
Analyzing Hierarchical Complex Real-time Systems∗

Yang Liu
National University of

Singapore
liuyang@comp.nus.edu.sg

Jun Sun
Singapore University of
Technology and Design
sunjun@sutd.edu.sg

Jin Song Dong
National University of

Singapore
dongjs@comp.nus.edu.sg

ABSTRACT
Specification and verification of real-time systems are important
research topics which have practical implications. In this work,
we present a self-contained toolkit to analyze real-time systems,
which supports system modeling, animated simulation and auto-
matic verification (based on advanced model checking techniques
like dynamic zone abstraction). In this tool, we adopt an event-
based modeling language for describing real-time systems with hi-
erarchical structure. Experiments show that our tool has compati-
ble performance with the state-of-the-art verifiers, and complement
them with additional capabilities like LTL model checking, refine-
ment checking.

1. OVERVIEW AND SYSTEM DESIGN
Ensuring the correctness of life-critical applications is crucial

and challenging. This is especially true when the correctness of
such systems depends on quantitative timing. The state-of-the-art
approach for specifying real-time systems is based on the notation
Timed Automata (TA) [1]. TA often have a flat structure, e.g. a
network of TA with no hierarchy, which makes the efficient model
checking feasible. Nonetheless, designing and verifying composi-
tional real-time systems is becoming an increasingly difficult task.
High-level requirements for real-time systems are often stated in
terms of deadline, time out, and timed interrupt. Unlike statecharts
with clocks or timed process algebras, TA lack these compositional
patterns. As a result, users often need to manually cast those terms
into a set of clock variables with carefully calculated clock con-
straints. The process is tedious and error-prone.

To solve this problem, we proposed an alternative approach [6]
for modeling and verifying hierarchical real-time systems. Based
on process algebra, our modeling language introduces a rich set of
concurrent operators and compositional timed behavioral patterns
like deadline, within , timed interrupt , etc. Instead of explic-
itly manipulating clock variables (as in TA), the timed patterns are
designed to build on implicit clocks. Further, we augment a sys-
tem model with mutable variables and data structures (e.g., arrays,
∗This research was partially supported by a grant “SRG ISTD 2010
001" from Singapore University of Technology and Design.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

stacks or arbitrary data types), synchronous or asynchronous chan-
nels, etc. Our proposed language adopts a dense-time semantics,
where the clock values are rational numbers. Hence, there may be
infinitely many transitions between any two time points. To offer
efficient verification support, a fully automated abstraction tech-
nique is developed to build an abstract finite state system from the
(infinite) model. We show that the abstraction has finite state and is
subject to model checking. Further, it weakly bi-simulates the con-
crete model and, therefore, we may perform sound and complete
LTL model checking, refinement checking upon the abstraction.

Our engineering efforts realize the proposed techniques into a
self-contained toolkit for analyzing real-time systems, which is built
as Real-Time System (RTS) module in our home grown model
checker PAT [5] (freely available at http://pat.comp.nus.edu.sg).
Fig. 1 shows the architecture design of our toolkit with four com-
ponents. The editor (see Fig. 4) is featured with powerful text edit-
ing, syntax highlighting and multi-documents environment. The
parser compiles the system models and the properties into inter-
nal representation. Abstraction (see Section 3) is applied during
the compilation of a model so that a finite state abstract model is
yielded internally. The simulator (see Fig. 5) allows users to per-
form various simulation tasks on the models: complete states gen-
eration of execution graph, automatic simulation, user interactive
simulation, trace replay and etc. The simulator is also used to vi-
sualize Büchi automata generated from the negation of LTL asser-
tions. Most importantly, we implement several verifiers catering for
checking deadlock-freeness, reachability, LTL properties with fair-
ness assumptions, refinement checking and etc. To achieve good
performance, advanced optimization techniques are implemented,
e.g., partial order reduction, process counter abstraction, parallel
model checking, etc. All the verification algorithms perform on-
the-fly exploration of the state space. If any counterexample is
identified during the exploration, then it can be animated in the
simulator for the purpose of debugging.

2. REAL-TIME SYSTEM MODELING
In RTS module, a system model is composed of multiple ele-

ments, i.e. constants, global variables/channels, a set of timed pro-
cess definitions, a set of assertions, etc. The process definitions
identify the computational logic of a system. A timed process P
(hereafter process) can be defined using a rich set of process con-
structs (see [6] for details). Furthermore, a number of timed process
constructs can be used to capture common real-time system behav-
ior patterns. For example, let d be an rational number. Process
Wait [d] idles for d time units. In process P timeout [d] Q , the
first observable event of P shall occur before d time units elapse.
Otherwise, Q takes over control after exactly d time units elapse.
In real-time systems, requirements are often structured into phases,

Language Parser

Internal Processes
Collection

Simulator

Assersion Parser and Buchi Automata Translator

Graphic Viewer

Explicit On-the-fly Model Checking
Supporting Fairness Assumptions

Reachability
Model Checker

Deadlock
Model Checker

Counterexamples

LTL Assersions

Parser

Simulator

Refinement
Model Checker

System Models
Reachablitlity

Assertions
Deadlock
Assertions

Editor

Refinement
Assertions

Assertions
Collection

Verifiers

View
BA

generate generate

Figure 1: Architecture Design

which is hierarchical in nature (e.g., pacemaker). Our language
is hierarchical and uses implicit clocks, hence the modeling pro-
cess is much simpler without complicated clock calculations. The
complete language syntax can be found in PAT’s user manual. The
formal operational semantics can be found in [6].

3. ABSTRACTION AND VERIFICATION
Model checking requires a finite state system model. Hence, we

assume that all variables have finite domains and the process for-
bids unbounded non-tail recursion. However, the number of system
states (and hence the transition system) is still infinite because of
our dense-time semantics. We propose a zone abstraction [6] to
build an abstract system. Different from zone abstraction applied
to TA [3], we dynamically create/delete a set of clocks to precisely
encode the timing requirements. A zone is the maximal set of clock
valuations satisfying a set of primitive clock constraints. A prim-
itive constraint on a clock is of the form tm ∼ d where tm is
a timer, d is a constant and ∼ is ≥, =, or ≤. Because clocks
are implicit, clock readings cannot be compared directly. In order
to support efficient verification, we use difference bound matrices
(DBM) [3] as an equivalent representation for the zone.

To perform verification on the original systems, we need to show
the abstract transition system is equivalent to the original transi-
tion system. We show our zone abstraction is sound and complete
with respect to the following three properties using a specialized
bi-simulation relationship [6].
LTL Model Checking In this setting, the properties are linear tem-
poral logic (LTL) formulae, constituted by propositions on global
variables and events. Notice that no clocks are allowed in the prop-
erty. In order to reflect model checking results on the abstract
transition system to the original system with respect to LTL for-
mulae, we show stutter equivalence between traces of the abstract
system and the original system [6]. To verify the LTL formulae,
we adopt the automata-based on-the-fly verification algorithm [5],
i.e., by firstly translating a formula to a Büchi automaton and then
check emptiness of the product of the system and the automaton.
Refinement Checking In this setting, we investigate an alternative
verification schema. That is, to verify whether the system satis-
fies the property by showing a refinement relationship between the
system and a model which models the property. In order to check
refinement between two (timed) models, zone abstraction must be
applied to both models. In [6], we prove that it is sound and com-
plete to show stable failures refinement between the two abstraction
transition systems in order to show failures refinement between the
two corresponding original models. The refinement relationship is
verified using an on-the-fly simulation checking approach.
Timed Refinement Checking We have looked at the refinement

checking without timed transitions. Specification of practical sys-
tems, however, may be complicated. For instance, the following is
requirement from the pacemaker specification [2]. “The first Pace-
Now pacing pulse shall be issued within two cardiac cycles plus
500 ms from the time of the last user action required to activate the
Pace-Now state”. To support refinement checking with timing as-
pects, we introduce time stamps in the traces. We assume a global
clock tG which starts when the system starts. We extend the algo-
rithm for un-timed refinement checking with the synchronization
of time stamps of the specification and implementation [4].

4. EXPERIMENTS AND DISCUSSION
Table 1 shows the experiment results on a pacemaker system [2],

Fischer’s algorithm and a railway control system. Using refine-
ment relationship, we can encode a variety of different properties,
including mutual exclusion, bounded by-pass, etc. The experiment
on Fischer’s mutual exclusion algorithm against bounded by-pass
shows that the timed refinement checking algorithm in PAT finds a
counterexample quickly. It is time consuming if a system contains
multiple concurrent processes and the property is true. PAT can
handles 107 states within an hour which is comparable to model
checkers like SPIN and UPPAAL. The data on UPPAAL or RED
verifying the same models have similar results, hence omitted.

Our work is related to a number of automatic verification sup-
ports for TA, including UPPAAL, KRONOS, RED, Timed COSPAN
and Rabbit. Different from the TA approach, our model checker
is the first dedicated verification tool support for hierarchical real-
time systems by adapting advanced verification techniques. In ad-
dition, PAT complements UPPAAL with the ability to check full
LTL properties and refinement relationship. For timed refinement
checking, there is no tool support to the best of our knowledge.
The reason is that it has been proved that the refinement checking
(or equivalently the language inclusion) problem in the setting of
TA [1] is undecidable. Other negative results include that TA can-
not be determinized. We show that timed refinement checking is
decidable in our setting [4].

Starting from 2008, RTS Module in PAT has come to a stable
stage with solid testing and 60 built-in examples. It has been ap-
plied to verify many real-time systems ranging from classical con-
current algorithms to real world problems. Many institutions uses
PAT as a research or educational tool. Currently, there are 800 reg-
istered users from 168 organizations in 32 countries. Our future
works include optimization techniques using fast DBM and state
reduction techniques like symmetry reduction.

5. REFERENCES
[1] R. Alur and D. L. Dill. A Theory of Timed Automata.

Theoretical Computer Science, 126(2):183–235, 1994.
[2] S. S. Barold, R. X. Stroopbandt, and A. F. Sinnaeve. Cardiac

Pacemakers Step by Step: an Illustrated Guide. Blachwell
Publishing, 2004.

[3] D. L. Dill. Timing Assumptions and Verification of
Finite-State Concurrent Systems. In Automatic Verification
Methods for Finite State Systems, pages 197–212, 1989.

[4] Y. Liu. Model Checking Concurrent and Real-time Systems:
the PAT Approach. PhD thesis, National University of
Singapore, 2009.

[5] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible
Verification under Fairness. In CAV, pages 702–708, 2009.

[6] J. Sun, Y. Liu, J. S. Dong, and H. H. Wang. Verifying Stateful
Timed CSP using Implicit Clocks and Zone Abstraction. In
ICFEM 2009, pages 581–600, Dec 2009.

APPENDIX
A. DEMO SCRIPT

We will demonstrate our toolkit step by step as follows. First,
we will give an overview of this tool and its architecture design.
Second, we will introduce the modeling languages for the composi-
tional real-time systems. In the third and forth parts, we would like
to present the zone abstraction and verification algorithms. Fol-
low that, we will conduct the demonstrate to illustrate modeling
languages and the functionalities (model composition, simulation
and verification). Finally, we will discuss some experiment results
and possible future works. The pacemaker example and Fischer’s
mutual exclusion algorithm will be used as running examples to il-
lustrate the ideas. Furthermore, we will also demonstrate the pace-
maker system for the timed refinement checking.

A.1 Overview of RTS module in PAT
RTS module in PAT is a self-contained toolkit to support compos-
ing, simulating and reasoning of compositional real-time systems.
The architecture diagram presented in Fig. 1 will be presented first
to explain the design and functionality.

A.2 Real-time System Modeling
The syntax and semantics of the proposed language will be intro-
duced. Language constructs will be listed as follows.

e → P – event prefixing and P is a process
P | Q – general choice
P ‖ Q – parallel composition
P ; Q – sequential composition
P =̂ Q – process definition
Wait [d] – delay
P timeout [d] Q – timeout
P interrupt [d] Q – timed interrupt
P waituntil [d] – wait until
P deadline[d] – deadline
P =̂ Q – process definition

To illustrate the syntax, we use the Fischer’s algorithm (follow-
ing) and a pacemaker system (Fig. 2) to demonstrate the hierarchi-
cal modeling support of the proposed language.

var x = −1;
var ct = 0;
Proc(i) = [x == −1]Active(i)
Active(i) = (update.i{x = i} → Skip) deadline[δ];

Wait[ε];
if (x == i) {

cs.i{ct + +} →
exit .i{ct −−; x = −1} → Proc(i)

} else {Proc(i)}
Protocol = Proc(0) ‖ Proc(1) ‖ . . . ‖ Proc(N);

A.3 Zone Abstraction
We will use example to illustrate the zone abstraction and abstract
system. Assume a model (∅,∅,P) with no variable and P is
(a → Wait [5]; b → Stop) interrupt [3] c → Stop. The ab-
stract transition system is shown in Figure 3, where transition label
τ is skipped for simplicity. The construction and changes of the
DBM of the process will be explained.

1 3 42
a c

Figure 3: A simple example

A.4 Property Verification
We will explain the supported properties and verification algorithms
developed using the Fischer’s mutual exclusion algorithm and the
pacemaker program.

• Deadlock and reachability checking for orchestration.

#assert Protocol deadlockfree;

• LTL properties.

#assert Protocol ² 2(request ⇒3accessCS);
#assert Protocol ² 2(update ⇒3cs);

• Refinement checking algorithm.

#assert Protocol refines Untimed Protocol ;

• Timed Refinement checking algorithm.

#assert Sys AAT refines < T > Spec AAT ;

A.5 Demonstration
A.5.1 Specification Editor
First we will show the specification editor (see Fig. 4) using the
Fischer’s mutual exclusion algorithm.

Figure 4: Main Window of PAT with Fischer’s Algorithm

A.5.2 Simulator
We will illustrate the simulator (Fig. 5) using the previous loaded
example. Firstly, we will show the complete states graph generated
based on the execution. Secondly, we will play the animation of au-
tomatically random simulation. Thirdly, we will show the how the
step-by-step user guided simulation is conducted. Finally, we will
demonstrate the functions of execution trace display and replay.

var SA = 0; //variable definition
AAT = Heart || Sensing || Pacing(LRI);
Sensing = if (SA = 1) { atomic{pulseA → senseA → Skip}; Sensing } else { pulseA → Sensing};
Pacing(X) = (atomic{senseA → paceA{SA = 0} → Skip} timeout[X] (paceA{SA := 0} → Skip) within[0]);

Wait[URI]; (enableSA{SA := 1} → Pacing(LRI −URI)) within[0];

Figure 2: A model of the AAT mode of a pacemaker

Figure 5: PAT Simulator User Interface

A.5.3 Verification
We will verify properties in the Fischer’s mutual exclusion algo-
rithm to illustrate the verification support (see Fig. 6).

Figure 6: PAT Verification User Interface

A.6 Experiments
Table 1 shows the experiment results on pacemaker system [2], Fis-
cher’s algorithm and a railway control system. The data are ob-
tained with Intel Core 2 Quad 9550 CPU at 2.83GHz and 2GB
memory. The pacemaker, though complicated, contains little con-
currency and hence is verified efficiently. Using refinement rela-

tionship, we can encode a variety of different properties, including
mutual exclusion, bounded by-pass, etc. The experiment on Fis-
cher’s mutual exclusion algorithm against bounded by-pass shows
that the timed refinement checking algorithm in PAT finds a coun-
terexample quickly. It is time consuming if a system contains mul-
tiple concurrent processes and the property is true. Further, a sim-
ple experiment shows that the computational overhead of calcu-
lating clocks/DBMs is around one third of the overall time. PAT
typically handles 107 states within an hour which is comparable to
model checkers like SPIN and UPPAAL.

Model Size Property States PAT (s)
Pacemaker - deadlock-free 302442 92.1
Pacemaker - correctness 986342 122

Fischer 5 P1 26496 2.49
Fischer 6 P1 207856 27.7
Fischer 7 P1 1620194 303
Fischer 4 P2 5835 0.53
Fischer 5 P2 49907 5.83
Fischer 6 P2 384763 70.5
Fischer 4 mutual exclusion 9941 0.78
Fischer 5 mutual exclusion 141963 17.2
Fischer 6 mutual exclusion 2144610 401
Fischer 7 bounded bypass 9213 1.47
Fischer 9 bounded bypass 91665 21.1
Fischer 11 bounded bypass 693606 214
Fischer 4 Prot refines uProt 7741 5.22
Fischer 5 Prot refines uProt 72140 126.3
Fischer 6 Prot refines uProt 705171 3146

Railway Control 4 deadlock-free 853 0.11
Railway Control 6 deadlock-free 27787 3.07
Railway Control 8 deadlock-free 1563177 223.1
Railway Control 5 2(appr →3leave) 8137 0.95
Railway Control 6 2(appr →3leave) 50458 6.58
Railway Control 7 2(appr →3leave) 359335 58.63
Railway Control 5 bounded waiting 4764 3.21
Railway Control 6 bounded waiting 28782 26.2
Railway Control 7 bounded waiting 201444 238

Table 1: Experiment results of RTS Module

A.7 Conclusion and Future Works
In the end, we would like to briefly talk about the related work and
future research directions.

