT. Model checking is then applied to enumerate all event sequences and
validate them against the embedded contracts, including those which are hard to create
in practice. For instance, the following scenario is found to lead to contract violation. A
user firstly clicks one button to initiate a thread for state graph generation in one simu-
lation window, which triggers an attempt to lock shared (static) variables. The user then
clicks the same button in another simulation window. If two models happen to share
common process definitions and two models are not identical, then the first simulation
window may behave wrongly because an indirectly accessed variable is changed when
the user clicks the second button.

The GUI model essentially creates a “robot” which controls PAT, which allows users
to manipulate PAT arbitrarily. We can then easily create and verify complicated prop-
erties which may require multiple execution of multiple model checking algorithms.
For instance, one interesting theory is that if a model satisfies a property under weak
fairness, then it must satisfy the property under stronger fairness constraints like strong
fairness or strong global fairness [27]; if a counterexample is produced when a property
is verified under strong fairness, then a counterexample must be produced when the
property is verified under weak fairness. In order to check this is indeed true, a simple
GUI model is created to load one built-in case study at a time, perform model checking
under weak fairness, perform model checking under strong fairness and then compare
whether the results are as expected. Many theorems implied from the correctness of
PAT can be checked in this way.

One difficulty in checking GUI models is that different GUI components may run
as different threads. Multiple threads may execute simultaneously. For instance, one oc-
currence of the event for clicking the verification button triggers the creation of a thread
for model checking. Before the model checking completes, the user can click another
button to trigger another thread. The threads are scheduled by the system scheduler.
Different executing of the same event sequence of the model may result in different
system configuration due to different run-time scheduling. This is a known problem to
GUI testing or testing of concurrent programs in general. A common remedy is to run
a test case sufficient number of times (or with inserted random thread sleep) so as to
exhaust all possible scheduling. Notice that because the model checking of the GUI
model largely depends on the size of the input model, we omit the statistics.

5 Discussion

In this section, we discuss the limitation of our approach and related works.

Limitations Firstly, we cannot completely verify PAT. Compromises have been made in
order to deliver a useful technique handling PAT. For instance, the code contracts only
capture part of the correctness specification; we can only verify part of the behaviors
of an interface model, etc. Secondly, when model checking a component of the sys-
tem, assumptions on the rest of the system are often necessary. For instance, the input
to method RemoveClocks is assumed to be a set of clocks, which assumes that the
method for obtaining the clocks removes any redundancy. Systematically verifying the
assumptions are highly non-trivial. This is a known problem which has been discussed



in [6]. Lastly, generating properties to be model checked needs expert knowledge on
the underlying theories of the system.

The infamous state-space explosion problem still exists. For instance, given a DBM
object with N clocks, there are 2N different inputs to method RemoveClocks . This
problem is known to be best solved by methods like data abstraction [2], which currently
remains as one of our future work. But still, model checking remains useful even if only
part of the system behaviors are explored. It explores all possible behaviors of a model,
including corner cases which are unlikely for real-world applications. Compared to
model-based testing, the additional properties are often useful in gaining confidence
of the implementation or the theorems which lead to the properties. Our experience
is that given all model checking algorithms have multiple theorems behind (e.g., for
soundness, completeness and termination), many properties can be deduced naturally.

Related Work To our best of knowledge, this work is the first attempt on using advanced
system analysis techniques (e.g., code contracts and model checking) to systematically
validate a model checker. Our approach is related to numerous work on software verifi-
cation, testing and debugging.

Our approach relies on programming by contracts. In particular, the code contracts
project essentially makes it possible [4]. There are other methods for embedding spec-
ification into programs. Noticeable examples are SPEC# for C# and JML for Java. We
remark that as long as there is a way of run-time checking the specification, any method
would work in our approach. We choose code project simply because it is the option
which requires minimum modification to our programs.

Our approach can be categorized as combining programming by contracts with
model checking. It is closed related to work on combining programming by contracts
with model-based testing. The tool SPEC explorer supports model-based testing in ad-
dition to contract embedding [3]. Similar to our approach, SPEC explorer uses a model
checker so it can enumerate all possible sequences of method invocations that do not vi-
olate precondition or invariant of the system’s contracts. Furthermore, users are allowed
to specify a set of testing properties, which plays a similar role as our interface model.
Our approach is different from model-based testing [16] in the following ways. Firstly,
we perform model checking instead of model-based testing. The difference is that be-
sides exception-freeness and no violation of contracts, additional properties regarding
to interface models can be verified. The properties may not be validated by testing. The
properties are often implied from the underlying theorems. By model checking them,
not only we gain confidence on PAT but also the theorems. In addition, our work targets
at validating a model checker. We use the model checker to check the interface models
as a way to verify itself.

This work is related to work on software verification [1, 26]. Apart from very con-
strained scenarios (e.g., verification of device drivers), the software verification tools
are not widely used in general software development process. The main reason is that
they do not scale. For instance, the SLAM project is based on data abstraction, which
is a complicated and computationally expensive process. In contrast, our approach is
scalable. Even partial code contracts are useful. Like testing, our approach is composi-
tional in the sense that each time part of PAT can be checked and then their composition.
Furthermore, it is compatible with rapidly evolving programs. Once a few relevant con-



tracts need to be updated every time system evolves. As a reasonable price to pay, we
can not verify PAT altogether. Nonetheless, our approach helps to significantly improve
stability and reliability.

The work is related to work on specification and verification of object interfaces [15,
5]. The main difference is that we combine code contracts. This work is related to work
on combining testing with model checking [13, 18, 23]. In [18], a tool named UnitCheck
is present which allows creation, execution and evaluation of testing cases using the
Java Pathfinder model checker. Unlike [18] where models are automatically extracted
from programs, interface models are provided by PAT developers as an additional code
contracts. In addition, this work is remotely related to work on testing of concurrent
software [24, 25], GUI testing and testing of evolving programs.

6 Conclusion

Model checkers are specialized software whose correctness are vital. In this work, we
propose the combination of code contracts and model checking as a way to systemat-
ically improve their quality. The combination is effective in combating the complexity
of software. Three levels of system specification are handled using the proposed ap-
proach. First is the specification of a method or a single class, captured in the form
of pre/post-condition or class invariants and validated using run-time checking facility
from the code contract project. Second is safety properties of a single class or a group
of coupled classes, captured using interface models. It can be verified by model-based
testing or reachability analysis. Lastly, specification of the entire system execution are
verified against the models by model checking techniques.

We experiment the approach in checking the correctness of the PAT model checker.
Through the experiments, we discovered multiple bugs, and gained more confidence of
PAT. One of our future is to combine data abstraction (e.g., predicate abstraction) in
model checking the interface models.
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