A Model Checker for Hierarchical Probabilistic Real-time Systems

*Songzheng Song*¹ Jun Sun² Yang Liu¹ Jin Song Dong¹

¹National University of Singapore

²Singapore University of Technology and Design

CAV 2012 July 11, 2012

ヘロト 人間 ト ヘヨト ヘヨト

æ

Model checking real-life systems is usually difficult since such systems usually have the following characteristics:

- quantitative timing factors
- unreliable/random environment
- complex data operations
- hierarchical control flows

・ 同 ト ・ ヨ ト ・ ヨ ト

Existing Approach

Probabilistic Timed Automata (PTA) is widely used to specify systems having stochastic and real-time characteristics.

イロト イポト イヨト イヨト

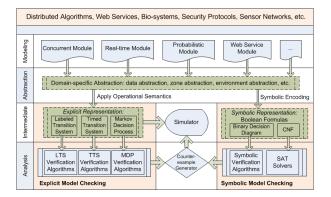
æ

Probabilistic Timed Automata (PTA) is widely used to specify systems having stochastic and real-time characteristics.

- PTA models often have a simple structure, e.g. a network of automata without hierarchy;
- Verifying PTA models is not very efficient.

くロト (過) (目) (日)

Our Approach: PAT



We propose **PRTS** for probabilistic real-time systems and it has been integrated into our framework **PAT**.

CAV 2012, Tool Demonstration PRTS@PAT http://www.patroot.com

Based on C. A. R. Hoare's CSP

- P = StopSkip $e \rightarrow P$ $a\{program\} \rightarrow P$ [b]Pif (b) {*P*} else {*Q*} $P \Box Q$ $P \sqcap Q$ $P \setminus X$ P; Q $P \parallel Q$ Q
- in-action
- termination
- event prefixing
- data operation prefixing
- guard condition
- conditional choice
- external choice
- internal choice
- hiding
- sequential composition

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

- parallel composition
- process referencing

Based on C. A. R. Hoare's CSP

- P = Wait[d] | P timeout[d] Q | P interrupt[d] Q | P within[d] | P deadline[d]
- delay
- timeout
- timed interrupt
- timed responsiveness

ヘロト 人間 ト ヘヨト ヘヨト

э

- deadline

Based on C. A. R. Hoare's CSP

- delay

- timeout
- timed interrupt
- timed responsiveness
- deadline

 $P = pcase\{pr_0 : P_0; pr_1 : P_1; \dots; pr_k : P_k\}$

 pr_i is defined as a positive integer. It means with probability $\frac{pr_i}{pr_0+pr_1+\cdots+pr_k}$, *P* behaves as P_i .

Note here we assume pcase must happen immediately when it is enabled.

CAV 2012, Tool Demonstration PRTS@PAT http://www.patroot.com

Motivation Language Syntax of PRTS Abstraction Verification Evaluation	
Evaluation Conclusion	


```
1. P = (pcase{ 1 : Q
2. 3 : R }) timeout[3] S;
3. Q = Wait[2];
4. R = Wait[5];
5. S = exit -> P;
//assertions:
6. #assert P deadlockfree;
```

▲ロト ▲帰 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

• The semantic model of our language is Markov Decision Process (MDP).

イロト 不得 とくほと くほとう

∃ 9900

- The semantic model of our language is Markov Decision Process (MDP).
- Since PRTS model has a dense-time semantics, the underlying MDP has infinite states.

ヘロン 人間 とくほ とくほ とう

3

- The semantic model of our language is Markov Decision Process (MDP).
- Since PRTS model has a dense-time semantics, the underlying MDP has infinite states.

$$(\sigma, \operatorname{\mathit{Wait}}[1]) \stackrel{0.1}{\rightarrow} (\sigma, \operatorname{\mathit{Wait}}[0.9]) \stackrel{0.01}{\rightarrow} (\sigma, \operatorname{\mathit{Wait}}[0.89]) \stackrel{0.001}{\rightarrow} \dots$$

ヘロン 人間 とくほ とくほ とう

3

- The semantic model of our language is Markov Decision Process (MDP).
- Since PRTS model has a dense-time semantics, the underlying MDP has infinite states.

$$(\sigma, \operatorname{\mathit{Wait}}[1]) \stackrel{0.1}{\rightarrow} (\sigma, \operatorname{\mathit{Wait}}[0.9]) \stackrel{0.01}{\rightarrow} (\sigma, \operatorname{\mathit{Wait}}[0.89]) \stackrel{0.001}{\rightarrow} \dots$$

Abstraction is required!

ヘロト ヘアト ヘビト ヘビト

æ

The first step of abstraction is to associate timed process constructs with implicit **clocks**.

- $P \text{ timeout}[d] \ Q \rightarrow P \text{ timeout}[d]_c \ Q$
- Constraint over clock : c ≤ 5 represents any process *P* timeout[d'] Q with d' ≤ 5

ヘロト 人間 ト ヘヨト ヘヨト

The first step of abstraction is to associate timed process constructs with implicit **clocks**.

- $P \text{ timeout}[d] \ Q \rightarrow P \text{ timeout}[d]_c \ Q$
- Constraint over clock : c ≤ 5 represents any process *P* timeout[d'] Q with d' ≤ 5

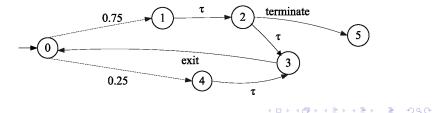
A **zone** *D* is the conjunction of multiple primitive constraints over a set of clocks, which is calculated by Difference Bound Matrix(DBM).

 c ~ d or c_i − c_j ~ d where c, c_i, c_j are values of clocks and d is a constant integer. ~ represents ≥, ≤, =

ヘロト ヘアト ヘビト ヘビト

Motivation Language Syntax of PRTS Abstraction Verification Evaluation Conclusion	Abstraction
Example Revisit	

```
1. P = (pcase{ 1 : Q
2. 3 : R }) timeout[3] S;
3. Q = Wait[2];
4. R = Wait[5];
5. S = exit -> P;
//assertions:
6. #assert P deadlockfree;
```



Verification

Properties supported:

- Reachability Checking
- 2 Reward Checking
- ITL Checking
- 8 Refinement Checking

イロト イポト イヨト イヨト

э

Verification

Properties supported:

- Reachability Checking
- 2 Reward Checking
- ITL Checking
- Refinement Checking

Key difference between PTA and our approach:

- PTA's reachability checking through zone abstraction can just supplies an upper or lower bound;
- We can get a precise result after zone abstraction.

・ 同 ト ・ ヨ ト ・ ヨ ト

Benchmark Systems Compared with PRISM

Benchmark Systems Compared with PRISM

System	Result	P/	AT .		PRISM	
System	nesuii	States	Time(s)	States	Iterations	Time(s)
FA(10K)	0.94727	1352	0.15	1065	19	1.98
FA(20K)	0.99849	5030	0.13	8663	34	65.08
FA(30K)	0.99994	11023	0.45	34233	45	575.03
FA(300K)	>0.99999	726407	30.74	-	-	-
ZC(100)	0.49934	404	0.15	135	0	0.28
ZC(300)	0.01291	4813	0.65	2129	26	2.73
ZC(500)	0.00027	12840	2.39	10484	44	63.19
ZC(700)	1E-5	24058	5.78	31717	60	427.70

One is the *firewire abstraction* (*FA*) for IEEE 1394 FireWire root contention protocol and the other is *zeroconf* (*ZC*) for Zeroconf network configuration protocol.

CAV 2012, Tool Demonstration PRTS@PAT http://www.patroot.com

|--|

- Modeling language PRTS is proposed for hierarchical probabilistic real-time systems.
- Zone abstraction is used in order to apply probabilistic model checking techniques. Evaluations demonstrate the efficiency of our approach.
- Model checking framework PAT is extended to support PRTS.

・聞き ・ヨト ・ヨトー

Motivation Language Syntax of PRTS Abstraction Verification Evaluation Concrete Configurations

Statistics of PAT:

- 5 years history
- 30+ researchers
- 1 million LOC
- 2000+ downloads

Our tool can be freely downloaded at http://www.patroot.com

ヘロト 人間 ト ヘヨト ヘヨト

э

Motivation Language Syntax of PRTS Abstraction Verification Evaluation Concrete Configurations

Statistics of PAT:

- 5 years history
- 30+ researchers
- 1 million LOC
- 2000+ downloads

Our tool can be freely downloaded at http://www.patroot.com

THANK YOU!

ヘロト ヘアト ヘビト ヘビト

3

Motivation Language Syntax of PRTS Abstraction Verification Evaluation Concrete Configurations

Definition (Markov Decision Process)

An MDP is a tuple $\mathcal{D} = (S, init, Act, Pr)$ where

- S is a set of states;
- *init* \in *S* is the initial state;
- Act is a set of actions and Act_{τ} is $Act \cup \tau$;
- $Pr: S \times (Act_{\tau} \cup \mathbb{R}_{+}) \times Distr(S)$ is a transition relation.

A Markov Chain can be defined given an MDP \mathcal{D} and a scheduler δ , which is denoted as \mathcal{D}^{δ} .

A path of \mathcal{D}^{δ} is defined as $\omega = s_0 \stackrel{x_0}{\rightarrow} s_1 \stackrel{x_1}{\rightarrow} s_2 \stackrel{x_2}{\rightarrow} ...$

イロト イポト イヨト イヨト

Motivation Language Syntax of PRTS Abstraction Verification Evaluation Conclusion	Concrete Configurations
---	-------------------------

Given a property ϕ :

$$\mathcal{P}_{\mathcal{D}}^{max}(\phi) = \sup_{\delta} \mathcal{P}_{\mathcal{D}}(\{\pi \in paths(\mathcal{D}^{\delta}) \mid \pi \text{ satisfies } \phi\})$$

 $\mathcal{P}_{\mathcal{D}}^{\min}(\phi) = \inf_{\delta} \mathcal{P}_{\mathcal{D}}(\{\pi \in paths(\mathcal{D}^{\delta}) \mid \pi \text{ satisfies } \phi\})$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Concrete Configurations

Definition (Concrete System Configuration)

A concrete system configuration is a tuple $s = (\sigma, P)$ where σ is a variable valuation and P is a process.

イロト イポト イヨト イヨト

э

Concrete Configurations

Definition (Concrete System Configuration)

A concrete system configuration is a tuple $s = (\sigma, P)$ where σ is a variable valuation and P is a process.

The probabilistic transition relation of a model's MDP semantics is defined by a set of firing rules with every process construct.

- Wait[d]
- pcase

ヘロト 人間 ト ヘヨト ヘヨト

æ

$$\frac{\epsilon \leq \mathbf{d}}{(\sigma, \mathbf{Wait}[\mathbf{d}]) \xrightarrow{\epsilon} (\sigma, \mathbf{Wait}[\mathbf{d} - \epsilon])} \quad [\text{ wait}_1]$$

$$(\sigma, \textit{Wait}[0]) \xrightarrow{\tau} (\sigma, \textit{Skip}) \quad [\textit{wait}_2]$$

]

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

 $(\sigma, \textit{pcase} \{\textit{pr}_0 : \textit{P}_0; \textit{pr}_1 : \textit{P}_1; \cdots; \textit{pr}_k : \textit{P}_k\}) \xrightarrow{\tau} \mu$

$$\mu((\sigma, \mathbf{P}_i)) = \frac{pr_i}{pr_0 + pr_1 + \dots + pr_k} \text{ for all } i \in [0, k]$$

3

イロト イポト イヨト イヨト

 $(\sigma, pcase \{ pr_0 : P_0; pr_1 : P_1; \cdots; pr_k : P_k \}) \xrightarrow{\tau} \mu$

$$\mu((\sigma, \mathbf{P}_i)) = \frac{pr_i}{pr_0 + pr_1 + \dots + pr_k}$$
 for all $i \in [0, k]$

pcase transitions are not time-consuming!

Concrete Configurations

Abstract Configurations

Definition (Abstract System Configuration)

Given a concrete system configuration (σ, P) , the corresponding abstract system configuration is a triple (σ, P_T, D) such that P_T is a process obtained by associating P with a set of clocks; and D is a zone over the clocks.

ヘロト 人間 ト ヘヨト ヘヨト

Concrete Configurations

Abstract Configurations

Definition (Abstract System Configuration)

Given a concrete system configuration (σ, P) , the corresponding abstract system configuration is a triple (σ, P_T, D) such that P_T is a process obtained by associating P with a set of clocks; and D is a zone over the clocks.

Abstract firing rules are defined in order to get the abstract MDP. Wait[d] and *pcase* are listed as examples.

くロト (過) (目) (日)

[await]

イロト イポト イヨト イヨト

3

 $(\sigma, \textit{Wait}[d]_c, D) \stackrel{\tau}{\rightsquigarrow} (\sigma, \textit{Skip}, D^{\uparrow} \land c = d)$

 D[↑] denotes the zone obtained by delaying arbitrary amount of time. e.g. (c ≤ 5)[↑] is c ≤ ∞.

Motivation Language Syntax of PRTS Abstraction Verification Evaluation Conclusion	Concrete Configurations

 $(\sigma, pcase \{ pr_0 : P_0; pr_1 : P_1; \cdots; pr_k : P_k \}, D) \stackrel{\tau}{\leadsto} \mu$

 $\mu((\sigma, P_i, D)) = \frac{\rho r_i}{\rho r_0 + \rho r_1 + \dots + \rho r_k}$ for $i \in [0, k]$; zone is unchanged.

	Motivation Language Syntax of PRTS Abstraction Verification Evaluation Conclusion	Concrete Configurations
--	---	-------------------------

Theorem 1

Theorem

 \mathcal{D}^a_M is finite for any model M.

- Variable valuations are finite[by assumption].
- Process expressions are finite[by assumption and clock reuse].
- Zones are finite.
- J. Bengtsson and Y. Wang.

Timed Automata: Semantics, Algorithms and Tools. In *Lectures on Concurrency and Petri Nets*, pages 87-124, 2003.

Concrete Configurations

Definition

A probabilistic time-abstract bi-simulation relation between a DTMC $C = (S_c, init_c, Act, Pr_c)$ and an abstract DTMC $C_a = (S_a, init_a, Act, Pr_a)$ is a relation $\mathcal{R} \subseteq S_c \times S_a$ satisfying the following condition.

C1: If $(s_c, s_a) \in \mathcal{R}$, then s_c and s_a have the same variable valuation.

C2: If $(s_c, s_a) \in \mathcal{R}$ and $(s_c, (\epsilon, e, p), s'_c) \in Pr_c$ for some $\epsilon \ge 0$, $e \in Act_{\tau}$ and $p \in [0, 1]$, then there exists s'_a such that $(s_a, (e, p), s'_a) \in Pr_a$ and $(s'_c, s'_a) \in \mathcal{R}$;

C3: If $(s_c, s_a) \in \mathcal{R}$ and $(s_a, (e, p), s'_a) \in Pr_a$ for some $e \in Act_{\tau}$ and $p \in [0, 1]$, then there exists some $\epsilon \ge 0$ and s'_c such that $(s_c, (\epsilon, e, p), s'_c) \in Pr_c$ and $(s'_c, s'_a) \in \mathcal{R}$;

Evaluation Conclusion

Theorem 2

Theorem

$$\mathcal{P}_{\mathcal{D}_{M}^{a}}^{max}(\phi) = \mathcal{P}_{\mathcal{D}_{M}}^{max}(\phi) \text{ and } \mathcal{P}_{\mathcal{D}_{M}^{a}}^{min}(\phi) = \mathcal{P}_{\mathcal{D}_{M}}^{min}(\phi).$$

• For any scheduler δ in \mathcal{D}_M^a , there is a scheduler ξ in \mathcal{D}_M such that $(\mathcal{D}_M^a)^{\delta}$ and $(\mathcal{D}_M)^{\xi}$ are bisimilar Markov Chains.

ヘロト ヘ戸ト ヘヨト ヘヨト

2 For any scheduler η in \mathcal{D}_M , there is a scheduler ϑ in \mathcal{D}_M^a such that $(\mathcal{D}_M)^{\eta}$ and $(\mathcal{D}_M^a)^{\vartheta}$ are bisimilar Markov Chains.

pcase transitions are not time-consuming!