On Combining State Space Reductions with Global
Fairness Assumptions*

Shao Jie Zhang?, Jun Sun?, Jun Pang®, Yang Liu', and Jin Song Dong!

1 National University of Singapore
{shaojiezhang@, liuyang@comp.,dongjs@comp. tnus.edu.sg
2 Singapore University of Technology and Design
sunjun@sutd.edu.sg
3 University of Luxembourg
jun.pang@uni.lu

Abstract. Model checking has established itself as an effective system analysis
method, as it is capable of proving/dis-proving properties automatically. Its appli-
cation to practical systems is however limited by state space explosion. Among
effective state reduction techniques are symmetry reduction and partial order re-
duction. Global fairness often plays a vital role in designing self-stabilizing pop-
ulation protocols. It is known that combining fairness and symmetry reduction
is nontrivial. In this work, we first show that global fairness, unlike weak/strong
fairness, can be combined with symmetry reduction. We extend the PAT model
checker with the technique and demonstrate its usability by verifying recently
proposed population protocols. Second, we show that partial order reduction is
not property-preserving with global fairness.

1 Introduction

In the area of system verification and model checking, liveness means something good
must eventually happen. A counterexample to a liveness property is typically a loop (or
a deadlock state which can be viewed as a trivial loop) during which good things never
occur. Fairness, which is concerned with a fair resolution of non-determinism, is often
necessary and important to prove liveness properties. Fairness is an abstraction of the
fair scheduler in a multi-threaded programming environment or the relative speed of the
processors in distributed systems. Without fairness, verification of liveness properties
often produces unrealistic infinite system executions during which one process or event
is unfairly favored. It is important to systematically rule out those unfair counterexam-
ples so as to identify real bugs.

The population protocol model has recently emerged as an elegant computation
paradigm for describing mobile ad hoc networks [?]. A number of population proto-
cols have been proposed and studied [?,?]. Fairness plays an important role in these
protocols. For instance, it was shown that the self-stabilizing population protocols for
the complete network graphs only work under weak fairness, whereas the algorithm for

* This research was partially supported by a grant “SRG ISTD 2010 001” from Singapore Uni-
versity of Technology and Design.

network rings only works under global fairness [?]. Different from weak/strong fair-
ness, global fairness requires that a transition (instead of an event or process) must be
infinitely often taken if infinitely often enabled. It has been further proved that with
only strong fairness or weaker, uniform self-stabilizing leader election in rings is im-
possible [?]. In order to verify (implementations of) those algorithms, model checking
techniques must take the respective fairness constraints into account.

In our previous work [?], we developed a unified approach to model checking con-
current systems with a variety of fairness constraints. It was later applied to recently pro-
posed population protocols [?] and previously unknown bugs are detected successfully.
Nonetheless, it is limited by the state space explosion problem, like any model checking
algorithm. Previous work has identified and solved the problem combining weak/strong
fairness with state space reduction techniques like symmetry reduction [?] and partial
order reduction [?]. In this work, we examine a combination of model checking with
global fairness with symmetry reduction and partial order reduction. The contributions
are stated below:

First, we investigate the problem of model checking with global fairness and sym-
metry reduction. Symmetry reduction is a natural choice to population protocols, or
network protocols, which in general often contain many behaviorally similar or iden-
tical network nodes. Symmetry reduction has been investigated by many researchers
for many years [?,2,?]. In [?,?], it has been shown that combining weak/strong fair-
ness with symmetry reduction is non-trivial. In this paper, we prove that different from
weak/strong fairness, symmetry reduction and global fairness can be integrated with-
out extra effort. Adding symmetry reduction slightly changes the algorithm for model
checking with global fairness. We present the combined reduction algorithm based on
Tarjan’s strongly connected component algorithm [?].We extend our home-grown PAT
model checker with symmetry reduction and show its scalability by verifying recently
proposed population protocols.

Second, partial order reduction is an effective state reduction technique for con-
current systems with independent transitions. It is shown that partial order reduction
preserves the behaviors with weak fairness, but not with strong fairness [?,?]. In this
paper, we examine the combination of partial order reduction and global fairness, and
show that partial order reduction is not property preserving with global fairness.

2 Preliminaries

We present our work in the setting of Labeled Kripke structures (LKS) [?].

Definition 1 (LKS). An LKS is a 6-tuple L = (S, init, X, —, AP, L) where: S is a
finite set of states; init € S is the initial state; Y. is a finite set of events; AP is a finite
set of atomic state propositions; —: S X X X S is a transition-labeling relation with
events; L : S — 247 is a state-labeling relation with atomic propositions.

For simplicity, we write s % &' to denote that (s, e,s") is a transition in —; s — &’
to denote there exists some e in Y such that s — s’ Figure 1 shows an LKS, where
transitions are labeled with event names and states are denoted by numbers, and 0 is the
initial state. The dash-lined circles will be explained later.

Fig. 1. Labeled Kripke system

We say that £ is finite if and only if S is finite. A run of £ is a finite or infinite
sequence of alternating states and events (s, g, $1, €1, - -) such that sy = init and
s = si+1 for all 7. Because fairness affects infinite not finite system behaviors, we
focus on infinite system runs in this paper. A state s is reachable if and only if there
exists a finite run that reaches s. Throughout the paper, we assume that LKSs are always
reduced, i.e., all states are reachable.

We assume properties are stated in the form of state/event linear temporal logic (SE-
LTL) formulae [?]. Given an LKS £ = (S, init, ¥, —, AP, L), an SE-LTL formula ¢
can be constituted by not only atomic state propositions but also events.

pu=pla|l-d|dN¢|Xp|Fo|Go | pUgp, where p € AP and a € X.

Definition 2. Let 7 = (s, e, 81, €1,) be a run in L and w; the suffix of 7 starting
at s;. The path satisfaction relation is defined as follows:

— 7 = p iff s is the first state of m and p € L(s).

- 7 = a iff a is the first event of .

- g iff T i 6

- TEMNAGIfTE¢rand T = ¢o.

- nEXoiffm = 6

- w = F¢ iff there exists a k > 0 such that 7y, = ¢.

- 7w = Goiff forall i > 0 such that 7; = ¢.

- = 01U, iff there exists a k > 0 s.t. i, |= ¢g and for all 0 < j < k,7; = ¢1.

An example is G(d = F(z > 1)) where d is an event and z > 1 is an atomic propo-
sition. The formula states that event d is always followed by a run such that z > 1 is
eventually satisfied.

3 Model Checking with Fairness

A fairness constraint restricts the set of system behaviors to only those fair ones. With-
out fairness constraints, a system may behave freely as long as it starts with an initial
state and conforms to the transition relation. There are a variety of fairness constraints,
i.e., event-level or process-level weak fairness, event-level or process-level strong fair-
ness, global fairness, etc. In the following, we briefly review weak and strong fairness
and then focus on global fairness. For simplicity, we focus on event-level fairness.

3.1 Fairness

Event-level weak fairness [?] states that if an event becomes enabled forever after some
steps, then it must be engaged infinitely often. An equivalent formulation is that every
run should contain infinitely many positions at which the event is disabled or has oc-
curred. Given the LKS presented in Figure 1, the run (0, ¢, 1, g)* where the superscript
w indicates an infinite number of repetitions does not satisfy event-level weak fairness
because event d is always enabled (i.e., at both state 0 and 1) but never occurs dur-
ing the run. The run which loops through state 3, 4 and 5 satisfies weak fairness as no
event is enabled forever. Event-level strong fairness states that if an event is infinitely
often enabled, it must infinitely often occur. This type of fairness is particularly useful
in the analysis of systems that use semaphores, synchronous communication, and other
special coordination primitives. It has been identified by different researchers [?,?,?].
Given the LKS presented in Figure 1, the run which loops through state 3, 4 and 5 does
not satisfy strong fairness because event g is infinitely often enabled but never occurs. It
can be shown that strong fairness implies weak fairness. Model checking with weak or
strong fairness, or combing weak/strong fairness with state space reduction techniques
has been well investigated [?,?,2,2,?].

Definition 3 (Global fairness). Let E = (sy, g, 1, €1,) be a run of an LKS L. E
satisfies global fairness if and only if, for every s, e, s’ such that s < ', if s = s; for
infinitely many i, then s; = s and e; = e and s;11 = ' for infinitely many i.

Global fairness* was proposed by Fischer and Jiang in [?]. It is in fact a restricted form
of extreme fairness proposed by Pnueli [?]. Global fairness states that if a step® (from s
to s’ by engaging in event e) can be taken infinitely often, then it must actually be taken
infinitely often. Many population protocols rely on global fairness [?,?]. Compared
to event-level strong fairness, global fairness requires that an infinitely enabled event
must be taken infinitely often in all contexts, whereas event-level strong fairness only
requires the enabled event to be taken in one context. Thus, global fairness is stronger
than strong fairness. Their difference is illustrated in the following figure.

e, e G, et

@ ®)

Under event-level strong fairness, state 2 in (a) may never be visited because all events
occur infinitely often if the left loop is taken infinitely. With global fairness, all states in
(a) must be visited infinitely often. Their difference when there is non-determinism is
illustrated in (b). Both transitions labeled a must be taken infinitely with global fairness,
which is not necessary with event-level strong or weak fairness. It can be shown that
global fairness coincides event-level strong fairness when every transition is labeled
with a different event. This observation implies that we can uniquely label all transitions

“1In [?], it is called strong global fairness and defined for unlabeled transition systems. We
slightly changed it so as to suit the setting of LKS.
5 Step and transition are used interchangeably in this paper.

with different events and then apply model checking algorithm for strong fairness to
deal with global fairness. We show however, model checking with global fairness can be
solved using a more efficient approach. In contrast to nontrivial combination of strong
fairness and symmetry reduction [?], we show that using our approach model checking
with global fairness can be straightforwardly combined with symmetry reduction.

3.2 Model Checking with Fairness

Given an LKS £ and a liveness property ¢, model checking is to search for a run of £
which fails ¢. In automata-based model checking, the negation of ¢ is translated to an
equivalent Biichi automaton B. Model checking with fairness is to search for a system
run which is accepting by B whilst satisfying the fairness constraints. In the following,
we write £ F ¢ to mean that £ satisfies the property (without fairness assumption) and
write £ F4¢ ¢ to mean that £ satisfies the property with global fairness, i.e., every run
of £ which satisfies global fairness also satisfies ¢. We define a loop in the product of
L and B is a sequence of alternating states/events:

<(80) b0)7 €0, (sla bl)) €1, (8n717 bn71)7 €n, (Sna b’n,)>w

such that for all 0 < i < n, s; is a state of L, b; is a state of B, (so, by) is reachable,
Sp = so and b, = by . A loop is accepting if and only if there exists at least one

accepting state of B in (bg, by, - - -, b,). Furthermore, we define the following sets for a
loop | whose projection on £ is Iz = (8o, €0, 1, €1, " * » Sn—1, €n—1, S0)-
onceStep(l) = UZ;& enabled (sy)

engagedStep(l) = UZ;S engaged(sg,)
enabled(s) ={(s,e,5") | s 5 s}

engaged(sg,1) = {(Sk, €k, Sk+1) | (Sk, €k, Sk+1) 18 a subsequence of I}
Intuitively, onceStep(l) is the set of steps which are enabled at least once during the
loop, and engagedStep(l) is the set of steps which are engaged during the loop. By
definition, the proposition follows immediately.

Proposition 1. Let E = m(1*) be a run in L where m is a finite run. E satisfies global
fairness if and only if onceStep(l) = engagedStep(l). o

3.3 Algorithm for Model Checking with Global Fairness

Model checking with fairness can often be reduced to search for strongly connected
components (SCC). In graph theory, an SCC is defined as a maximum subgraph such
that every pair of vertices in the subgraph is connected by a path in the subgraph. A
terminal SCC is an SCC such that all of its edges lead to vertices contained in the
SCC. Naturally, an LKS can be viewed as a directed graph and therefore the concept
of SCC can be extended to LKS. For instance, the LKS presented in Figure 1 contains
four SCCs, indicated by dash-lined circles. Among the four, the one containing state
2 is terminal, whereas the one containing state 0 and 1 is not. For simplicity, we refer
to a set of states of an LKS as an SCC if the subgraph containing the states and the

transitions among them forms an SCC. We write that ‘an SCC fails a liveness property
¢’ as equivalent to that a run which reaches any state in the SCC and infinitely often
traverses through all states and transitions of the SCC fails ¢. For instance, the SCC
containing state 2 fails the property G(d = F(z > 1)).

In our previous work [?], we proved that the problem of model checking with global
fairness can be reduced to the problem of searching for a terminal SCC which fails the
given property. Formally, it can be stated as the following theorem.

Theorem 1. Let L be an LKS; ¢ be a property. L Egyr ¢ if and only if there does not
exist a terminal SCC S in L such that S fails ¢. O

The theorem implies that we can use a simple procedure to find a counterexample by
enumerating all terminal SCCs and then testing each one of them. The approach imple-
mented in the PAT model checker is based on Tarjan’s algorithm for on-the-fly identifi-
cation of SCCs. Its complexity is linear in the number of edges in the graph. Given the
LKS presented in Figure 1 with the property G(d = F(z > 1)), the SCC containing
state 2 is identified as a counterexample with global fairness. Note that the SCC contain-
ing state 3, 4, and 5 is a counterexample only with no fairness or weak fairness. It is not
a counterexample with global fairness because it does not satisfy global fairness, i.e.,
the step from state 5 to 6 by performing ¢ is enabled infinitely often but never occurs.

4 Model Checking with Symmetry Reduction

Distributed/concurrent systems, especially communicating protocols, often exhibit con-
siderable symmetry. Symmetry reduction aims to explore the symmetry in order to re-
duce state space. Intuitively, the idea is that states which are symmetric exhibit similar
or even identical behaviors and therefore exploring one representative would suffice in
proving/dis-proving a property. In the following, we briefly introduce symmetry reduc-
tion (refer to Chapter 14 of [?] for details), using the following running example.

Example 1. In [?], a self-stabilizing leader election protocol is proposed for complete
networks. The system contains multiple network nodes which interact with each other
following a number of simple rules. The system is modeled in the following form.

System = Controller || Node(0) || Node(1) || --- || Node(N)

where Controller is a controlling process distinguished from the network nodes; Node(1)
models a network node with a unique identity ; || denotes parallel composition. A n-
ode is marked as either a leader or not. Two nodes can interact according to the rules
and start/quit being a leader. For instance, one of the rules states that if two interacting
nodes are both leaders, then one of the nodes quits being a leader. The network nodes
(i.e., process Node(i)) are indistinguishable in the protocol and therefore they are all
symmetric. One essential property of the protocol is that all nodes must eventually con-
verge to the correct configuration. That is, eventually always there is one and only one
leader in the network, i.e., FG one leader.

A permutation ¢ on a finite set of objects is a bijection (i.e., a function that is one-to-
one and onto). For instance, a permutation of the process identities in the above example
isso0=0—1,1—2,--- N—1+ N, N+ 0 where 0 — 1 reads as ‘0O maps to 1’.
A permutation group is a group of permutations. For instance, the group containing all
permutation of process identities in the leader election example is a permutation group.
Given an LKS £ = (5, nit, X, —, AP, L), let G be a permutation group of process
identities acting on S. We first assume any event in X' is not allowed to be permuted.
A permutation o is said to be an automorphism of £ if and only if it preserves the
transition relation and initial state. Formally, o satisfies the following condition.

(Vs1,5 € 8; e € X. 51 > 50 & 0(s1) > a(s2)) A olinit) = init

A group T is an automorphism group of L if and only if every ¢ € T is an auto-
morphism of £. A permutation ¢ is said to be an invariance of an SE-LTL formula ¢
if and only if 0(¢) = ¢ where = denotes logical equivalence under all propositional
interpretations [?]. For instance, given any permutation of process identities in the lead-
er election example, the truth value of proposition one leader remains the same and
therefore the permutation is an invariance of FG one leader. A permutation o is said
to be an invariance of £ and property ¢ if and only if it is an automorphism of £ and it
is an invariance of ¢. G is an invariance group of £ and ¢ if and only if every o € G is
an invariance of £ and ¢.

Given a state s € S, the orbit of s is the set (s) = {t | o € G. o(s) =
t}, i.e., the equivalence group which contains s. From each orbit of state s, a unique
representative state rep(s) can be picked such that for all s and s’ in the same orbit,
rep(s) = rep(s’). Intuitively, if o is an invariance of ¢, states of the same orbit are
behaviorally indistinguishable with respect to ¢. For instance, the states of the 0-node
being the only leader and the 1-node being the only leader in the leader election protocol
are indistinguishable to the property FG one leader. Based on this observation, an LKS
can be turned into a quotient LKS where states in the same orbit are grouped together.
Formally, a quotient LKS is defined as follows.

Definition 4. Ler £ = (S, init, ¥, —, AP, L) be an LKS; G be an automorphism
group. The quotient LKS Lo = (Sq, initg, X, fung, AP, L) is defined as follows:
- Sg = {rep(s) | s € S} is the set of representative states of orbits.
— initg = {rep(init)} is the initial representative state.
— (r,e,7") €= ¢ iff there exists ' € S such that r < 1" and rep(r') = .
It has been proved [?] that if G is an invariance group of £ and ¢, then L satisfies ¢

if and only if £ satisfies ¢. Formally, it is stated as the following theorem. It is proved
by showing that the relation (s, 6(s)) is a bi-simulation relation between £ and L.

Theorem 2. Let £ = (S, init, X, —, AP, L) be an LKS; ¢ be an SE-LTL formula. If
G be an invariance group of L and ¢, then L F ¢ if and only if L F ¢. O

5 Symmetry Reduction with Global Fairness

In the following, we prove that global fairness is orthogonal with symmetry reduction
by showing that there is a run which satisfies global fairness and fails ¢ in £ if and only

if there is a run which satisfies global fairness and fails ¢ in L. For convenience, we
fix that ¢ is an SE-LTL formula to be checked, B is the Biichi automaton constructed
by the negation of ¢, £ is LKS of the original system, G is invariance group of £ and ¢
and L is LKS of the abstract system after applying symmetry reduction.

Lemma 1. There exists a run p = (s, ag, 1, a1, - -) in L if and only if there exists a
run q¢ = (1o, ag, 11, a1, - -y in L such that r; = rep(s;) for all i.

Proof It follows from the proof of Lemma 3.1 in [?]. O

Theorem 3. There exists an accepting loop in the product of L and B which satisfies
global fairness if and only if there also exists an accepting loop in the product of L
and B which satisfies global fairness.

Proof: (Sufficient condition) We first prove the sufficient condition. The proof is di-
vided into two parts. In the first part, we prove (1) if there exists an accepting loop I’ in
the product of L and B, then there exists an accepting loop [in the product of £ and
B. Then we prove (2) if I’ satisfies global fairness, so does .

Let I/ = <(’f’0, bo), ap, (T‘l, bl), at, -+, (rn_l, bn—l)a QAp—1, (7”07 b0)> be an accept-
ing loop. Without loss of generality we assume that by is an accepting state. Then there
exists in the product of £ and B a path arriving at (g, bp). By Lemma 1 there exists
a corresponding path in the product of £ and B to state (sg, b)) where rqg = rep(sp).
Because G is the invariance group of L and ¢, b}, = by which is also an accepting
state. By Lemma 1 again, for I’ there exists in the product of £ and B a path p° =
<(507 bo), ap, (Sl, bl), Al (Sn_l, bn—1)7 Ap—1, (5&, b0)> such that for all 7 in pO we
have 7; = rep(s;). Notice that pY is not necessarily a loop. Since 1y = rep(sd), we can
unfold [’ again according to Lemma 1, but this time beginning at s&, which will pro-
duce the path p* = {((s¢,b0), a0, (st,b1), a1, (st _1,bn_1), an_1, (3, bo)), and
for all i in p! we still have r; = rep(s}). We can repeat this unfolding arbitrary many
times which will give us a sequence of path p®, p', p?, - - - with the corresponding end
states (s, bo), (s2, bo), (S5, bo), - - - which are all accepting. As the orbit of the states
S0, 50, S, - - is finite, s§ = s for some i and j. Obviously, the concatenation of the
paths p? to p? ~1, say [, is an accepting loop in the product of £ and B.

Because !’ satisfies global fairness, onceStep(l’) = engagedStep(l’). We define
a function recover such that given (s, e,s’) €—¢ and some permutation o € G,
recover((s, e,s'),0) = (t,e,t') such that sc~* = ¢ A ¢t 5 . Intuitively, recover
returns the corresponding transition of (s, e, s’) in £ with respect to a specific permu-
tation 0. For 0 < m < n, 1y, in loop I’ corresponds to s, (i.e., r, = st ol) in each
path p? (i < t < j). Then

— enabled(st,) = recover(enabled(ry,),ot))
l

N

— engaged(st,, pt) = recover(engaged(ry,,l'), ot).
Thus, onceStep(l) = {recover(enabled(rp,),ot),0 < m < n,i < t < j} and
engagedStep(1) = {recover(engaged(rm,p*),ct),0 < m < n,i <t < j} S-
ince onceStep(l') = engagedStep(l'), onceStep(l') = {enabled(r,,), 0 < m < n,

i <t < j}and engagedStep(l') = {engaged(rpm,p?),0 < m < n,i <t < j}, we
have onceStep(l) = engagedStep(l).

(Necessary condition) Let | = {(so, bo), ao, (s1, b1), a1, -, (Sn—1, bn—1), an—1, (S0, bo))
be an accepting loop in the product of £ and B. There exists a path arriving at (sg, bp).
Assume by is an accepting state in 5. By Lemma 1 there exists a path in the product of

L ¢ and B leading to state (rep(so), bp). By Lemma 1, there exists in the product of L ¢
and B a corresponding loop I = {(so00, bo), ao, ($101, b1), a1, -, (Sp—10n—1, bn—1),
an—1, (5000, b)) such that o; € G and rep(s;) = s;0; forall 0 < i < n.

Because [satisfies global fairness, onceStep(l) = engagedStep(l). We define a
function twist such that given s = s’, twist(s, e, s') = rep(s) — g rep(s’). Intuitive-
ly, twist returns the corresponding transition in Lg of (s, e, s’). Forall 0 < ¢ < n, s;
in loop [corresponds to rep(s;) in I’. Then

— enabled(rep(s;)) = twist(enabled(s;));
— engaged(rep(s;), ') = twist(engaged(s;, 1)).

Thus, onceStep(l') = {twist(enabled(s;)), 0 < i < n} and engagedStep(l') =
{twist(engaged(s;,1')), 0 < i < n}. Because onceStep(l) = engagedStep(l), we
have onceStep(l) = {enabled(s;),0 < i < n } and engagedStep(l) = {engaged(s;, 1),
0 <4 < n }. Thus, we have onceStep(l') = engagedStep(l’). o

Note that we did not allow the events to be permuted in the definition of permutation
given at the beginning of this section, which seems too restrictive. Now we relax the
definition of permutation to permute states and events simultaneously. It is proved in [?]
that the new definition is equivalent to the one given before. By a simple argument, it
can be shown that Theorem 3 still holds.

Based on Theorem 3, we present a practical algorithm for searching the reduced
state space for accepting globally fair loops, based on Tarjan’s SCC algorithm. Under-
lining shows the differences compared with the usual algorithm for model checking
with global fairness. Assume that G is a permutation group of process identities which
is an invariance group of £ and ¢. Let rep be a function which, given a state, returns a u-
nique representative. Using function rep, we can tell whether two states are in the same
orbit or not. Note that identifying an optimal representative function rep can be non-
trivial. We adopt the automata-theoretic approach and perform the following. Firstly, a
Biichi automaton B is generated from the negation of ¢. Next, the synchronous product
of B and L is computed on-the-fly. Tarjan’s SCC algorithm is used to identify SCC in
the product along the construction. Note that a state of the product is a pair (s, b) where
s is a state of £ and b is a state of B. Assume that the initial state of the product is
(inits, inity) where init, is the initial state of £ and init;, is the initial state of 3.

The detailed algorithm is presented in Figure 2. It resembles the standard Tarjan’s
SCC algorithm [?]. Note that we use the iterative version of Tarjan’s SCC algorithm
in the practice implementation for performance reason. Three data structures are used
to identify SCCs: path is a stack containing states along a path from the initial state
to the current one; index and lowlink are hash tables which assign two numbers to a
state. A state is a root of an SCC if and only if the two numbers are equivalent. To
apply symmetry reduction, instead of working with concrete states, Tarjan’s algorithm
is applied to representatives of orbits. For instance, path contains only rep(v) (line

® For simplicity, we assume there is only one initial state in /3.

10) and lowlink and index map rep(v) to numbers (line 7 and 8). Whenever an SCC
is identified (line 17), we check whether the SCC is terminal in £ and accepting. If
it is, then we prove existence of at least one counterexample. We skip the details on
generating a concrete counterexample. Note that an SCC is terminal in £ if and only
if, for every state (s, b) in the SCC, if s — ', then there exists (s, b’) in the SCC.
An SCC is accepting if and only if it contains a state (s, b) such that b is an accepting
state in B. The algorithm terminates when all states have been checked. The correctness
of the algorithm follows from the theorems presented in previous sections. It is always
terminating because the number of un-explored states are monotonically decreasing and
the number of states are finite. Its complexity is linear in the edges of transitions in the
product of £ and B.
The following claims establish the correctness of the algorithm.

Lemma 2. In the product of L (resp. L) and B, there exists an accepting loop which
satisfies global fairness if and only if there exists an accepting SCC which is also a
terminal SCC in L (resp.L g).

Proof: (Necessary Condition) Suppose [is an accepting loop which satisfies global
fairness. so onceStep(l) = engagedStep(l). The states in [forms a strongly connected
subgraph S in the product and S is a terminal SCC in £. Let S’ be the SCC that contains
the states in S. Suppose !’ be the loop which traverses all transitions in S. Because S
is a terminal SCC in L, onceStep(l') = engagedStep(l') = onceStep(l). So S’ is also
a terminal SCC in L. On the other hand, because [is accepting, there is an accepting
state in S’.
(Sufficient Condition) Suppose S is an accepting SCC in the product of £ and B, and
it is a terminal SCC in L. Let [be the loop which traverses all transitions in S. We get
onceStep(l) = engagedStep(l). so [is a globally fair loop. Since there is an accepting
state in [, [is an accepting loop which satisfies global fairness.

Using same argument one can show the lemma holds for product of L5 and B. O

Theorem 4. Let ¢ be an SE-LTL formula. If G is an invariance group of L and ¢, then
LEg ¢ifandonly if Lo Fyr ¢.

Proof By Theorem 1, £ ¢ ¢ if and only if there exists an accepting SCC in the
product of £ and B which is also a terminal SCC in £. Similarly, £ Fy ¢ if and only
if there exists an accepting SCC in the product of £ and B which is also a terminal
SCC in L. By Theorem 3 and Lemma 2, there exists an accepting SCC S such that S
is a terminal SCC in L if and only if there exists an accepting SCC S’ such that S is a
terminal SCC in £ ¢, which proves the theorem. O

6 Partial Order Reduction with Global Fairness

In this section, we show that partial order reduction is not property-preserving with
global fairness, which means that partial order reduction cannot be applied in our set-
ting.

We begin by fixing notations and terminology. Given an LKS £ = (S, init, X', —,
AP, L), the function «(s) returns the set a-successors of s in £. That is, s’ € a(s) iff
s = s'. Two fundamental relations are first defined for partial order reduction.

Definition 5. An independence relation I C— X — is a symmetric, antireflexive rela-
tion, satisfying the following two conditions for each state s € S and for each («, B) €
I: (1) If o, B € enabled(s), then o € enabled(5(s)). (2) If o, B € enabled(s), then
a(B(s)) = B(als)). The dependency relation is the complement of 1.

Definition 6. Let L : S — 247 be the function that labels each state with a set of
atomic propositions. A transition « € T is invisible with respect to a set of propositions
AP' C AP if for each pair of states s,s’ € S such that ' = «(s), L(s) N AP’ =
L(s"Yn AP’

The state space reduction is achieved by only exploring a subset of enabled(s),
called ample(s) for any visiting state s. The following conditions on ample(s) are
used to preserve properties to be verified [?].

CO ample(s) = @ iff enabled(s) = @.

C1 Along every path in the full state space starting from s, a transition that is dependent
on a transition in ample(s) cannot occur without one in ample(s) occurring first.

C2 If enabled(s) # ample(s), then every o € ample(s) is invisible.

C3 A cycle is not allowed if it contains a state in which some transition « is enabled,
but is never included in ample(s) for any state s on the cycle.

It is proved in [?] that when satisfying the above four conditions, the following holds.
Theorem 5. The original state space and reduced state space are stuttering equivalent.

Based on Theorem 5, for any globally fair path in the full state space, there is a stut-
tering equivalent path in the reduced state space. Unfortunately, this path may be not
globally fair. Figure 3 shows a part of the full state graph. The transition from s1 to s2
is not present in the reduced state graph. Let transitions labeled with a and b be inde-
pendent and all other transitions be mutually dependent. Further let b, b’ be invisible
and a, ¢1, ¢2, c3 visible. For the globally fair path A = (abezbey cab’acs)® in the full
state space, there is no stuttering equivalent globally fair path in the reduced state space.
Because any globally fair path 7 in the reduced one has to traverse the transition labeled
with b from state s2 to s5, 7 must include a segment stuttering-equivalent path to cocs
whereas A does not have such segment.

7 Implementation and Evaluation

In the following, we evaluate the effectiveness of our combined method. We extend the
PAT’ model checker with our algorithms for model checking with global fairness and
symmetry reduction.

Previously in [?], PAT has been applied to model checking population protocols
with global fairness without symmetry reduction. It is evidenced that only small net-
works can be checked. In the population protocol model, one protocol consists of N
nodes, numbered from 0 to NV — 1. A protocol is usually described by a set of interac-
tion rules between an initiator v and a responder v. Such rules have conditions on the

7 http://pat.comp.nus.edu.sg

Model Network Size| Without Reduction With Reduction
States |Time (Sec)| States |Time (Sec)| Gain

24847 1.86 4971 0.77 |58.6%
129344 10.7 21559 3.03 |71.7%
643666 7.2 91954 16.2 [79.0%
3104594 | 740.8 | 388076 97.1 |86.9%

token circulation

token circulation

token circulation
token circulation

two-hop coloring 3 122856 36.7 42182 16.7 |54.5%
orienting rings (prop 1) 3 19190 2.27 6398 0.53 [76.7%
orienting rings (prop 2) 3 19445 2.23 6503 0.97 [56.5%
orienting rings (prop 1) 4 1255754 | 267.2 | 313940 70.5 |73.6%
orienting rings (prop 2) 4 1206821 | 267.1 |302071 63.6 |79.6%
orienting rings (prop 1) 5 11007542 9628.1 |2201510| 1067.4 |88.9%
orienting rings (prop 2) 5 10225849| 8322.6 |2045935| 954.5 |88.5%
leader election (complete) 3 6946 0.87 2419 0.51 41.4%
leader election (complete) 4 65468 11.6 16758 5.00 [56.9%
leader election (complete) 5 598969 176.1 120021 45.9 73.9%
leader election (odd) 3 55100 6.27 18561 2.56 (59.2%
leader election (odd) 5 — — 6444097 5803.96 X

token circulation 3 728 0.12 244 0.09 [25.0%
token circulation 4 4466 0.35 1118 0.19 [45.7%

5

6

7

8

Table 1. Experiment Results

state and the input of the initiator and the responder, and specify the state of the initiator
and the responder if a transition can be taken. Interested readers are referred to [?] for
protocol details. Note that many of the protocols are designed for network rings. It has
been noticed that protocols designed for network rings often require global fairness. All
relevant experiment information is provided online [?].

8 Related Work

This work is related to research on combining fairness and symmetry reduction. A solu-
tion for applying symmetry reduction under weak/strong fairness was discussed in [?].
Their method works by finding a candidate weak/strong fair path in the abstract transi-
tion system and then using annotations of state permutation details for each transition, in
order to resolve the abstract path to a threaded structure which then determines whether
there is a corresponding fair path in the concrete transition system. A similar approach
was presented in [?]. Another close work is a nested depth first search algorithm that
combines symmetry reduction with weak fairness [?]. Unfortunately, the combined al-
gorithm cannot guarantee to preserve all behaviors under weak fairness and thus may
produce false positives.

We compare our algorithm with the one which handles strong fairness in [?]. Since
global fairness can be regarded as a kind of strong fairness, the algorithm is applicable
to global fairness. It is the only algorithm for combining strong fairness and symmetry
reduction that we could find in literature. First, Theorem 3.11 in [?] shows its time

complexity is O(| M | xn3x | g | xa), where | M | is the size of the reduced graph
M, n is the number of processes, | g | is the length of the checked property g, and a
is the maximum size of the automaton for any basic modality of g. Our algorithm is
almost identical to Tarjan’s SCC algorithm except for adding line 24, 25 in Figure 2.
For a found SCC c the condition checking in line 24 can be implemented in time linear
in the number of edges in c. As a result our algorithm can be implemented in time
O(| M | x | g | xa).Second, in our approach it is not necessary to record permutations
appearing on each path (unless unwinding an abstract counterexample) and to construct
threaded structure for each strong connected subgraph B, of which the size is O(| B |
xn). Hence our algorithm outperforms theirs in space and time. Further, an important
practical advantage of our algorithm, unlike [?], is that our algorithm reuses the original
algorithm for model checking with global fairness with slight changes.

This work is also related to our previous work on combining weak/strong fairness
with counter abstraction [?]. The idea is to show that model checking with process-
level weak/strong fairness is feasible even if process identities are abstracted away. It
is achieved by systematically keeping track of the local states from which actions are
enabled/executed within any infinite loop of the abstract state space. Different from the
above work, our approach works with global fairness and we show that global fairness
and symmetry reduction can be integrated in a relatively easy way. Additionally, this
work is remotely related to work on combining state reduction techniques and fairness,
evidenced in [?,?,?]. Our work explores one kind of state reduction and shows that it
works with global fairness.

Closest to our work on combination of partial order reduction and fairness is that of
Peled [?,?] and Brim et al. [?]. Peled proposes equivalence robust property to guaran-
tee that all behaviors under certain fair assumption remain in the reduced state space.
However, since only weak fair is equivalence robust, stronger fair assumption need to
add more dependency relations to achieve equivalence robustness. In his later work [?],
he presents on-the-fly reduction algorithms with/without fairness assumptions. The au-
thors in [?] define two partial order reduction strategies, safe and aggressive reduction,
and demonstrate that each weakly fair behavior is preserved in safe reduction but not in
aggressive one, while not all strongly fair behaviors are preserved in either reductions.

9 Conclusion and Future Work

The contribution of this work is threefold. First, we show that unlike weak/strong fair-
ness, global fairness can be combined with symmetry reduction. Next, we present a
practical fair model checking algorithm with symmetry reduction. Lastly, we prove that
classic partial order reduction can not guarantee to preserve properties with global fair-
ness. An interesting line of future work is to identify sufficient condition that allows
combination of fairness and abstraction in general. In the current implementation, sym-
metry relationships are assumed to be known or easily detected. In the future, we plan to
develop symmetry detection technique (as well as reduction techniques) for hierarchical
complex systems.

References

—

w

11.

12.

13.

15.

16.
17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

. http://www.comp.nus.edu.sg/%$7Epat/fm/sym.
. D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang. Self-stabilizing Population Protocols. In

OPODIS, LNCS, pages 103-117, 2005.

. D. Bosnacki, D. Dams, and L. Holenderski. Symmetric Spin. In SPIN, pages 1-19, 2000.
. D. Bosnacki, N. Ioustinova, and N. Sidorova. Using Fairness to Make Abstractions Work.

In SPIN, LNCS, pages 198-215. Springer, 2004.

. D. Bosnacki. A Light-weight Algorithm for Model Checking with Symmetry Reduction and

Weak Fairness. In SPIN, pages 89-103, 2003.

. L. Brim, I. Cernd, P. Moravec, and J. Simsa. On Combining Partial Order Reduction with

Fairness Assumptions. In FMICS/PDMC, LNCS, pages 84-99, 2006.

. S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. State/Event-Based Soft-

ware Model Checking. In IFM, LNCS, pages 128-147. Springer, 2004.

. E. M. Clarke, T. Filkorn, and S. Jha. Exploiting Symmetry In Temporal Logic Model Check-

ing. In CAV, LNCS, pages 450-462. Springer, 1993.

. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 2000.
. G. Delzanno. Automatic Verification of Parameterized Cache Coherence Protocols. In CAV,

LNCS, pages 53-68. Springer, 2000.

E. A. Emerson and A. P. Sistla. Symmetry and Model Checking. Formal Methods in System
Design, 9(1-2):105-131, 1996.

E. A. Emerson and A. P. Sistla. Utilizing Symmetry when Model-Checking under Fairness
Assumptions: An Automata-Theoretic Approach. ACM Transactions on Programming Lan-
guages and Systems, 19(4):617-638, 1997.

E. Allen Emerson, Somesh Jha, and Doron Peled. Combining partial order and symmetry
reductions. In TACAS, pages 19-34, London, UK, 1997.

. M. J. Fischer and H. Jiang. Self-stabilizing Leader Election in Networks of Finite-state

Anonymous Agents. In OPODIS, LNCS, pages 395-409. Springer, 2006.

V. Gyuris and A. P. Sistla. On-the-Fly Model Checking Under Fairness That Exploits Sym-
metry. In CAV, LNCS, pages 232-243. Springer, 1997.

H. Jiang. Distributed Systems of Simple Interacting Agents. PhD thesis, Yale Uni., 2007.

L. Lamport. Proving the Correctness of Multiprocess Programs. [EEE Transactions on
Software Engineering, 3(2):125-143, 1977.

L. Lamport. Fairness and Hyperfairness. Distributed Computing, 13(4):239-245, 2000.

Y. Liu, J. Pang, J. Sun, and J. H. Zhao. Verification of Population Ring Protocols in PAT. In
TASE, pages 81-89. IEEE, 2009.

U. Nitsche and P. Wolper. Relative Liveness and Behavior Abstraction (Extended Abstract).
In PODC, pages 45-52. ACM, 1997.

D. Peled. Combining Partial Order Reductions with On-the-fly Model-Checking. In CAV,
pages 377-390, 1994.

Doron Peled. All from one, one for all: on model checking using representatives. In CAV,
pages 409-423, 1993.

A. Pnueli. On the Extremely Fair Treatment of Probabilistic Algorithms. In STOC, pages
278-290, New York, NY, USA, 1983. ACM.

A. Pnueli and Y. Sa’ar. All You Need Is Compassion. In VMCAI, LNCS, pages 233-247,
2008.

A. Pnueli, J. Xu, and L. D. Zuck. Liveness with (0, 1, infinity)-Counter Abstraction. In CAV,
volume 2404 of LNCS, pages 107-122. Springer, 2002.

F. Pong and M. Dubois. A New Approach for the Verification of Cache Coherence Protocols.
IEEE Transactions on Parallel and Distributed Systems, 6(8):773-787, 1995.

27.

28.

29.

30.

J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible Verification under Fairness.
In CAV, LNCS, pages 709-714. Springer, 2009.

J. Sun, Y. Liu, A. Roychoudhury, S. S. Liu, and J. S. Dong. Fair Model Checking with
Process Counter Abstraction. In FM, LNCS, pages 123-139. Springer, 2009.

R. Tarjan. Depth-first Search and Linear Graph Algorithms. SIAM Journal on Computing,
2:146-160, 1972.

U. Ultes-Nitsche and S. St. James. Improved Verification of Linear-time Properties within
Fairness: Weakly Continuation-closed Behaviour Abstractions Computed from Trace Re-
ductions. Software Testing, Verification & Reliability, 13(4):241-255, 2003.

oL W=

int counter :=0;

stack path := an empty stack;

hashtable index := an empty hash table;
hashtable lowlink := an empty hash table;
TarjanModelChecking((inits, inity));

procedure TarjanModelChecking(v)
indez[rep(v)] := counter;

lowlink[rep(v)] := counter;

counter := counter + 1;
push rep(v) into path
forall v — v’ do
if (rep(v") is not in index)
TarjanModelChecking(v’)
lowlink[rep(v)] = min(lowlink[rep(v)], lowlink[rep(v")));

else if (rep(v’) is in path)
lowlink[rep(v)] = min(lowlink[rep(v)], index[rep(v')]);
endif
endfor

if (lowlink[rep(v)] = index[rep(v)])

set scc := an empty set;

repeat
pop an element v’ from path and add it into scc;

until (v = v)

if (scc forms a terminal SCC in £ and scc is accepting)
generate a counterexample and return false;

endif

endif
endprocedure

Fig. 2. Tarjan’s algorithm with symmetry reduction

Fig. 3. Model and its reduction

