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Abstract

Model checking provides us a way to automatically verify hardware and software models
specified using precise formal languages, whereas the goal of planning is to produce a
sequence of actions that leads from the initial state to the desired goal states. Recently,
a number of papers have reported that model checkers can also be used to solve AI
planning problems. In this thesis, we investigate the feasibility of using different model
checking tools and techniques for solving classic planning problems. To achieve this, we
carried out a number of experiments on different planning domains in order to compare
the performance and capabilities of various tools. Our experimental results indicate that
the performance of some model checkers is comparable to that of state-of-the-art planners
for certain categories of problems. In addition, a case study on a public transportation
management system has been developed to demonstrate the idea of using model checking
as planning service. In particular, a new planning module with specifically designed
searching algorithm is implemented on top of the established model checking framework,
Process Analysis Toolkit (PAT), to serve as a planning solution provider for upper layer
applications.

Subject Descriptors:
D.2.4 Software/Program Verification
I.1.2 Algorithms
I.2.8 Problem Solving, Control Methods, and Search

Keywords:
Model checking, deterministic planning, algorithm, planning service

Implementation Software and Hardware:
PAT 3.3.0, NuSMV 2.5.2, Spin 6.0.1, Metric-FF, SatPlan2006, Windows XP SP3,

Ubuntu 10.04, Microsoft Visual Studio 2008, 32-bit Intel PC
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Chapter 1

Introduction

Model checking is traditionally used as an automatic technique for verifying critical soft-

ware and hardware systems. The system model is constructed by describing all dynamic

behaviours using precise formal model description languages. The model is then ex-

haustively explored and checked by model checkers to ensure that desired properties are

guaranteed in all cases. Recently, several papers show that model checking can also be

applied to AI planning domain. Some experiment results indicate that the performance

of model checkers are comparable to that of some planners and the performance of model

checking can even be further improved by exploiting domain-specific knowledge.

Another source of interest for this topic is that with the capability of solving plan-

ning problems, model checkers can be used as an underlying service provider to provide

planning solutions for upper layer applications. Newly developed model checkers usually

have more sophisticated techniques for handling large state spaces, which is critical in

the real world setting. Therefore, using model checking as service should work well for

real world planning problems, such as trip planning, scheduling, etc.

1.1 Two Problems

In this thesis, we consider two separate problems, namely model checking and planning.

They are both important techniques used in system designs. For example, one can obtain

a workable design under the environment and resource constraints via planning and verify

that the required properties are all satisfied by model checking. Our goal is to find a way
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of connecting them together such that the tools that support model checking can also be

used to find solutions for planning problems.

1.1.1 Model Checking

Model checking is an automatic technique for verifying models of software or hardware

systems against their specification (Peled et al., 2009). The system under consideration

is formally specified using suitable model description language that describes the be-

haviours of each component, and this specification is commonly referred to as a system

model. In general, what we care the most about the system model is whether some safety

properties, usually described in temporal logics such as Linear Temporal Logic (LTL) and

Computation Tree Logic (CTL), are satisfied. A safety property can be casually under-

stood as “something bad never happens”. Given a system model M, an initial state s ,

and a formula ϕ which specifies the safety property, the model checking process can be

viewed as computing an answer to the question of whether M, s |= ϕ holds. Invariant

which can be expressed using LTL formula (G¬p) is an example of safety properties.

Typically, a counterexample is given by model checkers when the safety property is

found to be violated. A counterexample is a finite path π that leads to the “bad thing”

from the initial state s . Some model checkers are able to provide shortest counterexam-

ples. A shortest counterexample is defined as the minimal size path π∗ that leads to a

state s ′ where the safety property is violated.

1.1.2 Planning

In this thesis, we only consider classical planning problems which have only deterministic

actions and assume complete information about the planning states. Essentially following

(Russell and Norvig, 2010), we define a classical planning problem to be a three-tuple

(S0,G ,A) where S0 represents the initial state, G represents the set of goal states and A

represents a finite set of deterministic actions. Each state is represented as a conjunction

of fluents that are ground, functionless atoms. Each action a ∈ A itself is described by

a tuple (pre(a), add(a), del(a)) where pre(a) represents the precondition to be satisfied

before the action can be executed, add(a) and del(a) represent the positive and negative
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effects after the action is executed. Therefore the state resulting from executing action a

in state s can be expressed as Result(s , a) = (s − del(a))
⋃

add(a). Finally, the goal G

is a set of planning states satisfying a propositional property specifying the final states

of a plan. Therefore, a plan p is a finite sequence of actions 〈a0, a1, ..., an〉, such that the

execution of p yields a state s ∈ G .

The Planning Domain Definition Language (PDDL) (McDermott, 1998) is currently

the standard language for representing classical planning problems and is widely used by

many planners. Actions are grouped as a set of action schemas in PDDL. The schema

consists of the action name, a list of all the variables used in the schema, a precondition

and an effect.

(:action TakeBus

:parameters (?p ?b ?from ?to)

:precondition (and At(b,from) At(p,from)

Bus(b) Passenger(p) Stop(from) Stop(to))

:effect (and

(not At(p,from) At(b,from)) At(b,to) At(p,to)))

Figure 1.1: PDDL action schema for taking bus

The PDDL code in Figure 1.1 is an example of an action schema for taking a bus from

a bus stop from to another bus stop to. The precondition for the action schema is that

both the bus and the passenger are at from and the effect is that they are transferred

to a new location to. In the later extensions of PDDL, such as PDDL 2.1 where typing

system is added, the type predicates like Bus(b) is not needed anymore. PDDL 2.1 also

allows for optimization criteria to be specified. The optimization criterion, also called

plan metric, consists of numerical expressions to be maximized or minimized.

1.2 Our Solution

Clearly, a classical planning problem can be easily converted into a model checking prob-

lem. The fact that this approach is feasible is supported by (Giunchiglia and Traverso,
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2000), which state that, planning should be done by semantically checking the truth of a

formula, planning as model checking is conceptually similar to planning as propositional

satisfiability. Given a planning problem (S0,G ,A), one can construct a system model

M by translating every action a ∈ A into a corresponding state transition function first.

The initial state S0 can also be mapped to the initial state s of model M by assigning

value to each variable accordingly. Then for the goal state G , which can be expressed

using a propositional formula ϕ, we can construct a safety property G¬ϕ that requires

the formula ϕ never to hold, such that the model checker is able to search for a coun-

terexample path that leads to a state where ϕ holds. The resulting plan is optimal in

terms of make-span when the counterexample path is the shortest. We shall discuss the

detailed translation process in Chapter 4.

1.3 Thesis Overview

This thesis is divided into two parts, corresponding to the two separate research problems

that we considered: planning via model checking and PAT as planning service. Part I

consists of a thorough presentation and evaluation of our approach of using model checker

to find solutions for classical AI planning problems. We start in Chapter 2 by giving

detailed background information on the topic, including the related works have been done

and the descriptions of various tools we used for the experiments. Chapter 3 presents

the methodologies and results of the experiments as well as the analysis. Taking PAT as

an example, we then introduce the process of translating PDDL domain descriptions to

system models that are recognized by model checkers in Chapter 4.

In Part II, we start from a case study of a transportation management system in

Chapter 5. Formal methods are extensively applied in the developing process of the

system including planning via model checking. A new PAT model checking module is de-

veloped to support the system as a planning service. Different model checking algorithms

designed for the module are compared and analysed in Chapter 6. Finally, we conclude

the discussion in Chapter 7 by summarizing the contributions and observations we made.
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Part I

Planning via Model Checking
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Chapter 2

Background

We start this chapter by first looking at some related research that has been done on

this topic. Readers already familiar with model checking and planning may still find it

useful, as new issues arise when we put together and compare the two problems. This

chapter also introduces terminology and techniques that will be used extensively in later

chapters.

2.1 Related Work

In a research paper (Berardi and Giacomo, 2000), the authors compared the performance

of two well-known model checkers, Spin and SMV, with some state-of-the-art planners

(IPP (Koehler et al., 1997), which was one of the best performers in AIPS98 competition;

FF (Hoffmann and Nebel, 2001), which was among the best performers in AIPS00; and

TLPLAN (Bacchus et al., 2000), which accepts temporally extended goals used as control

knowledge to prune the search space). The experiment results suggest that the two model

checkers are comparable to IPP in terms of performance, instead that FF performs much

better than both. In other words, Spin and SMV used as planners are competitive with

the best performing planners at the AIPS98 competition. And there is still large space

for improvement in solving planning problems using model checkers. Spin can indeed

improve its performance by exploiting additional control knowledge, which consists of

suitable constraints on state transitions and thus can be used to reduce the state space

explored during searching.
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In another research paper (Hörne and van der Poll, 2008), the authors investigated

the feasibility of using two different model checking techniques for solving a number of

classical AI planning problems. The two model checkers use different reasoning tech-

niques. ProB is based on mathematical set theory and first-order logic. It is specifically

designed for the verification of program specifications written in the B specification lan-

guage. The other model checker used is NuSMV, an extension of the symbolic model

checker SMV. With NuSMV the problem is represented using Binary Decision Diagrams

(BDDs) (Bryant, 1992). For both model checkers, the state space is explored exhaus-

tively: if there exists a plan, it will be found, and they always terminate. However,

they do not provide all possible plans but terminate after one is found, if it exists. The

experiment results suggest that several options were found suitable to solve the type of

planning problems considered in the paper. These are the Constraint Logic Program-

ming (CLP) based ProB, running in either temporal model checking mode or performing

a breadth-first search, and the tableaux-based NuSMV using an invariant.

2.2 PAT

Process Analysis Toolkit (PAT) (Sun et al., 2009) is a self-contained framework for spec-

ification, simulation and verification of concurrent and real-time systems developed in

School of Computing, National University of Singapore. It supports automated refine-

ment checking, model checking of LTL extended with events and various ways of system

simulations. PAT is designed to verify event-based compositional models specified using

CSP#. CSP# is an extension to Communicating Sequential Process (CSP) (Hoare, 1978)

by embedding data operations. It combines high-level compositional operators from pro-

cess algebra with program-like codes, which makes the language much more expressive.

One of the unique features of PAT is that it allows users to define static functions

and data types as C# libraries. These user defined C# libraries are built as DLL files

and are loaded during execution. This makes up for the common deficiencies of model

checkers on complex data operations and data types. For instance, priority queue and

set can be implemented to meet the need of models that deal with special algorithms.

PAT is designed as an flexible and modularized framework. It allows users to build
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customized model checking modules easily. The language syntax, semantics, model check-

ing algorithms, reduction techniques, and abstraction techniques can all be tailored for a

specific domain. We shall explore this feature later in Chapter 6 to customize searching

algorithms for planning purpose. PAT also has a more user-friendly user interface both

for verification and simulation compared with the tools that we will look at in the later

sections.

2.3 NuSMV

NuSMV is an extension of the symbolic model checker SMV (McMillan, 1992) developed

at the Carnegie Mellon University known as CMU SMV. NuSMV is written in ANSI C

and is a joint project between the Embedded Systems Unit in the Center for Information

Technology at FBK-IRST, the Model Checking group at Carnegie Mellon University, the

Mechanized Reasoning Group at University of Genova and the Mechanized Reasoning

Group at University of Trento. The latest version NuSMV2 is distributed under an

OpenSource license (Cavada et al., 2005).

Like CMU SMV, NuSMV uses the CUDD-based BDD package, a state-of-the-art BDD

package developed at Colorado University. During model construction, NuSMV builds

a clusterised BDD-based Finite State Machine (FSM) using the transition relation. A

model is described in terms of a hierarchy of modules. Module instantiations are seman-

tically similar to call-by-reference. NuSMV allows for Boolean, integer and enumerated

types for state variables (Cavada et al., 2005). However, array indices in NuSMV must

be statically evaluated to integer constants. This constraint largely limits the expres-

siveness of the model. The modelling for common operations on a list of state variables

is sometimes cumbersome in NuSMV. In general, such operations have to be manually

coded by enumerating all the possible cases.

The descriptions of transition relations between the current and next state pairs can

be done by either using the ASSIGN constraint where a system of equations labelled

as next(identifier):=expression describing how the FSM evolves over time, or the

TRANS constraint (Cavada et al., 2005). Specifications can be expressed in both CTL and

LTL. NuSMV supports several kinds of model checking modes, namely CTL checking,
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LTL checking, invariant checking and bounded model checking. We will compare the

performance of using different model checking modes for planning in Chapter 3.

2.4 Spin

Spin is an established explicit state model checker developed at Bell Labs in the original

Unix group of the Computing Sciences Research Center, starting in 1980. Spin models

are described in a modelling language called “Promela” (Process Meta Language). The

language allows for the dynamic creation of concurrent processes. Communication via

message channels can be defined to be synchronous or asynchronous (Holzmann, 2003).

Promela loosely follows CSP and hence our models in CSP# can be converted to it with

minimal efforts. Guarded expressions are well supported, so that preconditions for actions

can be easily enforced in the model. Promela also allows C-style macro definitions, which

reduces the code length and facilitates the generalization of the model.

Spin has a number of runtime options for simulation as well as verification that can

be explored. The maximum search depth can be adjusted according to the size of the

model. Spin also allows users to prune the search space using “never-claims” which are

equivalent to safety properties. With this method it becomes possible to verify quickly

whether a given safety property holds in the context of the model, even when a complete

verification is considered to be infeasible (Holzmann, 2003). After verification is finished,

Spin is able to perform a simulation guided by the error trail. In simulation mode,

step-by-step display of the counterexample trace is better supported by its user interface

compared with that of NuSMV.

The specifications of properties can also be written in LTL and Spin will translate the

formulas into “never-claims” and perform the verification. However, the counterexamples

produced by Spin are not guaranteed to be in the minimum size, so we are not able to

produce shortest plans using Spin.
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2.5 SatPlan

SatPlan is an award winning planner for optimal planning created by Prof. Henry Kautz,

Dr. Jörg Hoffmann and Shane Neph. SatPlan2004 takes the first place for optimal de-

terministic planning at the International Planning Competition at the 14th International

Conference on Automated Planning & Scheduling. SatPlan accepts the STRIPS subset

of PDDL and finds plans with the shortest make-span. It encodes the planning problem

into a SAT formulation with length k and check the satisfiability using a SAT solver. If

the searching times out, then k is increased by one and the process is repeated (Kautz

et al., 2006).

In SatPlan, the optimality of plan is restricted to its length or make-span. However,

in many cases, especially real life applications, the length of the solution is not the only

criterion to be considered. The quality of the plan also depends on other factors. For

instance, the quality of the suggested routes produced by a route planning system should

be judged by the users’ preferences, the total distance of the trip, the total cost of time

and money, etc. This kind of problems are often solved by adding non-negative cost to

actions, and the goal becomes to find a plan with the minimum total action cost.

2.6 Metric-FF

Metric-FF (Hoffmann, 2002) is a domain independent planning system developed by Dr.

Jörg Hoffmann. It is an extension of FF that supports numerical plan metrics. The system

has participated in the numerical domains of the 3rd International Planning Competition,

demonstrating very competitive performance. Two input files, namely the domain file

and problem file are needed to run Metric-FF. Metric-FF accepts domain and problem

specifications written in PDDL 2.1 level 2. As mentioned, PDDL 2.1 allows numerical

plan metrics. Figure 2.1 shows an example of plan metrics used in domain descriptions.
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(:action TakeBus

:parameters (?p - passenger ?b - bus ?from - stop ?to - stop)

:precondition (and (at ?x south) (at ?y south))

:effect (and

(not (at ?p from)) (not (at ?b from)) (at ?p to) (at ?b to)

(increase (time-cost) 10) (increase (money-cost) 2))))

Figure 2.1: PDDL 2.1 action schema for taking bus with plan metrics

Now the parameters have their own types, specified right behind the variable identi-

fiers. We also add in updates of plan metrics time-cost and money-cost within the effect

statement. When the action TakeBus is executed, a time cost of 10 and a money cost of

2 will be incurred. Optimization criteria can be identified inside the problem file, with

the statement (: metric minimize(cost)) that means the value of the state variable cost

should be minimized. Note that the cost here can also be a linear combination of several

variables. We are able to modify the two searching parameters g and h to assign weights

to plan metrics optimization and heuristic functions respectively. By increasing the value

of g, the system will assign a higher priority to the minimization of the given plan metrics,

despite that the returned solutions are not guaranteed optimal.
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Chapter 3

Experimental Results

In this Chapter, we compare the performance of PAT (3.3.0 academic version), NuSMV

(pre-compiled version 2.5.2), Spin (pre-compiled version 6.0.1) on solving two classical

planning problems: the bridge crossing problem and the sliding game problem. Sat-

Plan2006 and Metric-FF are also used as benchmarks in the experiments. The two

problems selected can be regarded as puzzle solving problems and the optimal solutions

are not trivial. The descriptions of the problems are as following.

• The bridge crossing problem: Four wounded soldiers find themselves behind enemy

lines and try to flee to their home land. The enemy is chasing them and in the

middle of the night, they arrive at a bridge that spans a river which is the border

between the two countries at war. The bridge has been damaged and can only

carry two soldiers at a time. Furthermore, several landmines have been placed on

the bridge and a torch is needed to sidestep all the mines. The enemy is on their

tail, so the soldiers know that they have only 60 minutes to cross the bridge. The

soldiers only have a single torch and they are not equally injured. The extent of

their wounds have an effect on the time it takes to get across. So the time needed

for each soldier are 5, 10, 20, 25 minutes respectively. The goal is to find a solution

to get all the soldiers to cross the bridge to safety in 60 minutes or less.

• The sliding game problem, is sometimes also referred as the eight-tiles problem. We

have eight tiles, numbered from 1 to 8, that are arranged in a 3 × 3 matrix. The

first tile, which is at the top-left corner is empty and marked by 0. A tile can only
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be shifted horizontally or vertically into the empty space. The goal of the puzzle is

to arrange the eight tiles into the setting shown in Figure 3.1.

Figure 3.1: Initial setting of the sliding game problem

3.1 Methodology

Note that the bridge crossing problem is a plan existence problem with a constraint on

the total time. A workable plan that can be finished within 60 minutes is already good

enough. There is no need to literally “calculate” an optimal solution. PAT has an option

named “Shortest Witness Trace” in the verification window. When this option is selected,

PAT performs a breadth-first search in the state space, and the returned counterexample

trace is guaranteed the shortest. Otherwise, a depth-first search is performed and the

first counterexample trace encountered is displayed. Therefore, for the bridge crossing

problem where shortest witness trace is not needed, we used the depth-first search mode;

for the sliding game problem, for which an optimal solution is expected, we enabled the

“Shortest Witness Trace” option instead. The counterexample provided by NuSMV is

always shortest, so it can also be used to generate optimal solutions for the sliding game

problem. Unfortunately, as mentioned, the counterexample produced by Spin is not

always shortest. However, we still collected the performance data for reference.

To generalize the problem and get the experimental results in a broader range, we

expanded the original bridge crossing problem to versions with up to 9 soldiers. Except

the breadth-first and depth-first search, PAT also supports “reachability-with” checking

which is a reachability test with some state variables reaching their maximum/minimum

values. Hence PAT can be used to find the minimum amount of time needed to finish

the bridge crossing. The time limits were first calculated by PAT using the “reachability-

13



with” mode. Other model checkers were then tested taken the time limits as given. Of

course, to be fair, PAT also was also run one more time using the depth-first search

mode. We also ran Metric-FF on the bridge crossing problem with parameters g = 100

and h = 1, which emphasises the plan quality over the performance to increase the

possibility of getting an solution within the time limit.

Optimal AI planning is a PSPACE-complete problem in general. For many problems

studied in the planning literature, the plan optimisation problem has been shown to be

NP-hard (Gregory et al., 2007). The eight-tiles game is the largest puzzle of its type that

can be completely solved. It is simple, and yet obeys a combinatorially large problem

space of 9!/2 states. The N ×N extension of the eight-tiles game is NP-hard (Reinefeld,

1993). The difficulties of the problem instances are measured by the lengths of their

optimal solutions. There is also an approximated measurement named the Manhattan

distance or Manhattan length, which is defined as | x1 − x2 | + | y1 − y2 | where (x1, y1)

and (x2, y2) are two points on a plane. We have experimented on 6 problem instances

in total. Two of them (“Hard1” and “Hard2”) are the hardest with an optimal solution

of 31 steps. Two of them (“Most1” and “Most2”) have the most optimal solutions and

a slightly shorter solution length of 30 steps. The last two problem instances (“Rand1”

and “Rand2”) are randomly generated with optimal solutions of length 24 and 20 steps

respectively.

To collect the execution time data more accurately, we performed each experiment

three times and calculated the average to avoid possible fluctuations caused by the over-

head imposed by operating systems. To run Spin, we used the Unix simulator Cygwin.

Spin displays the execution time in a separate window using an embedded Tcl/Tk environ-

ment. PAT and NuSMV were tested in Windows XP SP3, while SatPlan and Metric-FF

were tested in Ubuntu 10.04 environment. Except for NuSMV, all other tools provide ac-

curate statistics including the execution time at the end of each session. For NuSMV, we

made use of the source command to invoke the time command right before and after the

model checking sessions to record the execution time. Unfortunately, the time command

in NuSMV provides time data that is accurate to only one decimal place. On contrast,

execution time data getting from other tools was rounded to two decimal places. All the

experimental results were collected on an Dell desktop with an Intel Core 2 Duo E6550

14



2.33GHz processor and 3.25GB RAM.

3.2 Results

In this section we presents the experimental results. In the following tables, INVAR

denotes using invariant mode of NuSMV, LTL/CTL denotes using LTL/CTL model

checking mode of NuSMV, WITH denotes PAT under “reachability-with” mode, and

DFS/BFS denotes PAT using depth-first/breadth-first search. Time is in seconds unless

otherwise indicated.

3.2.1 The Bridge Crossing Problem

This set of experiments are tailored to show how the model checkers compete on plan

existence problems that deal with time constraints. The time cost of each soldier is listed

in Table 3.1 below.

Soldier 1 2 3 4 5 6 7 8 9

Time Cost 5 10 20 25 30 45 60 80 100

Table 3.1: Time cost of each soldier

The results are summarized in Table 3.2. Inside the table, the column “#Soldiers”

indicates the number of soldiers in the problem instance and the column “Time*” indi-

cates the time limit used in that test. A symbol m is there to show that the system ran

out of memory and did not get a solution. Although the configurations for Metric-FF

(g = 100 and h = 1) have put a much higher weight on plan quality, the optimality of

the results getting form Metric-FF is still not guaranteed. So the data is only used as a

benchmark for comparisons.
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#Soldiers Time* Metric-FF PAT NuSMV Spin

WITH DFS INVAR CTL LTL

4 60 0.00 0.05 0.04 0.0 0.1 0.1 0.02

5 90 0.00 0.19 0.04 0.1 0.9 0.4 0.02

6 130 0.03 1.12 0.22 0.2 14.4 2.5 0.06

7 175 0.16 6.18 0.25 0.5 330.8 71.3 0.11

8 235 0.94 33.19 10.26 m m m 10.50

9 300 5.30 145.51 16.40 m m m 19.50

Table 3.2: Experimental results for the bridge crossing problem

When the number of soldiers reaches 8, NuSMV is not able to build a model according

to the model descriptions due to memory shortage. The invariant checking mode performs

generally better than CTL and LTL checking mode. With regard to Temporal model

checking in NuSMV, the performance is better using LTL than CTL.

Figure 3.2: Execution time comparison of PAT, Spin and Metric-FF on the bridge crossing

problem

Figure 3.2 shows that the time needed for the bridge crossing problem increases rapidly

when the number of soldiers increases. For example, the execution time for Spin increases
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by nearly 100 times when the number of soldiers increases from 7 to 8. It is clear that the

state space expands in a very fast speed. Planners such as Metric-FF handle this kind

of problem in a very different way from model checkers. Metric-FF performs a standard

weighted A* search which exploits the power of heuristics and sacrifices the optimality

to speed up the searching. That is the reason why Metric-FF performs much better than

the other two.

The performance of PAT and Spin is similar on this problem domain. For smaller

instances, for example, when the number of soldiers ranges from 4 to 7, Spin performs

better than PAT, although the difference is relatively small. For larger instances like the

problem with 8 or 9 soldiers, PAT starts to perform better that Spin.

3.2.2 The Sliding Game Problem

This set of experiments are designed to show how different model checkers perform on

optimal deterministic planning problems. The results getting from SatPlan are used for

reference. The initial configurations of all the six problem instances are shown in Figure

3.3.

(a) Hard1 (b) Hard2 (c) Most1

(d) Most2 (e) Rand1 (f) Rand2

Figure 3.3: Initial configurations of the sliding game problem instances
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The results are summarized in Table 3.3. Inside the table, “> 600” indicates that no

solution was found after 10 minutes. The column “L*” records the length of the optimal

solutions and the column “H” shows the Manhattan distance of the problem. Also note

that the solutions found by Spin are not optimal.

Problem L* H SatPlan PAT NuSMV Spin

BFS INVAR CTL LTL suboptimal

Hard1 31 21 444.42 9.60 45.2 > 600 > 600 2.25

Hard2 31 21 438.34 10.05 41.6 > 600 > 600 2.06

Most1 30 20 152.76 9.84 42.8 > 600 > 600 1.99

Most2 30 20 152.24 10.01 42.0 > 600 > 600 2.47

Rand1 24 12 33.70 7.00 30.0 > 600 > 600 2.63

Rand2 20 16 2.89 3.54 16.8 505.6 > 600 2.13

Table 3.3: Experimental results for the sliding game problem

The CTL and LTL checking mode of NuSMV can hardly find a solution within 10

minutes. The invariant checking mode performs much better compared to the other two

modes.

Figure 3.4: Execution time comparison of PAT, NuSMV and SatPlan on the sliding game

problem, shown on a logarithm scale

From Figure 3.4 we can conclude that the execution time of SatPlan for different
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problem instances varies greatly. The performance of SatPlan depends largely on the

length of the optimal plans. “Hard1” and “Hard2” which take only 1 step more than

“Most1” and “Most2”, spend nearly 3 times longer to find a solution. For simpler in-

stances, SatPlan performs the best among the three tools. However, when the length of

the optimal plans increases, the size of the SAT instances created by SatPlan grows fast.

The resulting execution time increases quickly as well.

The performance of PAT and NuSMV is relatively stable. PAT using breadth-first

search mode takes shorter time for all the problems. This comparison indicates that

PAT that belongs to the category of explicit state model checkers performs better than

symbolic model checker NuSMV and SAT based planner SatPlan on plan optimization

problems. Although we cannot generalize the argument without further experiments and

justifications, this empirical finding still proves the feasibility of applying PAT to the

optimal deterministic planning domain.
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Chapter 4

From PDDL to CSP#

In this Chapter, we describe the source-to-source translation from PDDL to CSP#. Our

goal is to formulate some casual rules that can act as a guide when doing the translation.

The translation is based on two basic assumptions:

• The PDDL domain descriptions are written in the subset of PDDL 2.1 that includes

STRIPS-like operators with literals having typed arguments and numerical plan

metrics. The typing can be easily done by hand or a tool such as TIM (Fox and

Long, 1998) when the original model is written without typed arguments.

• The translation should keep, as far as possible, the naming as well as the structures

of the original PDDL domain descriptions.

In the following sections, we shall explain the translation process using a running

example, the bridge crossing problem that was used in our experiments.

4.1 Typing

PDDL has a special syntax for declaring object and parameter types. If types are to be

used in a domain, the domain file should include a declaration: (: types NAME1 ... NAME N).

Figure 4.1 shows the typing declaration for the bridge crossing problem.
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(:types place locatable - object

soldier torch - locatable)

Figure 4.1: PDDL typing declaration in the domain definition file for the bridge crossing

problem

We use a hierarchical typing system, where place and locatable are of primitive type

object, while soldier and torch belong to locatable. After the declaration of types in the

domain definition file, objects can be defined with types in the problem description file.

Figure 4.2 shows the object definitions for the bridge crossing problem.

(:objects

soldier0 soldier1 soldier2 soldier3 - soldier

torch - locatable

north south - place)

Figure 4.2: PDDL object definitions in the problem description file for the bridge crossing

problem

Object torch and soldier0...3 are of locatable type, while north and south are of place

type. For every group of objects of the same type, we declare a constant enumeration in

CSP# as shown in Figure 4.3.

enum {north, south};
enum {soldier0, soldier1, soldier2, soldier3, torch};

Figure 4.3: CSP# enumeration declaration for the bridge crossing problem

4.2 Predicates

In PDDL, preconditions and effects are expressed as logic expressions of predicates. To

represent predicates in CSP#, we construct a self-defined data-type 〈Predicate〉 in PAT.

〈Predicate〉 has three methods that can be directly called from CSP# models, including
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1. void setPredicate(predicateName, x, y, value);

2. bool tryPredicate(predicateName, x, y);

3. int snapShot();

The example above only shows the methods for predicates with an arity of two.

setPredicate is used to set the value of a predicate with its name specified as the first

parameter. tryPredicate returns the value of a predicate and snapShot returns an integer

that represents the current snapshot of the predicate database. To use the self-defined

data-type, the C# library has to be imported and instantiated first. For each predicate

declared in the domain definition, we also need a corresponding enumeration type in

CSP# as shown in Figure 4.4 and Figure 4.5.

(:predicates (at ?x - locatable ?y - place))

Figure 4.4: PDDL predicate declaration for the bridge crossing problem

#import “Predicate”;
var < Predicate > pre = new Predicate();

enum {At};

Figure 4.5: CSP# predicate declaration for the bridge crossing problem

4.3 Initial State

Figure 4.6 and Figure 4.7 show the translation of initial state specifications from PDDL

to CSP#. For the functions time and time-cost in PDDL, we simply use an integer

array and an integer variable in CSP# to represent them respectively. The initialization

of predicates are done within the process ini().
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(:init

(at soldier0 south) (at soldier1 south)

(at soldier2 south) (at soldier3 south)

(at torch south)

(= (time soldier0) 5) (= (time soldier1) 10)

(= (time soldier2) 20) (= (time soldier3) 25)

(= (time-cost) 0))

Figure 4.6: PDDL initial state specifications for the bridge crossing problem

var time[4] = [5, 10, 20, 25];
var time cost = 0;

ini() = initial{pre.setPredicate(At , soldier0, south, true);
pre.setPredicate(At , soldier1, south, true);
pre.setPredicate(At , soldier2, south, true);
pre.setPredicate(At , soldier3, south, true);
pre.setPredicate(At , torch, south, true)} → Skip;

Figure 4.7: CSP# initial state specifications for the bridge crossing problem

4.4 Actions

With object types and predicates ready, the translation of actions is straightforward. The

preconditions are translated as guard conditions of processes. The effects are translated as

statement blocks after event names. Conditional effects can also be easily converted into

conditional branches that are well supported in CSP#. The updates for plan metrics can

be mapped into simple data operations. Figure 4.8 and Figure 4.9 show the semantically

equivalent action definitions for “south to north” in PDDL and CSP# respectively.
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(:action StoN

:parameters (?x - soldier ?y - soldier)

:precondition (and (at ?x south) (at ?y south) (at torch south))

:effect (and

(not (at ?x south)) (not (at ?y south)) (not (at torch south))

(at ?x north) (at ?y north) (at torch north)

(when (>= (time ?x) (time ?y)) (increase (time-cost) (time ?x)))

(when (< (time ?x) (time ?y)) (increase (time-cost) (time ?y)))))

Figure 4.8: PDDL action definition “south to north” for the bridge crossing problem

StoN (x , y) = [ x ! = y
&& pre.tryPredicate(At , x , south)
&& pre.tryPredicate(At , y , south)
&& pre.tryPredicate(At , torch, south) ]
s.x .y{pre.setPredicate(At , x ,north, true);

pre.setPredicate(At , x , south, false);
pre.setPredicate(At , y ,north, true);
pre.setPredicate(At , y , south, false);
pre.setPredicate(At , torch,north, true);
pre.setPredicate(At , torch, south, false);
if (time[x ] > time[y ]){time cost = time cost + time[x ]; }

else{time cost = time cost + time[y ]; }
} → Trans();

Figure 4.9: CSP# action definition “south to north” for the bridge crossing problem

In Figure 4.9, x!=y in the guard condition is to ensure the two parameters x and y are

distinct, which is implicitly enforced in PDDL. To establish the state transition system,

we also need another process to choose among different actions. As is shown in Figure

4.10, the process Trans() first makes a snapshot of the current predicate database, then

nondeterministically chooses one action and proceeds. The parameters for the actions

are also nondeterministically chosen among the available objects that are of the suitable

types. This is done by using the syntax sugar “indexed event list” that takes in parameters

within the corresponding enumeration range.
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Trans() = τ{snap = pre.snapshot()} →
(2 z : {0..3}@(2 y : {0..3}@StoN (z , y)))

2 (2 x : {0..3}@NtoS (x ));

Figure 4.10: CSP# Trans() process for the bridge crossing problem

4.5 Goal

The goal of a PDDL problem description contains logic formulas of predicates and possibly

also specifies the plan optimization criteria. The translation of optimization criteria can

be achieved by using the keyword “reaches ... with ...”. Figure 4.11 and Figure 4.12 show

the corresponding goal states definitions of PDDL and CSP#.

(:goal (and

(at soldier0 north) (at soldier1 north)

(at soldier2 north) (at soldier3 north)))

(:metric minimize (time-cost)))

Figure 4.11: PDDL goal definitions for the bridge crossing problem

#define goal (pre.tryPredicate(At , soldier0,north)
&& pre.tryPredicate(At , soldier1,north)
&& pre.tryPredicate(At , soldier2,north)
&& pre.tryPredicate(At , soldier3,north));

#assert Plan reaches goal with min(time cost);

Figure 4.12: CSP# goal definitions for the bridge crossing problem

Clearly, using the newly defined 〈Predicate〉 type, the translation from PDDL to

CSP# is intuitive as far as we can see in this example. Translation tools can even be

developed to automate the process. However, the translated CSP# model uses a number

of complex data structures and language constructs. The performance is not as good as

hand coded ones that use only primitive data types and are specifically optimized for
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their own purposes. More research should be done no this topic in the future to improve

the translation accuracy and efficiency.
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Part II

PAT as Planning Service
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Chapter 5

Case Study: Transport4You

When doing the experiments in Part I, we also felt that the generalization of the problems

should be a priority because the coding of the planning problems in the respective model

description languages is cumbersome. This gives rise to the idea of using model checkers

as service. Considering planning problems in more realistic environment, the variables

and parameters in the model descriptions are usually subject to change over time. In some

cases, the goals and cost/reward functions could also be different when the environment

variables vary. This is where the concept of replan comes into play. Using model checkers

as service enables real time replanning by generating problem descriptions dynamically

at runtime, and modifying models with the most updated parameters. However, some

modifications to the model checking algorithms are necessary to finally realize this goal.

In this chapter, we complete a case study on “Transport4You” which is a project

submission by us for the 33rd International Conference on Software Engineering (ICSE)

- Student Contest on Software Engineering (SCORE). The project is already selected as

one of the finalists (5 out of 56 submissions) which are going to be presented for the final

round of the competition at ICSE 2011 in Hawaii. The “Transport4You” Intelligent Pub-

lic Transportation Manager (IPTM) is a specifically designed municipal transportation

management solution which is able to simplify the fare collection process and provide

customized services to each subscriber. To be specific, a system that is able to provide

customized trip information and timely responses to each subscriber is to be built to

satisfy the increasing needs. In other words, the new system should not only play the

role of a bus conductor, but also be a trip advisor who informs the users of changes in
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the lines and possibly suggests optimized routes for them. The architectural design of

the IPTM system is shown in Figure 5.1.

Figure 5.1: System architecture diagram of the “Transport4You” IPTM system

The “Transport4You” IPTM system consists of two sub systems, namely the bus

embedded system (BES) and the central mainframe (CM). The bus system is responsible

for passenger detection, part of the fault correction and detection results report to the

central server. In contrast, the server system deals with all kinds of service requests from

users and administrators, information management, as well as user notification. The two

sub systems communicate via TCP connections and at the same time interact with users

and administrators. A significant component of the “Transport4You” IPTM system is

the Route Plannig module which makes use of the model checking capability of PAT as

a planning service. This function provides a guide for users who are not familiar with
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the bus routes and need suggestions for choosing bus lines. This can also be applied to

suggest alternative optimal routes to subscribers, based on the behavioural data analysed

in the User Behavior Analysis module. To further illustrate the idea of using PAT as

planning service, we have built a simulator for the IPTM system.

Figure 5.2: Simulator architecture diagram

Figure 5.3: Simulator screen shot of route planning results

As is shown in Figure 5.2 and Figure 5.3, the simulator generates a CSP# model

during execution according to the current road conditions and bus line configurations,

whenever a subscriber is querying on which route to choose. Users can choose their
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starting point as well as destination on the simulator interface. After clicking on the

“Plan” button, the underlying support modules generate a CSP# model according to

what have been chosen and pass it to PAT. After interpreting the returned results from

PAT, the system is able to display the planned route and detailed instructions to users.

The route planning module can work correctly even when there are real time changes on

road conditions. When the interrupted road or bus service is detected, the administrators

will update the road condition database immediately. All subsequent queries will be

processed according to the newly updated road conditions. The planning results are,

therefore, guaranteed to be accurate based on the most updated data.

Using PAT as planning service has several advantages over other alternatives.

• The searching algorithms of PAT is highly efficient and ready to be used, as is

proved in the comparisons with other tools. Therefore, the performance of planning

is ensured with no extra effort. It also saves the time of implementing a different

planning algorithm for every new problem.

• CSP# is a highly expressive language for modelling various kind of systems. The

tools we experimented on, including SatPlan and Metric-FF, are all restricted to

a certain area of problems. For instance, SatPlan is not able to solve planning

problems with numerical plan metrics and Metric-FF lacks support for plan opti-

mization problems. With a number of sophisticated model checking options, such

as “reachability-with” and “BFS/DFS”, PAT is ready to solve all kinds of planning

problems.

• PAT is constructed in a modularized fashion. Modules for specific purposes can be

built to give better support for the domains that are considered. For example, using

“Probability CSP Module”, it is even possible to solve nondeterministic planning

problems with PAT. Of course, we can also build our own planning modules with

customized searching algorithms. We shall further discuss this in Chapter 6.
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Chapter 6

Route Planning Model Design

In this chapter, we discuss the design of the route planning CSP# model. We will look at

two different approaches for improving the solution quality and compare the performance

of them.

6.1 Basic Model

To construct a CSP# model for route planning, we have to first formally define the

problem. There are 14 bus lines travelling among 61 bus stops on our simulated city

map. In addition, each bus line has a sequence of bus stops that it must reach one by

one.

Definition 1 A Route Planning task is defined by a 5-tuple (S,B,t,c,L) with the follow-

ing components:

• S is a finite, non-empty set of bus stops. Terminal stops include start terminal

sstart ⊆ S, and end terminal send ⊆ S, where sstart ∩ send = ∅.

• B is a finite set of bus lines, and for every bus line bi ∈ B, bi : S → S is a

partial function. bi(s) is the next stop taking bus i from stop s. ∀ s ∈ sstart ∀ b ∈

B , s ∈ dom(b) −→ b−1(s) = α. ∀ s ∈ send ∀ b ∈ B , s ∈ dom(b) −→ b(s) = β.

∀ b ∈ B , b−1(α) = α ∧ b(β) = β.

• t : S → BS is a function where BS ⊆ B. t(s) is the set of available bus lines at

stop s, i.e., BS = {bi ∈ B | s ∈ dom(bi)}.
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• c : S → S is a partial function. c(s) is the stop one can get to by crossing the road

at stop s.

• L is a unary predicate on S. L(s) is true when the current location of user is at stop

s.

The definition should be intuitive enough and require little additional explanation.

The tuple can be constructed from the evaluation of the bus line and road configurations

that are stored in the ITPM central mainframe. Now we can define the Route Planning

domain.

Definition 2 Given initial location s0 and destination sg , a Route Planning domain

maps a Route Planning task to a classical planning problem with close-world assumption

as follows:

States: Each state is represented as a literal s ∈ S, where L(s) holds.

Initial State: s0

Goal States: sg

Actions: 1. (TakeBus(bi , s),

PRECOND: bi ∈ t(s),

EFFECT: ¬L(s) ∧ L(bi(s)))

2. (Cross(s),

PRECOND: s ∈ dom(c),

EFFECT: ¬L(s) ∧ L(c(s)))

After defining the problem, we shall look at a basic CSP# model that solves the

route planning problem. According to the problem definitions, the model includes four

parts, namely the environment variables (bus stops and bus lines), the initial state, the

state transition functions (actions) and the goal states. The design of each part will be

discussed as follows.
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6.1.1 Environment Variables

In the description of the environment variables, we first declare an enumeration that lists

all the bus stops for later use:

enum{TerminalA, Stop5, Stop7, Stop9 ... Stop26, Stop11, Stop35, Stop34};

Then we use a self-defined data type 〈BusLine〉 to keep track of the bus line configu-

rations and provide useful helper methods.

var sLine1 = [TerminalA, Stop5, Stop7, Stop9, Stop58, Stop31, Stop33, Stop53,

Stop57, TerminalC];

var<BusLine> Line1 = new BusLine(sLine1,1);

var sLine2 = [TerminalC, Stop56, Stop52, Stop32, Stop30, Stop59, Stop10, Stop8,

Stop6, TerminalA];

var<BusLine> Line2 = new BusLine(sLine2,2);

...

...

var sLine14 = [TerminalC, Stop34, Stop32, Stop30, Stop16, TerminalB];

var<BusLine> Line14 = new BusLine(sLine14,14);

In the above code, the instantiation of 〈BusLine〉 takes in two parameters, including

an integer array that contains a sequence of bus stops as well as an integer that is the

line number. After declaration, we are able to use the bus line variable to look up useful

information of a particular bus line including the previous stop and the next stop with

respect to the current stop.

6.1.2 Initial State

In the description of the initial states, we declare two variables, currentStop and cur-

rentBus. The variable currentStop corresponds to the state variable s mentioned before,

while currentBus is only for record in the current model.

//Initial State

var currentStop = Stop5;

var B0 = [-2];

var<BusLine> currentBus = new BusLine(B0,-1);
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The initial value of currentStop is set to be Stop5 in this example. The currentBus

is also a variable of type 〈BusLine〉 and its initial value is set to some negative integer to

avoid confusion.

6.1.3 State Transition Functions

Now we are coming to the most critical part of the model. We need to translate the action

schema mentioned before to a state transition function that can be further converted to

CSP# processes with the help of the key word “case”. The key word is used as the

following,

case{

cond1: P1

cond2: P2

default: P

}

The description of transition functions can be further divided into two parts. In the

first part, a process named takeBus() is defined to capture the state transitions caused by

taking bus. The second part deals with a process crossRoad() which is defined to capture

the state transitions caused by walking to the opposite side of the road.

takeBus()=case{ currentStop==TerminalA:BusLine1[]BusLine3[]BusLine5[]BusLine7

currentStop==Stop5:BusLine1[]BusLine5

currentStop==Stop7:BusLine1[]BusLine5

currentStop==Stop9:BusLine1

...

...

currentStop==Stop11:BusLine12

currentStop==Stop35:BusLine13

currentStop==Stop34:BusLine14

};

This process takeBus() simply hands over the control to another process according to

which bus lines are available in the current bus stop. For example, at Stop5, there are
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two bus lines available, namely BusLine1 and BusLine5. Then we still need to define

processes BusLine1 to BusLine14 which have very similar events.

BusLine1=

TakeBus.1{currentStop=Line1.NextStop(currentStop); currentBus=Line1;} ->takeBus();

...

...

BusLine14=

TakeBus.14{currentStop=Line14.NextStop(currentStop); currentBus=Line14;} ->takeBus();

This is where the actual state transitions happen. Each bus line process invokes

TakeBus.n event, and at the same time, updates the value of currentStop and currentBus.

Finally, the bus line process returns the control to the process takeBus(). Notice that

there is another version of this process that also allows road crossing at any bus stop.

We shall look at it later after the discussion of the crossRoad() process.

crossRoad()=case{

currentStop==Stop5: crosscurrentStop=Stop6->takeBus()

currentStop==Stop7: crosscurrentStop=Stop8->takeBus()

...

...

currentStop==Stop35: crosscurrentStop=Stop34->takeBus()

currentStop==Stop34: crosscurrentStop=Stop35->takeBus()

};

The process crossRoad() also makes use of the key word “case”. Depending on the

value of currentStop, a common event cross will be evoked and the hidden effect is the

update of currentStop to the stop opposite to it. For instance, when the user is at Stop5,

event cross can happen and the user’s location is changed to Stop6. After the state

transition, the process also hands over its control to takeBus() and searches for further

transitions. Combining two processes by an external choice operator gives us the final

transition function:

plan=takeBus()[]crossRoad();
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As mentioned before, to enable road crossing, we have to modify the bus line process.

Instead of return the control to takeBus(), we have to return to plan which may also invoke

the process crossRoad(). This could increase the search space of the model, however the

increase of verification time is not significant.

6.1.4 Goal States

The goal states of the model are fairly easy to define. Very similar to the initial state

description, we only need to specify the goal to be that the value of currentStop equals

to the destination stop chosen by user that is Stop53 in our example.

//Goal States

#define goal currentStop==Stop53;

6.2 Cost Function Approach

The basic model we discussed before is able to solve the Route Planning problem. It even

provides optimal plans in terms of the make-span if the “BFS” mode is used. However, the

quality of the plan is not always guaranteed. The plan quality depends on several factors,

including the length of the suggested route, the total walking distance, the number of

buses changed, etc. To measure the plan quality, we introduce cost function into the

model. It is fairly intuitive to assign a non-negative integer value to each action. For

instance, we assign a cost of 10 for TakeBus(bi , s) and a cost of 2 for Cross(s). In

addition, we also assign a cost of 5 for two consecutive TakeBus actions with different bi ,

which implies there is a bus change occurs. The plans produced by the basic model are

sometimes suboptimal in terms of the total cost. There are two causes for the inefficiency:

• The basic model treats action Cross and TakeBus as the same. However, in real

life, different subscribers may have their own preferences on the minimization of

the number of bus stops or the walking distance.

• The basic model does not have penalties on bus changes when producing the route

plan. The number of bus changes is considered a critical factor when judging the

quality of the plan.
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To ensure high plan quality in our new model, we use a cost function as gauge. The

implementation of the cost function in our established basic model can be done with

very little effort. For takeBus() and crossRoad() process, we can add a hidden event:

tau{cost = cost + x}, where x is 10 or 2. For bus changes, we can add another hidden

event with a conditional branch: tau{if (!currentBus .isEqual(LineX )){cost = cost + 5}},

where LineX is the bus line to be taken next.

Algorithm 1 newBFSVerification()

initialize queue: working ;

current ← InitialStep;

τ ←∞;

repeat

value ← EvaluateExpression(current);

if current .ImplyCondition() then

if value < τ then

τ ← value;

end if

end if

if value > τ then

continue;

end if

for all step ∈ current .MakeOneMove() do

working .Enque(step);

end for

until working .Count() 6 0

However, the introduction of cost function also increases the complexity of the prob-

lem. The original optimal planning problem can be solved by a simple breadth-first

search. As the size of optimal solutions in this context are usually small, the execution

time is also relatively short. Unfortunately, “reachability-with” checking in the “CSP

Module” searches the whole state space for a maximum/minimum value of a given vari-

able. The execution time is considerably long for this kind of searching according to our
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experiments. To resolve the problem of long execution time, we designed a new searching

algorithm with the assumption that all cost values are non-negative integers. Once a

solution is found in the searching, we update the threshold τ with its cost value. In the

following search, if the cost of the current partial plan exceeds τ , we consider it a dead-

end since no further transitions could make the cost lower. This pruning of the search

space largely reduces the execution time and memory usage to a satisfactory level and

still preserves the optimality of the solutions. The new algorithm newBFSVerification()

is given in Algorithm 1.

6.3 Search Space Pruning

As mentioned in the previous section, one of the causes for producing suboptimal solutions

is that the number of bus changes is uncontrolled. Taking an example shown in Figure

6.1, bus line b1 and b2 both travel along the path 〈s1, s2, s3〉. The route of b1 is shown

in solid lines while the route of b2 is shown in dashed lines. We refer to a particular

edge between two stops by the corresponding action name. For instance, TakeBus(b1, s1)

refers to the solid edge between s1 and s2.

Figure 6.1: An example bus line configuration

Figure 6.2: A solution produced by the basic model

As illustrated in Figure 6.2, the basic model produces unsatisfactory solutions when

there obviously exists better ones. The partial solution “TakeBus(b1, s1)⇒ TakeBus(b2, s2)”
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introduces a redundant bus change from b1 to b2. To prune the search space and speed

up the verification, we have to restrict that a user is not going to change a bus if it is not

necessary. This constraint can be easily captured by adding a new method “bool IsRedun-

dent(BusLine CurrentBus,int CurrentStop)” to the defined type 〈BusLine〉. In the guard

condition of process BusLine2, adding !Line2.IsRedundent(currentBus, currentStop) will

avoid this transition if the change to Line2 is considered redundant.

The criteria for deciding whether an action TakeBus(bi , sj ) is redundant or not given

the current bus line is bk can be formulated as follows.

Definition 3 An action TakeBus(bi , sj ) is not redundant if one of the followings holds:

1. bi = bk

2. bi ∈ t(sj ) ∧ bk ∈ t(sj ) ∧ bi(sj ) 6= bk(sj ) ∧ ∃m ∈ N1, bi(sj )
−m 6= bk(sj )

−m

3. 1 and 2 do not hold and bi(sj ) 6= bk(sj ) ∧ b−1i (sj ) 6= b−1k (sj )

Definition 3 can be casually interpreted as, “when a user is going to change to a

different bus that does not form a special pattern with the current bus as shown in

Figure 6.3 and shares the same previous stop or next stop with the current bus, the

change is considered redundant.

Figure 6.3: Special pattern of two overlapping bus lines

The basic idea is to stay on one bus as long as possible. This can be enforced by

simply ignoring the transitions to a bus having the same previous stop as the current

one, because the transition to that bus should happen earlier (not necessarily from the

current bus) or does not happen at all. As is shown in Figure 6.4a, the partial solution
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“TakeBus(b2, s1) ⇒ TakeBus(b1, s2)” is not valid as at s2, b1 and b2 have the same

previous stop s1. A valid path is “TakeBus(b1, s1) ⇒ TakeBus(b1, s2)”. Similarly, the

transitions to a bus having the same next stop as the current one should also be avoided,

because the transition can happen later (not necessarily from the current bus) or does

not happen at all. As is shown in Figure 6.4b, the partial solution “TakeBus(b1, s1) ⇒

TakeBus(b2, s2)” is not valid as at s2, b1 and b2 have the same next stop s3. A valid path

is “TakeBus(b1, s1) ⇒ TakeBus(b1, s2)”. However, after enforcing these two basic rules,

the transition can never happen between two lines forming the special pattern illustrated

in Figure 6.3. When two bus lines form such a overlapping pattern, a bus change at the

end of the overlapping segment, which is s3 in this case, is not considered redundant.

The reason why we force the bus change to occur at the end of the overlapping segment

is that this ensures that necessary bus change happens only once within the overlapping

range.

(a) Same Previous Stop

(b) Same Next Stop

Figure 6.4: Redundant bus changes

6.4 Performance Comparison

In this section, we compare the performance as well as the solution quality of the two

modified planning models discussed in the previous sections. We tested all (3660) starting
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stop and destination stop combinations on the three models. The length of the shortest

solution was get by solving the shortest path problem using Dijkstra algorithm after we

converted the original map to a directed graph with path cost 1 for each edge. Table 6.1

shows the comparison results.

States Transitions Time(s) Memory(KB) Cost Cost(s) Length Length(s)

Basic 1029.46 1070.93 0.0448 11119.91 58.23 1254 5.51 0

Cost 1125.31 1169.82 0.0483 11281.58 56.02 0 5.59 247

Prune 158.48 185.77 0.0179 9197.95 56.79 379 5.51 0

Table 6.1: Comparison results of three route planning models

In the table, all values are average among the 3660 test cases except “Cost(s)” and

“Length(s)” which indicate the number of solutions with suboptimal total cost and sub-

optimal length respectively. From the comparison, we can see that the search space

pruning model performs the best in terms of execution time and memory space. In fact,

a large portion of redundant transitions are pruned and the search space is reduced to a

minimal. At the same time, the search space pruning model also preserves the make-span

optimality. In addition, the model also produces low cost plans with an average total

cost of 56.79 which is slightly higher than the optimal value 56.02. Among all of them,

89.6% of the solutions are in fact cost-optimal. The cost function model guarantees the

lowest total cost as it is designed to do so. However, it is a little inefficient on the memory

usage, as the plan metric optimization is indeed expensive. Some solutions are not the

shortest as the Cross actions have less cost but are still counted towards the total length

of the plans.
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Chapter 7

Conclusion and Future Work

7.1 Summary

In this thesis, we focused on an attempt of using model checking techniques on AI planning

domain. We believe our research effort to be a good start in this direction towards more

practical applications.

In the first part, we examined the feasibility of using different model checkers on solv-

ing classical planning problems. In our experiments, we compared the performance and

capabilities of different tools including PAT, NuSMV and Spin. PAT is proved to be the

most suitable one for solving various kind of planning problems. The experimental results

also indicate that some model checkers can even compete with sophisticated planners in

certain domains. We also suggested a way of translating PDDL to CSP#, which may

serve as a basis for developing automated translation tools.

In the second part, we analysed a case study on the “Tranport4You” IPTM system.

We implemented a route planning module for the system by exploiting the model checking

power of PAT. Then following the formal definitions of the route planning problem, we

designed a basic CSP# model. We further improved the model in two ways. One of

them is introducing cost function for measuring plan quality, while the other approach

is adding in domain specific control knowledge for search space pruning. In the end, we

compared the different approaches we attempted on their time and memory efficiency as

well as their plan quality.
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7.2 Recommendations for Future Work

Although experiments have been carried out on three model checkers and two planners

so far, we would like to extend the comparisons to a larger range of model checking as

well as planning tools to get a more general view of the subject. We also observe that,

in some of the models, there is a lot of room for improvement. By either fine tuning the

way of modelling or exploiting domain specific knowledge, we could further optimize the

models. In addition, we are interested in implementing an automated translator for the

translation from PDDL to CSP#. Large amount of work has to be done to ensure the

correctness and efficiency of the translation. Last but not least, we recommend that more

research should be done on applying PAT as planning service. The applications of this

technique should be extended to a larger range on real problems in various fields.
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Appendix A

Selected Model Source Code

A.1 CSP# Model for the sliding game problem

1. //Initial − → Goal
2. // 0 1 2 | 3 5 6
3. // 3 4 5 | 0 2 7
4. // 6 7 8 | 8 4 1
5. #define N 9;
6. var board = [3, 5, 6, 0, 2, 7, 8, 4, 1];
7. hvar emptypos = 3;

8. Game() = Left() 2 Right() 2 Up() 2 Down();

9. Left() = [emptypos! = 2&&emptypos! = 5&&emptypos! = 8]goleft
10. {board [emptypos] = board [emptypos + 1]; board [emptypos + 1] = 0;
11. emptypos = emptypos + 1}
12. → Game();
13. Right() = [emptypos! = 0&&emptypos! = 3&&emptypos! = 6]goright
14. {board [emptypos] = board [emptypos − 1]; board [emptypos − 1] = 0;
15. emptypos = emptypos − 1}
16. → Game();
17. Up() = [emptypos! = 6&&emptypos! = 7&&emptypos! = 8]goup
18. {board [emptypos] = board [emptypos + 3]; board [emptypos + 3] = 0;
19. emptypos = emptypos + 3}
20. → Game();
21. Down() = [emptypos! = 0&&emptypos! = 1&&emptypos! = 2]godown
22. {board [emptypos] = board [emptypos − 3]; board [emptypos − 3] = 0;
23. emptypos = emptypos − 3}
24. → Game();

25. #assert Game() reaches goal ;
26. #define goal (&& i : {0..N − 2}@(board [i ] == i + 1)) && board [N − 1] == 0;
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A.2 CSP# Model for the bridge crossing problem

1. #define Max 60;
2. #define N 4;
3. #define North 0;
4. #define South 1;

5. var val [9] = [5, 10, 20, 25, 30, 45, 60, 80, 100];
6. var At North[9] = [1, 1, 1, 1, 1, 1, 1, 1, 1];
7. var At South[9] = [0, 0, 0, 0, 0, 0, 0, 0, 0];
8. var time = 0;
9. var torch : {0..1} = North;
10. var north1;
11. var north2;
12. var south1;

13. NtoS () =2 x : {0..N − 1}@
14. [At North[x ] == 1]Select North1.x{At North[x ] = 0; north1 = x} → Skip;
15. (2 y : {0..N − 1}@
16. [At North[y ] == 1]Select North2.y{At North[y ] = 0; north2 = y} → Skip);

17. StoN () =2 x : {0..N − 1}@
18. [At South[x ] == 1]Select South1.x{At South[x ] = 0; south1 = x} → Skip;

19. soldier() = if (torch == North){NtoS ()}else{StoN ()};

20. Cross() = if (torch == North){cross north{
21. if (val [north1] > val [north2]){
22. time = time + val [north1];
23. At South[north1] = 1;
24. At South[north2] = 1; }
25. else{
26. time = time + val [north2];
27. At South[north1] = 1;
28. At South[north2] = 1; }
29. torch = 1; } → Skip}
30. else{cross south{
31. time = time + val [south1];
32. At North[south1] = 1;
33. torch = 0; } → Skip};

34. Game() = if (time > Max ){Skip}
35. else{soldier(); Cross(); Game()};

36. ////////////////The Properties//////////////////
37. #define constraint time <= Max ;
38. #define goal (&& i : {0..N − 1}@(At South[i ] == 1)) && constraint ;
39. #assert Game() reaches goal ;
40. #assert Game() reaches goal with min(time);
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