
A Model Checker for Hierarchical Probabilistic
Real-time Systems?

Songzheng Song1, Jun Sun2, Yang Liu3, Jin Song Dong4

1 NUS Graduate School for Integrative Sci and Engineering, National University of Singapore
songsongzheng@nus.edu.sg

2 Information System Technology and Design, Singapore University of Technology and Design
sunjun@sutd.edu.sg

3 Temasek Lab, National University of Singapore, tslliuya@nus.edu.sg
4 School of Computing, National University of Singapore, dongjs@comp.nus.edu.sg

Abstract. Real-life systems are usually hard to control, due to their complicated
structures, quantitative time factors and even stochastic behaviors. In this work,
we present a model checker to analyze hierarchical probabilistic real-time sys-
tems. A modeling language called PRTS is used to specify such systems, and
automatic zone-abstraction approach, which is probability preserving, is used to
generate finite state MDP. We have implemented PRTS in model checking frame-
work PAT so that friendly user interface can be used to edit, simulate and verify
PRTS models. Some experiments are conducted to show our tool’s efficiency.

1 Introduction

Real-life systems could be complicated because of hierarchical structures and complex
data operations; real-time behaviors are sometimes essential in such systems due to
the interaction with the real world; in addition, unreliable environments could result in
stochastic behaviors so that probability is necessary. These characteristics present the
difficulty in properly designing and developing such systems. Applying model checking
techniques in this domain is therefore very challenging, due to the requirements of an
expressive enough modeling language as well as efficient model checking algorithms.

In this work, we present a new model checker to analyze complex systems. A model-
ing language Probabilistic Real-time System (PRTS) [16] is used to cover complicated
system structures and data operations, real-time behavior and probability, meanwhile
dynamic zone abstraction [16] is applied to handle the infinite state space caused by
real-time factors. Different from zone abstraction used in other models such as Prob-
abilistic Timed Automata (PTA) [10], our approach guarantees forward analysis after
abstraction is precise. PRTS supports several widely used properties such as reacha-
bility checking, LTL checking and reward checking, with which users could analyze
different aspects of the system. Our tool (public available at [1]) has been developed as
a stand alone plug-in module in the verification framework PAT [14, 11] to support the
editing, simulation and verification of PRTS models with a friendly user interface.

? This research was partially supported by research grant “SRG ISTD 2010 001” from Singapore
University of Technology and Design and “MOE2009-T2-1-072” from MOE of Singapore.

Related Work There are several model checkers exploring probabilistic real-time sys-
tems based on PTA. UPPAAL [4] supports real-time, concurrency and recently data op-
erations as well as probability (UPPAAL-PRO), but lacks support for hierarchical con-
trol flow and is limited to maximal probabilistic reachability checking. PRISM [9] is
popular in verifying systems having concurrency, probability and the combination of
real-time and probability. However, it does not support hierarchical systems, but rather
networks of flat finite state systems. Another tool mcpta [6] supports the verification
of PTA by translating models into PRISM and only supports reachability checking. In
addition, these tools only support simple data operations, which could be insufficient in
modeling systems which have complicated structures and complex data operations.

2 Modeling with PRTS

In this section, we briefly introduce our modeling language PRTS, which extends Com-
municating Sequential Processes (CSP) with real-time and probabilistic behaviors.

Syntax A subset of process constructors of PRTS are listed below to present its mod-
eling abilities. Note that process constructors, like (conditional) choice, sequential and
parallel compositions adopted from CSP for modeling hierarchical concurrent systems,
are skipped due to the space limitation and readers can refer to [16] for details.

P = a{program} → P |Wait [d]P timeout [d] Q | P interrupt [d] Q
| P deadline[d] | P within[d] | pcase{pr0 : P0; pr1 : P1; · · · ; prk : Pk}

Data Operation PRTS supports shared memory models using global variables, which
can be integer, boolean, integer array, and even arbitrary user-defined data struc-
tures. A user-defined data structure can be defined externally using programming
languages like C#, Java, C and so on, and then imported into the model5. Data op-
erations in PRTS are invoked through syntax a{program} → P , which executes
event a and program simultaneously, and behaves as P afterwards.

Real-time Several timed process constructors are supported in PRTS to capture the
real-time behaviors of the system. Process Wait [d] idles for d time units, where d
is an integer constant. In P timeout [d] Q , the first observable event of P shall occur
before d time units elapse (since the process is activated). Otherwise, Q takes over
control after d time units. P interrupt [d] Q behaves as P until d time units elapse,
and then Q takes over control. PRTS extends Timed CSP [13] with additional timed
process constructs. P deadline[d] constrains P to terminate before d time units.
P within[d] requires that P must perform an observable event within d time units.

Probability pcase{pr0 : P0; pr1 : P1; · · · ; prk : Pk} is used to model the random-
ized behaviors of a system. Here pri is a positive constant to express the probability
weight. Intuitively, it means that with pri

pr0+pr1+···+prk
probability, the system be-

haves as Pi . Obviously the sum of all the probabilities in one pcase is 1.

Note that the probabilistic real-time systems modeled in PRTS can be fully hierar-
chical, since P and Q in the above constructors can be any processes. This is different
from PTA based languages which often have the form of a network of flat PTA.

5 Details can be found in PAT’s user manual.

Operational Semantics The semantic model of PRTS is Markov Decision Processes
(MDP) because of its mixture of non-deterministic and probabilistic choices. Note here
we assume the valuations of variables and the processes reachable from the initial con-
figuration are finite, therefore an MDP can have infinite states only due to its dense time
transitions. In [16], we have defined concrete firing rules and abstract firing rules
respectively. The former describes the operational semantics of PRTS, while the latter
captures the execution behaviors of PRTS models after zone abstraction . This ab-
straction is necessary since it generates finite state space from a PRTS model so that
traditional probabilistic model checking techniques can be used.

Our automatic zone abstraction approach is probability preserving for several prop-
erties such as reachability checking and LTL checking. A proof sketch is as follows:
given a concrete MDP and one of its scheduler, a discrete-time Markov Chain (DTMC)
can be defined; we can always build a corresponding DTMC in the abstract MDP to
guarantee these two DTMC are time-abstract bi-similar, and vice versa [18, 16].

We remark that forward reachability of PTA using zone abstraction is not accu-
rate [10]. In PTA, given an abstract DTMC defined by the abstract model and a sched-
uler, it is possible that there is no corresponding concrete DTMC can be defined from
the concrete model. Therefore the maximum (minimum) probability of reachability
property in the abstract model is an upper (lower) bound of the accurate result. Some
approaches such as [8] are used to solve this problem.

3 System Analysis

In our model checker, PRTS models can be analyzed by the built-in editor, simulator
and verifier, through which we could investigate system behaviors of the models. In this
section we briefly present how the simulator and verifier work.

3.1 Simulation

Our tool provides a discrete-event simulator which allows users to interactively and
visually simulate system behaviors. In simulation, PRTS models follow the abstract op-
eration semantics in order to guarantee that each step reflects a meaningful execution
of the system. Users could choose automatic simulation, which means the simulator
will randomly execute the model and generate the random states, or manual simula-
tion, which allows users to choose next event from the current enabled events. Through
simulation, users could visually check how the model executes step by step, which is
very useful in system design and analysis, especially when there are some undesired
executions found in verification. Simulation is a good complement to verification since
users could have an intuitive observation and it makes debugging more convenient.

3.2 Verification

Compared with simulation, automatic verification plays a more important role in system
analysis since it indicates the accurate result of whether a property is satisfied in a
system. Two aspects are quite significant in verification with a model checker. One is the

properties it can support, and the other is the efficiency of the verification algorithms. In
the following, we review several widely used properties in PRTS, and some techniques
in the verification algorithm to speed up the model checking procedure.

Properties Supported PRTS supports multiple kinds of useful properties in system de-
sign since they are focusing on different aspects of the system. Because MDP has non-
deterministic choices and (infinite) many schedulers, we consider the maximum and
minimum probability of a specified property and mainly follow the algorithms in [3].

Reachability Checking The maximum/minimum probability of reaching specific tar-
get states could be checked using numerical iterative method.

Reward Checking The maximum/minimum accumulated rewards/costs to reach the
target states could be calculated also through the iterative method. In PRTS we just
consider the action reward, that is, assigning each visible action a reward which is
a rational number.

LTL Checking In PRTS we support LTL-X (LTL without ‘next’ operator) since in
abstract model the semantics of ‘next’ is hard to define. In our setting, LTL formula
can be built from not only atomic state propositions but also events so that it is
called SE-LTL [5]. It is very expressive and suitable for PRTS since our language
is both event-based and state-based. We adopt the Rabin automata-based approach
to calculate the maximum/minimum probability that an SE-LTL is satisfied.

Refinement Checking A desired property could be defined as a non-probability model
and we can check a trace refinement relation between this model and the system
specification [17].

Efficient Verification Techniques In our implementation, after zone abstraction we adopt
mainly two techniques to enhance the efficiency of verification.

Counter Abstraction For some protocols having similar behaviors, we can group those
processes together using counter abstraction [12, 15]. Its extension to probabilistic
system is still valid, whose proof is similar to work [7]. This approach reduces the
state space without affecting the probability of specific properties which are irrele-
vant with processes identifiers.

Safety Checking via Refinement Checking LTL formulas can be categorized into ei-
ther safety or liveness [2]. In [17], we have proven that safety property can be
verified via refinement checking. Given an SE-LTL property, our tool supports au-
tomatic safety detection. The experiment results show that sometimes it reduces
verification time significantly compared with Rabin automata approach [17].

4 Implementation and Experiments

PRTS has been integrated into PAT, which is implemented with C# and can run on all
widely-used operating systems. To make our tool more practical, we have developed a
Visual Studio 2010 plug-in (available at [1]) to edit, simulate and verify PRTS models
inside Visual Studio. Next, we demonstrate some experiments6 to show the efficiency

6 Due to space constraint, detailed information of the models and properties can be found in [1].

System
Random Nearest

Result(pmax) States Time(s) Result(pmax) States Time(s)
lift=2; floor=2; user=2 0.21875 20120 1.47 0.13889 12070 1.33
lift=2; floor=2; user=3 0.47656 173729 15.04 0.34722 83026 6.23
lift=2; floor=2; user=4 0.6792 777923 90.66 0.53781 308602 28.31
lift=2; floor=2; user=5 0.81372 2175271 406.29 0.68403 740997 85.29
lift=2; floor=3; user=2 0.2551 72458 5.13 0.18 38593 2.89
lift=2; floor=3; user=3 0.54009 1172800 150.20 0.427 500897 48.05
lift=2; floor=4; user=2 0.27 170808 13.06 0.19898 86442 6.11
lift=3; floor=2; user=2 0.22917 562309 86.88 0.10938 266621 34.25

Table 1. Experiments: Lift System

of our tool; the testbed is a PC running Windows XP with Intel P8700 CPU@2.53GHz
and 2GB memory.

First, we use a multi-lift system to demonstrate the effectiveness of PRTS. Such
system contains different components, e.g. lifts and buttons; it usually has timing re-
quirements in service and users may have random behaviors. An interesting phenom-
ena in such system is that a user presses the button outside the lifts, but one lift on the
same direction passes by without serving him/her. This is possible since the lift which
is assigned to serve this user is occupied by other users for a long time, and other lifts
reach that user’s floor first and pass by.

The experiments results are listed in Table 1. We analyze two kinds of task assign-
ment mechanisms: assigning to nearest lift and assigning to a random lift. From the
table we could conclude that the first mechanism is better, since it has a smaller proba-
bility to ignore users’ requests and this is consistent with common sense.

Next, we compare our model checker with PRISM on verifying benchmark systems
of probabilistic real-time system. Here we use two PTA models described in [8]. One
is the firewire abstraction (FA) for IEEE 1394 FireWire root contention protocol and
the other is zeroconf (ZC) for Zeroconf network configuration protocol. We build PTA
models using PRISM and PRTS models using PAT, and verify the desired reachability
properties to check the efficiency of these two tools. Here we choose PRISM’s default
verification technique: stochastic games since it usually has the best performance [8].

The results are listed in Table 2. ‘-’ means that experiment takes more than 1 hour.
The parameter of each model is the deadline constrain; for PRISM, Iteration means
how many refinements the stochastic game approach executes to get the precise result.
In these cases we notice PRTS is much faster than PRISM’s PTA since our approach
just uses zone abstraction and theirs must have additional refinement procedure.

5 Conclusion

In this work, we proposed a model checker for hierarchical probabilistic real-time sys-
tems. Its effectiveness and efficiency are demonstrated through several case studies. As
for future work, we are exploring more aspects of probabilistic real-time system such
as zeno-check and digitization, and various properties such as real-time property.

System Result
PAT PRISM

States Time(s) States Iterations Time(s)
FA(10K) 0.94727 1352 0.15 1065 19 1.98
FA(20K) 0.99849 5030 0.13 8663 34 65.08
FA(30K) 0.99994 11023 0.45 34233 45 575.03
FA(300K) >0.99999 726407 30.74 - - -
ZC(100) 0.49934 404 0.15 135 0 0.28
ZC(300) 0.01291 4813 0.65 2129 26 2.73
ZC(500) 0.00027 12840 2.39 10484 44 63.19
ZC(700) 1E-5 24058 5.78 31717 60 427.70

Table 2. Compared with PRISM

References
1. PRTS Model Checker. http://www.comp.nus.edu.sg/~pat/cav12prts.
2. B. Alpern and F. B. Schneider. Recognizing Safety and Liveness. Distributed Computing,

2(3):117–126, 1987.
3. C. Baier and J. Katoen. Principles of Model Checking. The MIT Press, 2008.
4. G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson, Wang Yi, and M. Hen-

driks. UPPAAL 4.0. In QEST, pages 125–126. IEEE, 2006.
5. S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. State/Event-Based Soft-

ware Model Checking. In IFM, volume 2999 of LNCS, pages 128–147. Springer, 2004.
6. A. Hartmanns and H. Hermanns. A modest approach to checking probabilistic timed au-

tomata. In QEST, pages 187–196, September 2009.
7. M. Kwiatkowska, G. Norman, and D. Parker. Symmetry reduction for probabilistic model

checking. In CAV’06, volume 4114 of LNCS, pages 234–248. Springer, 2006.
8. M. Kwiatkowska, G. Norman, and D. Parker. Stochastic games for verification of probabilis-

tic timed automata. In FORMATS, volume 5813 of LNCS, pages 212–227, 2009.
9. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-

time systems. In CAV, volume 6806, pages 585–591, 2011.
10. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic Verification of

Real-time Systems with Discrete Probability Distributions. Theoretical Computer Science,
282(1):101–150, 2002.

11. Y. Liu, J. Pang, J. Sun, and J. Zhao. Verification of population ring protocols in pat. In TASE,
pages 81–89. IEEE Computer Society, 2009.

12. A. Pnueli, J. Xu, and L. D. Zuck. Liveness with (0, 1, infty)-counter abstraction. In CAV,
pages 107–122, 2002.

13. S. Schneider. Concurrent and Real-time Systems. John Wiley and Sons, 2000.
14. J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible Verification under Fairness.

In CAV, volume 5643 of LNCS, pages 709–714. Springer, 2009.
15. J. Sun, Y. Liu, A. Roychoudhury, S. Liu, and J. S. Dong. Fair model checking with process

counter abstraction. In FM, pages 123–139. Springer, 2009.
16. J. Sun, Y. Liu, S. Song, J. S. Dong, and X. Li. Prts: An approach for model checking proba-

bilistic real-time hierarchical systems. In ICFEM, pages 147–162, 2011.
17. J. Sun, S. Z. Song, and Y. Liu. Model Checking Hierarchical Probabilistic Systems. In

ICFEM, volume 6447 of LNCS, pages 388–403. Springer, 2010.
18. J. Sun, S. Z. Song, Y. Liu, and J. S. Dong. PRTS: Specification and Model Checking. Tech-

nical report, 2011. http://www.comp.nus.edu.sg/~pat/preport.pdf.

