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Summary

The design and verification of real-time systems are notoriously difficult problems. In this

thesis, we study the modeling and verification of real-time systems using timed process

algebra, particularly Timed CSP.

Timed CSP is an elegant and intuitive modeling language for real-time systems. It has been

widely accepted and applied to a wide arrange of systems. However the verification support

for Timed CSP is limited. The first part of the thesis is to develop a reasoning mechanism for

Timed CSP by using Constraint Logic Programming (CLP) as underlying reasoning engine.

Our approach starts with a systematic translation of the syntax of Timed CSP into CLP.

Powerful constraint solver like CLP(R) is then used to prove traditional safety properties

and beyond, e.g., reachability, deadlock-freeness, timewise refinement relationship, lower or

upper bound of a time interval, etc. Counterexamples are generated when properties are

not satisfied. Based on this translation, an interactive tool, named HORAE, which provides

composing and reasoning of Timed CSP process descriptions is developed.

The second contribution of this thesis is the proposal of a formal language, named Timed

Planning, for modeling real-time systems. Timed Planning extends Timed CSP with the

capability of stating complicated timing behaviors. A Timed Planning model is made up of

a hierarchical timed process and a set of constraints over processes, events and the data vari-

ables which are the requirements that the process should satisfy. Particularly, each process

is associated with a set of localized timing/untiming requirements with keyword Where

which can be specified in a compositional way. The full syntax and operational semantics

of Timed Planning are formally defined. A reasoning mechanism for the Timed Planning

is hence developed based on CLP by extending our reasoning engine HORAE. Feasibility

checking and various property verification can be applied to check systems modeled in Timed

Planning.

To show the usefulness of Timed Planning, we apply Timed Planning and HORAE to solve

three different application domains. Firstly, we use Timed Planning to model classical job-



shop scheduling problems, in order to find a shortest execution in terms of elapsed time. In

this case, the job-shop scheduling problem can be reduced to a problem of finding a complete

execution (an execution that terminates) with the minimum execution time. In our work,

Both deterministic and preemptive job-shop scheduling problems can be solved.

Secondly, security protocols are widely used for secure application-level data transport cross-

ing distributed systems. Designing security protocols is notoriously difficult and error-prone.

The new challenges raise when different timing aspects are required in the security protocol

design, such as timestamps, delays, timeout and a set of timing constraints. We focus on

using Timed Planning to accomplish the modeling and analyzing of timed security protocols.

The use of explicit timing information allows us to specify security protocols with times-

tamps, timeout and retransmissions which can be naturally modeled using Timed Planning

specification. In the timing analysis, we could verify timed non-injective agreement authenti-

cation property which can be easily extended to other authentication property verification.

Besides, we can model timing requirements/constraints and verify other timed sensitive

properties such as execution time of a protocol which is beyond the capability of existing

approaches.

Thirdly, pervasive computing environments encompass a spectrum of computation and com-

munication devices that seamlessly augment human thoughts and activities. They have been

used to assist elders with mild dementia to improve their level of independence and quality

of life through cognitive reinforcement. To support formal analysis, we propose to build a

context-aware reminding framework for elders living at home using Timed Planning specifi-

cation. Then we demonstrate the effectiveness of formal methods via modeling and verifying

an integrated smart space reminding system for monitoring and assisting people with mild

dementia in the nursing home.

Key words: Timed Process Algebra, Formal Verification, Concurrent and Real-

time Systems, Constraint Logic Programming, Refinement, Job-shop Scheduling

Problem, Security Protocol, Dementia
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Chapter 1

Introduction

The design and verification of real-time systems are notoriously difficult problems, especially

when systems often depend on quantitative timing. Modeling and verification of real-time

systems are research topics which have important practical implication. Formal modeling

and analysis of real-time systems are the trend to systematic and automatic detecting the

design or implementation errors for complex systems.

1.1 Motivation and Goals

The correctness of many systems and devices in our modern society depends not only on the

effects or results they produce but also on the time at which these results are produced. These

real-time systems range from the anti-lock braking controller in automobiles to the vital-sign

monitor in hospital intensive-care units. For example, when the driver of a car applies the

brake, the anti-lock braking controller analyzes the environment in which the controller is

embedded (car speed, road surface, direction of travel) and activates the brake with the

appropriate frequency within fractions of a second. Both the result (brake activation) and

the time at which the result is produced are important in ensuring the safety of the car, its

driver, and passengers.

1
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Recently, computer hardware and software are increasingly embedded in a majority of these

real-time systems to monitor and control their operations. These computer systems are

called real-time computer systems, or simply real-time systems. Unlike conventional, non-

real-time systems, real-time systems are closely coupled with the environment being mon-

itored and controlled. Examples of real-time systems include computerized versions of the

braking controller and the vital-sign monitor, the new generation of airplane and space-

craft avionics, the planned Space Station control software, high-performance network and

telephone switching systems, multimedia tools, virtual reality systems, robotic controllers,

battery-powered instruments, wireless communication devices (such as cellular phones and

PDAs), astronomical telescopes with adaptive-optics systems, and many safety-critical in-

dustrial applications. These real-time systems must satisfy stringent timing and reliability

constraints in addition of functional correctness requirements.

In this thesis, our research focuses on the modeling and verification of real-time systems. In

particular, we have tried to address four issues related to real-time systems: (i) proposing

a formal language to model real-time systems, (ii) exploring efficient verification techniques

to perform formal analysis of the models, (iii) implementing a toolkit to support effective

real-time verification, and (iv) applying the proposed techniques in different domains.

1.1.1 Modeling Real-time systems

Real-time system modeling is of great importance and highly non-trivial. The choice of

modeling language is an important factor in the success of the entire system analysis or

development. The language should cover several facets of the requirements and the mod-

el should reflect exactly (up to abstraction of irrelevant details) an existing system or a

system to be built. The language should have a semantic model suitable to study the be-

haviors of the system and to establish the validity of desired properties. Many languages

have been proposed to model real-time systems, e.g., algebra of timed processes [79], timed

CCS [108], timed CSP [88, 18], etc. The most popular language is timed automata [5, 71].

Timed automata are finite state automata equipped with clocks. They are powerful in de-
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signing real-time models by explicitly manipulating clock variables. Real-time constraints

are captured by explicitly setting or resetting clocks. A number of automatic verification

support for timed automata based models have proven to be successful, e.g., Uppaal [62],

KRONOS [10].

Models based on timed automata often have a simple structure. For instance, the input

models of the Uppaal checker take the form of a network of timed automata with no

hierarchy [62]. The advantage of a simple structure is that efficient verification is made

feasible. Nonetheless, designing and verifying compositional real-time systems is becoming

an increasingly important task due to the widespread applications and increasing complexity

of real-time systems. High-level requirements for real-time systems are often stated in terms

of deadline, time out, and timed interrupt [60, 32, 63]. In industrial case studies of real-

time system verification, system requirements are often structured into phases, which are

then composed in many different ways. Unlike Statecharts equipped with clocks [49] or

timed process algebras [79, 108, 88], timed automata lack high-level compositional patterns

for hierarchical design. Users often need to manually cast those terms into a set of clock

variables with carefully calculated clock constraints. This process is tedious and error-prone.

On the other hands, real-time system modeling based on timed process algebras often suffers

from lack of language features (e.g., shared variables) or automated tool support.

One goal of this thesis is to design a modeling language for hierarchical real-time systems,

which is sufficiently expressive, but is still subject to automatic verification.

Requirement Specification and Verification

Critical system requirements like safety, liveness and fairness play important roles in system

specification, verification and development. Safety properties ensure that something unde-

sirable never happens. Liveness properties state that something desirable must eventually

happen.

In order to verify hierarchical real-time systems, more general specifications like refinement
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relation are needed. In these cases, the requirement is modeled using an abstract model

rather than a logic formula, which gives more expressive power. FDR (Failures-Divergence

Refinement) [84] is the de facto refinement analyzer for CSP, which has been successfully

applied in various domains. Based on the model checking algorithm presented in [84] and

later improved with other reduction techniques presented in [86], FDR is capable of handling

large systems. Nonetheless, when the system contains real-time constraints, new verification

techniques and tools are required.

There are a few verification support for Timed CSP, e.g. the theorem proving approach

documented in [11, 47], and the translation to Uppaal models [25, 26]. The PAT model

checker [1] is the first dedicated verification tool support for Timed CSP models by using dy-

namic zone abstraction. However, Timed CSP lacks support for stating system requirements

which constrain all behavioral traces of given processes, for example, deadline and execution

time of a process, time-related constraints among events which are common requirements for

many real time systems. To increase the expressiveness of Timed CSP, current verification

support becomes inadequate.

In this thesis, we want to explore the new approach for verification of powerful real-time

system modeling language. To add to our understanding of the field, we aim to develop

efficient model checker with the consideration of the above points.

1.2 Summary of Contributions

The main result of this thesis is a powerful modeling language for real-time systems together

with the complete verification support. Several cases studies demonstrate the usefulness of

our approach. The contributions of this thesis can be summarized as follows:

Event-based specification languages like the classic Communicating Sequential Process (C-

SP) of Hoare’s [51] and its timed extension Timed CSP [82, 18], have been proposed for

decades. Such specification languages are elegant and intuitive as well as precise. They have
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been widely accepted and applied to a wide arrange of systems, including communication

protocols, embedded systems, etc [85]. It is important that system specified using CSP or

Timed CSP can be proved formally and even better if the proving is fully automated.

The first part of the thesis is building a reasoning mechanism for Timed CSP. Instead of

building a specialized reasoning engine for Timed CSP from scratch, we choose one of pow-

erful reasoning mechanisms, Constraint Logic Programming (CLP) [53, 54], as underlying

reasoning engine. CLP has been successfully applied to model programs and transition

systems for the purpose of verification [48, 56], showing that their approach outperforms

the well-known state-of-art systems with higher efficiency. The XMC/RT system [37, 45]

showed how a Timed Safety Automata (TSA) represented in CLP can be comparable in

efficiency, by using a tabling logic programming framework. [4] employs a logic program

transformation based approach for inductive verification of real-life parameterized proto-

cols. Our approach starts with a systematic translation of the syntax of Timed CSP into

CLP. Operational semantics are encoded into CLP in a systematic way. Powerful constrain-

t solver like CLP(R) [55] is then used to prove traditional safety properties and beyond,

e.g., reachability, deadlock-freeness, lower or upper bound of a time interval, etc. Coun-

terexamples are generated when properties are not satisfied. Based on this translation, an

interactive tool, named HORAE, which provides composing and reasoning of Timed CSP

process descriptions is developed.

One of the main contribution of this thesis is the proposal of a formal language for mod-

eling real-time systems, which is an extension of Timed CSP. We name this extension as

Timed Planning. Timed Planning specification extends Timed CSP with the capability of

stating complicated timing behaviors for processes and events to model and verify complex

compositional real-time systems. A Timed Planning model is made up of a hierarchical

timed process and a set of constraints over processes, events and the data variables which

are the requirements that the process should satisfy. In this approach each process is associ-

ated with a set of localized timing/untiming requirements with keyword Where which can

be specified in a compositional way. The full syntax and operational semantics of Timed
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Planning language are formally defined. A reasoning mechanism for the Timed Planning is

hence developed based on CLP by extending our reasoning engine HORAE. Both syntax and

semantics of Timed Planning are formally translated into CLP. The operational semantics

is encoded to CLP, where a set of global and local variables need to be captured during

the execution. Feasibility checking and various property verification can be applied to check

systems modeled in Timed Planning. Feasibility checking is necessary which helps users to

debug the conflicts of the set of timing constraints specified in the systems.

In many application domains, we are interested in selecting, among all possible behaviors,

one that optimizes some sophisticated performance measurement. We apply Timed Plan-

ning and HORAE to solve classical job-shop scheduling problems, where finding an optimal

schedule corresponds to finding a shortest execution (in terms of elapsed time) in the Timed

Planning. The observation underlying is that classical scheduling and resource allocation

problems can be modeled naturally using Timed Planning whose runs correspond to feasible

schedules. In this case, the job-shop scheduling problem can be reduced to a problem of

finding a complete execution (an execution that terminates) with the minimum execution

time. In our work, Both deterministic [58] and preemptive job-shop scheduling problems

can be solved. We also apply our approach to handle the extended job-shop scheduling

problems, where jobs can have more complex relations, such as a composition of operational

behaviors with communications, and jobs with deadlines and relative timing constraints,

which no other current work are able to support.

Another application of Timed Planning is to model and verify timed security protocol-

s. Security protocols are widely used for secure application-level data transport crossing

distributed systems. In general, designing security protocols is notoriously difficult and

error-prone. Many protocols proposed in the literature and exploited in practice turned out

to be awed, or their well-functioning was found to be based on implicit assumptions. Since

the late 80s various approaches have been put forward for the formal verification of securi-

ty protocols to overcome the problems of faulty implementations and hidden requirements.

The new challenges raise when different timing aspects are required in the security protocol
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design, such as timestamps, delays, timeout and a set of timing constraints. In the past

years, there has been an increasing interest in the formal analysis of timed cryptographic

protocols. However, there are few tool supports for modeling and analyzing security pro-

tocols with the capability of capturing various timing features. A particularly successful

approach to analyze untimed security protocols is modeled using CSP [51] and verified by

FDR model checker [87, 70]. Motivated by this approach, we focus on using Timed Plan-

ning to accomplish the modeling and analyzing of timed security protocols. Our approach is

different from the previous approaches by taking the timing information into account. The

use of explicit timing information allows us to specify security protocols with timestamps,

timeout and retransmissions which can be naturally modeled using Timed Planning specifi-

cation. In the timing analysis, we could verify timed non-injective agreement authentication

property which can be easily extended to other authentication property verification [46].

We also propose to use the capability of Timed Planning to avoid such attacks without

changing the original specifications of the protocols. Besides, we can model timing require-

ments/constraints and verify other timed sensitive properties such as execution time of a

protocol which is beyond the capability of existing approaches.

Pervasive computing environments encompass a spectrum of computation and communica-

tion devices that seamlessly augment human thoughts and activities. Applications in this

type of environments are often context-aware, using various kinds of context such as location

and time to adapt to the evolving environments and provide smarter services. As the fast

development of context-aware systems (e.g. new sensors, new application domains), critical

system requirements like safety and liveness properties start to play more important roles.

For example, smart system deployed in hospital shall never reach a state which hazard-

s patients’ lives. Therefore, formal methods are desirable in the design and development

context-aware systems.

Pervasive computing techniques have been proposed to assist elders with mild dementia to

improve their level of independence and quality of life through cognitive reinforcement. To

support formal analysis, we propose to build a context-aware reminding framework for elders
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living at home using Timed Planning specification. Then we demonstrate the effectiveness

of formal methods via modeling and verifying an integrated smart space reminding system

for monitoring and assisting people with mild dementia in the nursing home.

1.3 Thesis Outline and Overview

In this section, we briefly present the outline of the thesis and overview of each chapter.

Chapter 2 introduces background information on specification languages and tools used in

the presented work. We firstly review CSP and Timed CSP with their syntax and semantics.

Next we briefly introduce Constraint Logic Programming (CLP) and its related works in

formal method domain.

Chapter 3 illustrates the verification system for Timed CSP using Constraint Logic Pro-

gramming as underlying reasoning engine. We firstly show how the syntax of Timed CSP

is formally translated into CLP. The operational semantics of each and every operator of

Timed CSP are formally encoded into CLP. A reasoning tool for Timed CSP is presented in

Section 3.5. Last but not least, we demonstrate the effectiveness of our approach through

benchmark real-time systems.

Chapter 4 introduces an extended Timed CSP language, namely Timed Planning. We firstly

define the syntax and operational semantics of Timed Planning formally. We further extend

the verification system of Timed CSP to support Timed Planning using Constraint Logic

Programming.

Chapters 5, 6 and 7 are devoted to applying Timed Planning in various applications to solve

different problems. Chapter 5 applies Timed Planning in Job-shop scheduling problems

where using underlying reasoning engine to find optimal scheduler for both preemptive

and non-preemptive job-shop scheduling problems. Another piece of work has been done

is that we apply Timed Planning to model and verify timed security protocols, which is
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demonstrated in Chapter 6. In Chapter 7, we apply Timed Planning in pervasive computing,

more specifically, the mild dementia care for elderly at both home and nursing home.

Lastly, Chapter 8 concludes this thesis, summarizes the main contributions and discusses

possible future work directions.

1.4 Publications from the Thesis

Most of the work presented in this thesis has been published or accepted in international

conference proceedings or journals.

The work in Chapter 3 was presented at The 8th International Conference on Formal Engi-

neering Methods ICFEM’06 (December 2006) [28]. The tool horae in Section 3.8 is published

as a tool paper on The 13th International Symposium on Formal Methods FM’06 (Novem-

ber 2006) [27]. The work in Chapter 4 was the basis for the paper published at The 4th

International Conference on Secure Software Integration and Reliability Improvement (June

2010) [112]. The work in Chapter 5 was presented at The 1st Workshop on International

Conference on Secure Software Integration and Reliability Improvement (April 2010) [111].

The work in Chapter 6 was accepted at The 4th International Conference on Secure Software

Integration and Reliability Improvement (September 2010) [112].

A paper including the modeling smart reminding system presented in Section 7 has been

submitted for publication [98]. I also made contributions to other publications [24, 30, 31,

33, 99] which are remotely related this thesis.

For all the publications mentioned above, I have contributed substantially in both theory

development and tool implementation.

A full list of the publications on which the thesis is based is included in the bibliography.





Chapter 2

Background Introduction

Real-time systems exhibit complex behaviors. System simulation and verification become

more and more demanding as the complexity grows. It is highly desirable to have formal

modeling languages to describe the real-time system rigourously. Compared with Timed

Automata (with a flatten structure), timed process algebra is a more powerful way to mod-

eling hierarchical real-times systems. Timed process algebra has a long history with various

proposed formalisms. Examples include Timed CCS [108], Timed Communicating Sequen-

tial Processes (Timed CSP) [89], Timed petri nets [77] and so on. In this thesis, we focus

on Timed CSP for its expressive power and wide usage.

Constraint logic programming (CLP) [54] is a form of constraint programming, in which logic

programming is extended to include concepts from constraint satisfaction. In this chapter,

we briefly introduce the basic concepts and conventions of CLP, which are used in the rest

of the thesis.

The remainder of the chapter is organized as follows. Section 2.1 gives an introduction

to CSP. The timed extension of CSP is explained in Section 2.2 with formal syntax and

semantics. Section 2.3 presents the fundamental concepts of CLP. Section 2.4 introduces

the model checker PAT.

11
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2.1 Communicating Sequential Processes (CSP)

In computer science, Communicating Sequential Processes (CSP) [52] is a formal language

for describing patterns of interaction in concurrent systems. It is a member of the family

of mathematical theories of concurrency known as process algebras, or process calculi. CSP

was first described in [51] by C. A. R. Hoare, but has evolved substantially since then.

FDR (Failures-Divergence Refinement) [84] is the de facto refinement analyzer for CSP,

which has been successfully applied in industry as a tool for specifying and verifying the

concurrent aspects of a variety of different systems. The theory of CSP is still the subject

of active research, including work to increase its range of practical applicability. CSP has

passed the test of time. It has been widely accepted and influenced the design of many

recent programming and specification languages including Ada [40], occam [75], Concurrent

ML [83], BPEL4WS [81], TCOZ [74, 72, 25, 73], OZTA [24, 30] etc.

As its name suggested, CSP allows the description of systems in terms of component process-

es that operate independently, and interact with each other solely through message-passing

communication. However, the “Sequential” part of the CSP name is now something of a

misnomer, since modern CSP allows component processes to be defined both as sequential

processes, and as the parallel composition of more primitive processes. The relationships

between different processes, and the way each process communicates with its environment,

are described using various process algebraic operators. Using this algebraic approach, quite

complex process descriptions can be easily constructed from a few primitive elements.

CSP is a formal specification language where processes proceed from one state to anoth-

er by engaging in events. Processes may be composed by using operators which require

synchronization on events, i.e., each component must be willing to participate in a given

event before the whole system makes the transition. Synchronous communication, rather

than assignments to shared state variables, is the fundamental means of interaction between

agents. In the following, we present the syntax of CSP process and informal semantics. For

any process P in CSP language, it can be defined using following syntax.
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P = Stop | Skip – primitives
| e → P – event prefixing
| ch!exp → P | ch?x → P – channel communications
| P \X – hiding
| P ; Q – sequential composition
| P 2 Q | P ⊓ Q – choice operators
| [b]P – state guard
| P ∥ Q – parallel composition
| P ||| Q – interleave composition
| P ▽ Q – interrupt
| ref (Q) – process reference

where P ,Q are processes, e is a name representing an event with an optional sequential

program1 prog , X is a set of event names (e.g., {e1, e2}), b is a Boolean expression, ch is a

channel, exp is an expression, and x is a variable.

Stop is the process that communicates nothing, also called deadlock. Skip = X → Stop,

where X is the special event of termination. Event prefixing e → P performs e and after-

wards behaves as process P . Hiding process P \ X makes all occurrences of events in X

not to be observed or controlled by the environment of the process. Sequential composition,

P ; Q , behaves as P until its termination and then behaves as Q . External choice P 2 Q

is solved only by the occurrence of a visible event2. On the contrast, internal choice P ⊓ Q

is solved non-deterministically. Process [b]P waits until condition b becomes true and then

behaves as P . Note that [b]P does not block and will be dropped in choice operators if other

choices are selected. Notice that it is different from if b {P} else {Q}. One distinguish-

ing feature of CSP is alphabetized multi-processes parallel composition. Let P ’s alphabet,

written as αP , be the events in P excluding the special invisible event τ . Process P ∥ Q

synchronizes common events in the alphabets of P and Q excluding non-communicating

events. In contrast, process P ||| Q runs all processes independently (except for communi-

cation through shared variables and synchronous channels3). Process P ▽ Q behaves as P

1The grammar rules for the sequential program can be found in PAT user manual.
2In CSP, symbol τ is introduced as the internal action in the operational semantics only. Any event other

than τ is called visible event.
3Note that in original CSP, P ||| Q does not allow communication through shared channels.
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until the first occurrence of a visible event from Q . A process expression may be given a

name for referencing. Recursion is supported by process referencing.

2.2 Timed CSP

2.2.1 Syntax of Timed CSP

Hoare’s CSP [51] is an event based notation primarily aimed at describing the sequencing of

behavior within a process and the synchronization of behavior (or communication) between

processes. Timed CSP extends CSP by introducing a capability to quantify temporal aspects

of sequencing and synchronization. Inherited from CSP, Timed CSP adopts a symmetric

view of process and environment. Events represent a cooperative synchronization between

process and environment. Both process and environment may control the behavior of the

other by enabling or refusing certain events and sequences of events.

Definition 1 (Timed CSP) A Timed CSP process is defined by the following syntax,

P ::= Stop | Skip | Run | e t→ P | e : E → P(e) | e@t → P(t)
| P1 2 P2 | P1 ⊓ P2 | P1 X ||Y P2 | P1 |[X ]|P2 | P1 ||| P2

| P1; P2 | P1 ▽ P2 | P1
d
◃ P2 | Wait d | P1 ▽d P2

| µX • P(X )

RunΣ is a process always willing to engage any event in Σ. Stop denotes a process that

deadlocks and does nothing. A process that terminates is written as Skip. A process which

may participate in event e then act according to process description P is written as e@t →

P(t). The (optional) timing parameter t records the time, relative to the start of the process,

at which the event e occurs and allows the subsequent behavior P to depend on its value.

The process e
t→ P delays process P by t time units after engaging event e. The external

choice operator, written as P 2 Q , allows a process of choice of behavior according to what

events are requested by its environment. Internal choice represents variation in behavior

determined by the internal state of the process. The parallel composition of processes P1
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and P2, synchronized on common events of their alphabets X , Y (or a common set of events

A) is written as P1 X ||Y P2 (or P1 |[A ]|P2). The sequential composition of P1 and P2,

written as P1; P2, acts as P1 until P1 terminates by communicating a distinguished event

X and then proceeds to act as P2. The interrupt process P1 ▽ P2 behaves as P1 until the

first occurrence of event in P2, then the control passes to P2. The timed interrupt process

P1 ▽d P2 behaves similarly except P1 is interrupted as soon as d time units have elapsed. A

process which allows no communications for period d time units then terminates is written as

Wait d . The timeout construct written as P1
d
◃ P2 passes control to an exception handler P2

if no event has occurred in the primary process P1 by some deadline d . Recursion is used to

give finite representation of non-terminating processes. The process expression µX • P(X )

describes processes which repeatedly act as P(X ). The detailed illustration of each process

can be found in [89].

2.2.2 Semantics of Timed CSP

The semantics of a Timed CSP process is precisely defined either by identifying how the

process may evolve through time or by engaging in events (i.e., the operational semantics

defined in [90]) or by stating the set of observations, e.g., traces, failures and timed failures

(i.e., the denotational semantics as defined in [17]). In this work, Timed CSP is used to

specify interactive timed tasks.

In general, the behavior of a process at any point in time may be dependent on its internal

state and this may conceivably take an infinite range of values. It is often not possible to

provide a finite representation of a process without introducing some notation for represent-

ing this internal state. The approach adopted by Timed CSP is to allow a process definition

to be parameterized by state variables. Thus a definition of the form P(x ) represents a

family of definitions, one for each possible value of x .

Example 2.2.1 (Timed Vending Machine) A user may insert some coins and then make

a choice between coffee or tea. Once the choice is made, the vending machine dispatches the
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corresponding drink. Or the user may ask the machine to release the coins and walk away.

If the user idles more than 10 seconds after the coin is inserted, the machine will release the

coins.

TVM =̂ µX • coin → ((reqrelease → release
2→ X )

2 (coffee
3→ dispatchcoffee → X ) 2 (tea

2→ dispatchtea → X ))
10
◃ (release → X )

2end

2.3 Constraint Logic Programming

Constraint Logic Programming (CLP) [54] began as a natural merger of two declarative

paradigms: constraint solving and logic programming. This combination helps to make

CLP programs both expressive and flexible, and in some cases, more efficient than other

kinds of logic programs. The CLP scheme defines a class of languages based upon the

paradigm of rule-based constraint programming. CLP(R) [55] is an instance of this class,

which is used in this thesis. We present some preliminary definitions about CLP in this

section.

Definition 2 (Atom, Rule and Goal) An atom is of the form p(t̃), where p is a user

defined predicate symbol and t̃ is a sequence of terms ‘t1, t2, . . . , tn ’. A rule is of the form

A : −B̃ ,Ψ where the atom A is the head of the rule, and the sequence of atoms B̃ and

the constraint Ψ constitute the body of the rule. A goal has exactly the same format as the

body of the rule of the form ? − B̃ ,Ψ. If B̃ is an empty sequence of atoms, we call this a

(constrained) fact . All goals, rules and facts are terms.

The universe of discourse D of CLP program is a set of terms, integers, and lists of integers.

A constraint is written using a language of functions and relations. They are used in two

ways, in the basic programming language to describe expressions and conditions, and in

user assertions, as defined below. In this work, we will not define the constraint language
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explicitly, but invent them on demand in accordance with our examples. Thus the terms

of our CLP programs include the function symbols of the constraint language. A ground

instance of a constraint, atom and rule is defined in obvious way. A ground instance of a

constraint is obtained by instantiating variables therein from D. The ground instances of

a goal G, written [[G ]] is the set of ground atoms obtained by taking all the true ground

instances of G and then assembling the ground atoms therein into a set. We write G1 |= G2

to mean that for all groundings θ of G1 and G2, each ground atom in G1θ appears in G2θ.

Let G = (B1, ...,Bn ,Ψ) and P denote a goal and program respectively. Let R = A :

−C1, ...,Cm ,Ψ1 denote a rule in P , written so as none of its variables appear in G . Let

A = B , where A and B are atoms, be shorthand for equations between their corresponding

arguments. A reduct of G using R is of the form

(B1, ...,Bi−1,C1, ...,Cm ,Bi+1, ...,Bn ,Bi = A ∧ Ψ ∧ Ψ1)

provided Bi = A ∧ Ψ ∧ Ψ1 is satisfiable. A derivation sequence is a possibly infinite

sequence of goals G0,G1, ... where Gi , i > 0 is a reduct of Gi−1. If there is a last goal Gn

with no atoms, notationally (2,Ψ) and called a terminal goal, we say that the derivation is

a successful and that the answer constraint is Ψ. A derivation is ground if every reduction

therein is ground.

Example 2.3.1 (Fibonacci) The following is typical CLP program:

fib(0, 1). fib(1, 1).
fib(N ,X 1 +X 2) : −N > 1,fib(N − 1,X 1),fib(N − 2,X 2).

A relation fib(N, X) is defined, where X is the factorial of N , denoted as X = N !. There

are three atoms for the relation fib(N, X), where the first two atoms are facts and the last

one is a rule. We want to find the number whose fibonacci is greater than 3 but less than

8, by executing the goal ?− F > 3,F < 8,fib(N ,F ). which returns N = 4,F = 5. 2end

CLP has been successful as a programming language, and more recently, as a model of

executable specifications. There have been numerous works which use CLP to model system
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modeling or programs and which use an adaptation of the CLP proof system for proving

certain properties [57, 29]. In this work, we follow this trend and use existing powerful

constraint solvers for mechanized Timed Planning.

2.3.1 CLP and Reasoning

Constraint Logic Programming has been used to model programs and transitions systems

for purpose of verification problems. In particular, it has been used to model Timed Safety

Automata (TSA) [50]. The main advantage of using CLP pertain to expressiveness. For

example, [48] demonstrates the proof of some standard properties, as well as properties such

timed bounds between important events, on a CLP representation of TSA.

[56] presented a CLP proof method for well-known state-of-art systems - Timed Automata.

They started with a systematic translation of TSA into CLP and then use a new CLP

inference method for proving assertions. They claimed that their assertion language can

specify important properties beyond traditional safety properties, one important of which is

the symmetric. They also gave a demonstration showing that their improvements over the

Timed Automata model checker - Uppaal [62].

Moreover, (Constraint) Logic Programming has been used in formal methods area, for ex-

ample, [106] uses Logic Programming Techniques for animating Z which could be used for

detecting errors in a formal specification.

2.4 Verification and Process Analysis Toolkit (PAT)

In this section, we introduce the verification tool for Timed CSP. Due to the expressive

power, verification of Timed CSP is a difficult task with minimum tool support. To the

best of our knowledge, there are few verification support for Timed CSP, e.g. the theorem

proving approach documented in [11, 47], the translation to Uppaal models [25, 26] and

the approach based on constraint solving [28]. Among them, the most established tool is
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Process Analysis Toolkit (PAT) [1, 66, 95, 68, 64, 101, 113, 103]. PAT is a self-contained

toolkit to analyze real-time systems, which supports system modeling, animated simulation

and automatic verification (based on advanced model checking techniques like dynamic zone

abstraction [99]).

PAT’s modeling language [99, 94, 102, 69, 97] is an extension of Timed CSP with mutable

variables and data structures (e.g., arrays, stacks or arbitrary data types), synchronous

or asynchronous channels, etc. The language adopts a dense-time semantics, where the

clock values are rational numbers. Hence, there may be infinitely many transitions between

any two time points. To offer efficient verification support, a fully automated abstraction

technique is developed to build an abstract finite state system from the (infinite) model. It

has been prove that the abstraction has finite state and is subject to model checking [99].

Further, it weakly bi-simulates the concrete model and, therefore, it may perform sound

and complete safety property checking, Linear Temporal Logic (LTL) [91] model checking,

refinement checking upon the abstraction.

Figure 2.1 shows the architecture design of PAT with four components, namely the editor,

the parser, the simulator and verifiers. The editor is featured with powerful text editing, syn-

tax highlighting and multi-documents environment. The parser compiles the system models

and the properties into internal representation. Due to infinite timed transitions, abstraction

is applied to the input models so that a finite state abstract model is yielded internally. The

simulator allows users to perform various simulation tasks on the models: complete states

generation of execution graph, automatic simulation, user interactive simulation, trace re-

play and etc. The simulator is also used to visualize Büchi automata generated from the

negation of LTL assertions. Most importantly, PAT implements several verifiers catering

for checking deadlock-freeness, reachability, LTL properties with fairness assumptions [], re-

finement checking [23, 65] and etc. To achieve good performance, advanced optimization

techniques are implemented, e.g., partial order reduction, process counter abstraction [100],

parallel model checking [67], etc. All the verification algorithms perform on-the-fly explo-

ration of the state space [110]. If any counterexample is identified during the exploration,
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Figure 2.1: Architecture Design

then it can be animated in the simulator for the purpose of debugging. The correctness

of PAT is established by using various test cases and user feedback. In additional, PAT is

verified by performing model checking on its source code [93].

Real-Time System Modeling in PAT

In PAT, a system model is composed of multiple elements, i.e. constants, global vari-

ables/channels, a set of timed process definitions, a set of assertions, etc. The process

definitions identify the computational logic of a system. A timed process P (hereafter

process) can be defined using a rich set of process constructs (similar to CSP processes).

Furthermore, a number of timed process constructs (similar to Timed CSP processes) can

be used to capture common real-time system behavior patterns. For example, let d be an

rational number. Process Wait [d ] idles for d time units. In process P timeout [d ] Q , the

first observable event of P shall occur before d time units elapse. Otherwise, Q takes over

control after exactly d time units elapse. Process P interrupt [d ] Q behaves exactly as P

(which may engage in multiple observable events) until d time units elapse, and then Q
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takes over control. Process P waituntil [d ] is constrained to finish only after d time units

have elapsed since the process starts. If P terminates early, then it idles until exactly d

time units have elapsed. Process P deadline[d ] constrains P to terminate before d time

units. In this setting, clock variables are made implicit and hence they cannot be compared

with each other directly, which potentially allows efficient clock manipulation and hence

system verification. In real-time systems, requirements are often structured into phases,

which is hierarchical in nature [78]. PAT modeling language is hierarchical and uses implicit

clocks, hence the modeling process is much simpler without complicated clock calculations.

The complete language syntax can be found in PAT’s user manual. The formal operational

semantics can be found in [99].

Abstraction and Verification

Model checking requires a finite state system model. Hence, we assume that all variables have

finite domains and the process forbids unbounded non-tail recursion. However, the number

of system states (and hence the transition system) is still infinite because of our dense-time

semantics. PAT adopts a zone abstraction [99] to build an abstract system. Different from

zone abstraction applied to Timed Automata [21], PAT dynamically creates/deletes a set

of clocks to precisely encode the timing requirements. A zone is the maximal set of clock

valuations satisfying a set of primitive clock constraints. A primitive constraint on a clock

is of the form tm ∼ d where tm is a timer, d is a constant and ∼ is ≥, =, or ≤. Because

clocks are implicit, clock readings cannot be compared directly. In order to support efficient

verification, PAT uses difference bound matrices (DBM) [21] as an equivalent representation

for the zone.

To perform verification on the original systems, PAT shows that the abstract transition

system is equivalent to the original transition system. It is shown that our zone abstraction

is sound and complete with respect to the following three properties using a specialized

bi-simulation relationship [99].



2.4. VERIFICATION AND PROCESS ANALYSIS TOOLKIT (PAT) 22

LTL Model Checking In this setting, the properties are linear temporal logic (LTL)

formulae, constituted by propositions on global variables and events. Notice that no clocks

are allowed in the property. In order to reflect model checking results on the abstract

transition system to the original system with respect to LTL formulae, it is need to establish

that the abstract transition system is equivalent to the concrete one with respect to LTL-X

formulae. The idea is to show stutter equivalence between traces of the abstract system and

the original system [99]. To verify the LTL formulae, PAT adopts the automata-based on-

the-fly verification algorithm [96], i.e., by firstly translating a formula to a Büchi automaton

and then check emptiness of the product of the system and the automaton.

Refinement Checking In this setting, PAT investigates an alternative verification ap-

proach. That is, to verify whether the system satisfies the property by showing a refinement

relationship between the system and a model which models the property. In order to check

refinement between two (timed) models, zone abstraction must be applied to both models.

In [99], it proves that it is sound and complete to show stable failures refinement between

the two abstraction transition systems in order to show failures refinement between the two

corresponding original models. The refinement relationship is verified using an on-the-fly

simulation checking approach.



Chapter 3

Encoding Timed CSP in CLP

Timed CSP is a powerful modeling language for real-time systems. However the verification

support is limited. The first piece of work we have done is building a reasoning mechanism

for Timed CSP. We choose CLP as the underlying reasoning support for Timed CSP, which

can provide a simple and intuitive way of representing real timing aspects of Timed CSP and

a flexible way of specifying interesting properties, such as deadlock-freeness, trace related

properties, time related properties, and etc.

This chapter is organized as follows. In Section 3.1, we start with translating syntax of

Timed CSP into CLP. Section 3.2 encodes the operational semantics of Timed CSP into

CLP, by capturing both event transition and timed transition of every operator defined in

Timed CSP (refer to Section 2.2). Section 3.3 encodes the denotational semantics of Timed

CSP into CLP. In Section 3.4, we demonstrate how to verify the properties of the Timed CSP

processes encoded in CLP based on the operational semantics. In Section 3.5, a prototype

tool HORAE is developed to support the verification of the Timed CSP with the techniques

we developed in this chapter. Section 3.6 demonstrate our approaches using three examples

with experimental results. Section 3.7 concludes this chapter.

23
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3.1 Timed CSP Specification in CLP

3.1.1 Syntax Encoding

In this section, we show how to encode every operator of Timed CSP defined in Section 2.2

into CLP terms. All operators of the extended specification which inherited from Timed CSP

are encoded into CLP rules in a compositional way. A translation library for all operators

is built. For example:

• a → Skip : eventprefix(a, skip)

• a
t→ Skip : delay(a, skip, t)

• P1 ||| P2 : interleaving(P1,P2)

• P1; P2 : sequential(P1,P2)

In our library, eventprefix (A,P) is defined to denote a process A → P . delay(A,P ,T )

is the CLP form of operator A
T→ P in Timed CSP. interleaving(P1,P2) is to represent

operator P1 ||| P2 where P1 and P2 are the CLP formate of process P1 and P2. Relations

sequential/21 is to represent a sequential operator “;”. We define a library of rules for all

Timed CSP processes in CLP, which is shown in Table 3.1.1.

The very initial step of our work is the syntax encoding of Timed CSP process in CLP syntax,

which can be automated easily by syntax rewriting. A relation of the form proc(N ,P) is

used to present a process P with name N . For instance, Figure 3.1 is the syntax encoding

of process TVM (Example 2.2.1) in CLP, which is a recursive process with name tvm.

12 means predicate “sequential” has two parameters.
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Timed CSP Process CLP presentation

Skip skip

Stop stop

Run run

a → P eventprefix(a, P)

a t→ P delay(a, t, p)

P1 2 P2 extchoice(P1, P2)

P1 ⊓ P2 intchoice(P1, P2)

P1 X ||Y P2 parallel(P1, P2, X, Y)

P1 |[X ]| P2 parallel(P1, P2, X)

P1 ||| P2 interleave(P1, P2)

P1; P2 sequential(P1, P2)

P1 ▽ P2 interrupt(P1, P2)

P1
d
◃ P2 timeout(P1, P2, d)

Wait d wait(d)

P1 ▽d P2 tinterrupt(P1, P2, d)

µ X @ P(X) recursion(P)

Table 3.1: Library of Timed CSP processes in CLP

3.1.2 Laws and Simplification

[89] introduces the concept of process equivalence P1 = P2 when P1 =T P2, P1 =SF P2 and

P1 = FDIP2 hold.

A set of laws are defined associated with each operator, where some of them can be used for

process simplification. For example, 2-idem law P 2 P = P , which states that offering a

choice between two copies of the same process is identical to the process itself, can simplify

process P 2 P to P . A set of such laws are selected and implemented in the reasoning

engine to fulfil this purpose, which are shown below.
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proc(c1, delay(coffee, eventprefix (dispatchcoffee, tvm), 3)).
proc(c2, delay(tea, eventprefix (dispatchtea, tvm), 2)).
proc(c3, eventprefixc(reqrelease, delay(release, tvm, 2))).
proc(choices, extchoice(extchoice(C ,T ),R))

: −proc(c1,C ), proc(c2,T ), proc(c3,R).
proc(to, timeout(C , eventprefix (release, tvm), 10))

: −proc(choices,C ).
proc(tvm, eventprefix (coin, tvm)))

: −proc(to,P).

Figure 3.1: Timed Vending Machine in CLP

P 2 P = P ⟨2-idem⟩
P1 2 P2 = P2 2 P1 ⟨2-sym⟩
P 2 Stop = P ⟨2-unit⟩
P ⊓ P = P ⟨⊓-idem⟩
P1 ⊓ P2 = P2 ⊓ P1 ⟨⊓-sym⟩
Skip A ||B Skip = Skip ⟨∥-term1⟩
P A ||A P = P if α(P) ⊆ A ⟨∥-idem⟩
Skip ||| Skip = Skip ⟨|||-term1⟩
P ||| Skip = P ⟨|||-unit⟩
P1 ||| P2 = P2 ||| P1 ⟨|||-sym⟩
Skip; P = P ⟨; -unit-I ⟩
P ; Skip =T P ⟨; -unit-rT ⟩
Stop; P = Stop ⟨; -zero-I ⟩
Stop ▽ P = P ⟨▽-unit-I ⟩
P ▽ Stop = P ⟨▽-unit-r⟩
Skip ▽ P = Skip 2 P ⟨▽-term⟩

Laws for timed operators timeout P1
d
◃ P2, delay a

d→ P , wait Wait and timed interrupt
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P1 ▽d P2 as shown as follows.

Stop
d
◃ Q1 = Wait d ; Q1 ⟨◃-delay⟩

Q1
d
◃ (Q2

d ′
◃ Q3) = (Q1

d
◃ Q2)

d+d ′
◃ Q3 ⟨◃-assoc⟩

(Wait d ; Q1)
d+d ′
◃ Q2) = Wait d ; (Q1

d ′
◃ Q2) ⟨◃-delay-1⟩

(Wait(d + d ′); Q1)
d
◃ Q2) = Wait d ; Q2 ⟨◃-delay-2⟩

Wait d ; Wait d ′ = Wait(d + d ′) ⟨delay-sum⟩
a

d→ P = a → Wait d ; P ⟨delay-prefix ⟩
(Wait d ; Q1) A ||B (Wait d ; Q2) = Wait d ; (Q1 A ||B Q2)⟨delay-||-dist⟩
(Wait d ; Q1) ||| (Wait d ; Q2) = Wait d ; (Q1 ||| Q2) ⟨delay-|||-dist⟩
(Wait d ; Q1) |[A ]| (Wait d ; Q2) = Wait d ; (Q1 |[A ]|Q2)⟨delay- |[A ]| -dist⟩
Q1 ▽d (Q2 ▽d ′ Q3) = (Q1 ▽d Q2) ▽d+d ′ Q3 ⟨▽d -assoc⟩
Stop ▽d P = Wait d ; Q1 ⟨stop-▽d -delay⟩
(Wait d ; Q1) ▽d+d ′ Q2) = Wait d ; (Q1 ▽d ′ Q2) ⟨▽-delay-1⟩
(Wait(d + d ′); Q1) ▽d Q2) = Wait d ; Q2 ⟨▽-delay-2⟩

For the purpose of simplification, we encode the laws described above into CLP clauses in

a structured way. A CLP relation law(P ,Q) is introduced to find the simplified version of

process Q of P . law/2 rules for each operator are defined recursively which is illustrated as
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follows.

law(extchoice(P ,P),P) : −!.
law(extchoice(P , stop),P) : −!.
law(extchoice(stop,P),P) : −!.
law(intchoice(P ,P),P) : −!.
law(parallel(skip, skip, ), skip) : −!.

law(parallel(P ,P ,A,B),P) : −setequal(A,B), !.
law(parallel(skip, skip, ), skip) : −!.
law(parallel(P ,P , ),P) : −!.
law(interleave(P , stop),P) : −!.
law(interleave(stop,P),P) : −!.
law(interleave(P , skip),P) : −!.
law(interleave(skip,P),P) : −!.
law(sequential(skip,P),P) : −!.
law(sequential(P , skip),P) : −!.
law(sequential(stop, ), stop) : −!.
law(interrupt(stop,P),P) : −!.
law(interrupt(P , stop),P) : −!.
law(extchoice(P ,Q),S ) : −not(P = stop; Q = stop,P = Q),

law(P ,P1), law(Q ,Q1), (P1 = P ,Q1 = Q)− >
S = extchoice(P ,Q); law(extchoice(P1,Q1),S ), !.

law(intchoice(P ,Q),S ) : −not(P = Q), law(P ,P1), law(Q ,Q1),
(P1 = P ,Q1 = Q)− > S = intchoice(P ,Q); law(intchoice(P1,Q1),S ).

law(parallel(P ,Q ,A,B), parallel(P ,Q ,A,B)) : −
not(P = skip, setequal(A,B)), !.

law(parallel(P ,Q ,A,B),P) : −setequal(A,B),not(P = Q),
law(P ,P1), law(Q ,Q1), (P1 = P ,Q1 = Q)
− > S = parallel(P ,Q ,A,B); law(parallel(P1,Q1,A,A),S ).

law(parallel(P ,Q ,A),S ) : −not(P = Q), law(P ,P1), law(Q ,Q1),
(P1 = P ,Q1 = Q)− > S = parallel(P ,Q ,A); law(parallel(P1,Q1, ),S ).

law(interleave(P ,Q),S ) : −not(P = skip; Q = skip),
law(P ,P1), law(Q ,Q1), (P1 = P ,Q1 = Q)
− > S = interleave(P ,Q); law(interleave(P1,Q1),S ).

law(sequential(P ,Q),S ) : −not(P = skip; P = stop; Q = skip),
law(P ,P1), law(Q ,Q1), (P1 = P ,Q1 = Q)
− > S = sequential(P ,Q); law(sequential(P1,Q1),S ).

law(interrupt(skip,P), extchoice(skip,P)) : −!.
law(interrupt(P ,Q),S ) : −not(P = skip; P = stop; Q = stop),

law(P ,P1), law(Q ,Q1), (P1 = P ,Q1 = Q)
− > S = interrupt(P ,Q); law(interrupt(P1,Q1),S ).
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3.2 Modeling Operational Semantics of Timed CSP in CLP

Operational semantics provides a way of interpreting a language - of stepping through ex-

ecutions of programs written in that language. It therefore offers a direct intuition of how

program constructs are intended to behave, in contrast with denotational semantics which

often abstract away from such considerations, and with algebraic approaches, where opera-

tors are defined in terms of the algebraic laws when satisfy.

This section is devoted to an encoding of the semantics of Timed CSP in CLP. The practical

implication is that we may then use powerful constraint solver like CLP(R) [55] to do

various proving over systems modelled using Timed CSP. Both the operational semantics

and denotational semantics are encoded. The encoding of operational semantics serves most

of our purposes.

The operational semantics of Timed CSP is precisely defined by Schneider [90] using two

relations: an evolution relation and a timed event transition relation. It is straightforward

to verify that our encoding conforms the two relations in [90].

A relation of the form tos(P1,T1,E,P2,T2) is used to denote the t imed operational semantics,

by capturing both evolution relations and timed event transition relations. Predicate tos(P1,T1,E,P2,T2)

is true if the process P1 may evolve to P2 through either a timed transition, i.e., let T2-

T1 time units pass, or an event transition by engaging an abstract event instantly2. The

relation tos defines a transition system interpretation of a Timed CSP process, where the

state is identified by the combination of the process expression and the time variable. Using

tabling mechanism offered in some of the constraint solvers like CLP(R) [55] or XSB [105],

the termination of the derivation sequence based on relation tos depends on the finiteness

of the reachable process expressions from the initial one. Therefore, if a process is irregu-

lar, proving of goals which need to explore all reachable process expressions is not feasible.

2Or both at the same time by engaging an nontrivial action which takes time (necessary for only extensions

to Timed CSP like TCOZ [74] where E could be a complicated computation)
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However, even for irregular processes, interesting proving like existence of a trace is still

possible.

We define the tos relation in terms of each and every operator of Timed CSP. For the

moment, we assume the process is not parameterized and we shall handle parameterized

processes uniformly in Section 3.3.1.

3.2.1 Primitive process

Stop, Skipand Run

The operational semantics of the primitive process expressions in Timed CSP are defined

through the following transitions:

Stop d Stop

Skip → XStop

Skip d Skip

The rules associated with the Skip, Stop and Run processes are as the following:

tos(stop,T1, [], stop,T2) : −D >= 0,T2 = T1 +D .
tos(skip,T , [termination], stop,T ).
tos(skip,T1, [], skip,T1 +D) : −D >= 0.
tos(run,T , [ ], run,T ).
tos(run,T1, [], run,T2) : −D >= 0,T2 = T1 +D .

The only transition for process Stop is time elapsing. Process Skip may choose to wait

some time before engaging event termination which is our choice of representation for event

X in CLP. Process Run may either let time pass or engage any event.
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Event prefix

Event prefix expression a → P describes a process which is prepared to engage in the event

a after which it will behave as P . The semantics of this event prefix expression is illustrated

in the following two rules:

(a → P)
a→ P

(a → P)
d (a → P)

The → represents an event transition, whereas  represents an evolution transition. The

rules associated with the event prefix operator are as the following:

tos(eventprefix (E ,P),T , [E ],P ,T ).
tos(eventprefix (E ,P),T1, [], eventprefix (E ,P),T1 +D) : −D > 0.

The first rule states that this process is initially able to perform only event a, and after

performing a it behaves as P . The second rule states the process remains the same, but

allows d time unites elapse without any event being engaged.

3.2.2 Choice

Timeout

The timeout operator P1
d
◃ P2 introduces a way of describing time-sensitive process behavior,

which offers a time-sensitive choice between P1 and P2. The operational semantics is defined

using the following four inference rules:

P1
a→ P ′

1

P1
d
◃ P2

a→ P2

P1
τ→ P ′

1

P1
d
◃ P2

τ→ P ′
1
d
◃ P2
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P1
d ′
 P ′

1
[ 0 < d ′ 6 d ]

P1
d
◃ P2

d ′
 P ′

1
d−d ′
◃ P2

P1
0
◃ P2

τ→ Q2

Where the first d time unites of any execution will have transitions identical to an execution

of P1, since all transitions before the timeout occurs correspond to transitions of P1. The

corresponding CLP rules of timeout process is specified as follows:

tos(timeout(Q1, , ),T , [E ],P ,T ) : −tos(Q1,T , [E ],P ,T ).
tos(timeout(Q1,Q2,D),T , [tau], timeout(P ,Q2,D),T ) : −tos(Q1,T , [tau],P ,T ).
tos(timeout(Q1,Q2,D),T1, [], timeout(P ,Q2,D − T ),T1 + T )

: −T > 0,T <= D , tos(Q1,T1, [],P ,T1 + T ).
tos(timeout(,Q2, 0),T , [tau],Q2,T ).

The first rules states if P1 performs any external event (not τ event), the timeout choice

is resolved in favor of P1, and P2 is discarded. The second rules states if P1 performs any

internal event (τ), it does not resolve the choice. The evolution transition relation is modeled

in the third rule where the process remains timeout with d ′ (given 0 < d’ 6 d) time unites

elapse. The last rule states if P1 has not perform any external event within its allotted time,

which means d reduced to 0, the choice is resolved in favor of P2.

Delay

The delay event prefix (delay process) a d→ P delays process P by d time units after engaging

event a. In [90], a delay is defined as a process immediately following the occurrence of an

event occurs frequently enough in process description to warrant its own abbreviated forms:

a
d→ P = a → a → (Stop

d
◃ P)

We model the semantics of a d→ P the same as a → a → (Stop
d
◃ P), where corresponding

tos/5 rule is defined as:

tos(delay(A,Q ,D),T1,E ,P ,T2)
: −tos(eventprefix (A, timeout(stop,Q ,D)),T1,E ,P ,T2).
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Wait

The Wait d process, which is the initial primitive Timed CSP added, delays for exactly d

time unites before terminating. It is defined using a timeout construction [90]:

Wait d = Stop
d
◃ Skip

The process Wait d can perform no events for the first d time units of its execution, but

after that delay it terminates and its subsequent behavior is that of Skip. The CLP relation

for Wait d tos/5 is defined exactly as the Stop
d
◃ Skip:

tos(wait(D),T1,E ,P ,T2)
: −tos(timeout(stop, skip,D),T1,E ,P ,T2).

External Choice

Choice operators are very important in Timed CSP. The external choice P1 2 P2 offers a

choice between processes P1 and P2, which is resolved at the instant the first visible event

occurs, in favor of the process which performs it. The rules for deriving transitions of a

choice are given as follows:

P1
a→ P ′

1

P1 2 P2
a→ P ′

1

P2 2 P1
a→ P ′

1

P1
τ→ P ′

1

P1 2 P2
τ→ P ′

1 2 P2

P2 2 P1
τ→ P2 2 P ′

1

P1
d P ′

1 P2
d P ′

2

P1 2 P2
d P ′

1 2 P ′
2
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The operational semantics of process P1 2 P2 is defined as five tos/5 rules:

tos(extchoice(P1, ),T , [E ],P3,T ) : −tos(P1,T , [E ],P3,T ).
tos(extchoice( ,P2),T , [E ],P4,T ) : −tos(P2,T , [E ],P4,T ).
tos(extchoice(P1,P2),T , [tau], extchoice(P3,P2),T )

: −tos(P1,T , [tau],P3,T ).
tos(extchoice(P1,P2),T , [tau], extchoice(P1,P4),T )

: −tos(P2,T , [tau],P4,T ).
tos(extchoice(P1,P2),T1, [], extchoice(P3,P4),T2)

: −T2 > T1, tos(P1,T1, [],P3,T2), tos(P2,T1, [],P4,T2).

Where the first two rules captures the first deriving rules. The second deriving rules are

modeled in the next two tos/5 rules and the last tos/5 states the evolution transition.

3.2.3 Concurrency

Alphabetized parallel

In the operational semantics, the event transition and evolution transition associated with

the alphabetized parallel composition operator the alphabetized parallel composition oper-

ator P1 X ||Y P2 are illustrated as the following [90]:

P1
e→ P ′

1
[ e ∈ X ∩ {τ} \Y ]

P1 X ||Y P2
e→ P ′

1 X ||Y P2

P2
e→ P ′

2
[ e ∈ Y ∩ {τ} \X ]

P1 X ||Y P2
e→ P1 X ||Y P ′

2

P1
e→ P ′

1,P2
e→ P ′

2
[ e ∈ X ∩Y ]

P1 X ||Y P2
e→ P ′

1 X ||Y P ′
2

P1
d P ′

1,P2
d P ′

2

P1 X ||Y P2
d P ′

1 X ||Y P ′
2
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The → represents an event transition, whereas  represents an evolution transition. The

rules associated with the alphabetized parallel composition operator are as the following:

tos(para(P1,P2,X ,Y ),T , [E ], para(P3,P2,X ,Y ),T )
: −tos(P1,T , [E ],P3,T ),member(E ,X ),notmember(E ,Y ).

tos(para(P1,P2,X ,Y ),T , [E ], para(P1,P4,X ,Y ),T )
: −os(P2,T , [E ],P4,T ),member(E ,Y ),notmember(E ,X ).

tos(para(P1,P2,X ,Y ),T , [E ], para(P3,P4,X ,Y ),T )
: −tos(P1,T ,E ,P3,T ), tos(P2,T ,E ,P4,T ),
member(E ,X ),member(E ,Y ).

tos(para(P1,P2,X ,Y ),T1, [], para(P3,P4,X ,Y ),T1 +D)
: −tos(P1,T1, [],P3,T1 +D), tos(P2,T1, [],P4,T1 +D).

clp relation para(P1,P2,X ,Y ) is to present a parallel process P1 X ||Y P2. The first two

rules state that either of the components may engage an event as long as the event is not

shared. The third rule states that a shared event can only be engaged simultaneously by both

components. The last expresses states that the composition may allow time elapsing as long

as both the components do. Other parallel composition operation, like |[X ]| and |||, can be

defined as special cases of the alphabetized parallel composition operator straightforwardly.

interleaving

Concurrency execution of two processes without synchronization is described by an inter-

leaving process, P1 ||| P2. The introduction of time to the interleaving operator is entirely

similar to the approach taken for the parallel composition. The operational semantics rules

for deriving the transitions for an interleaved combination are as follows:

P1
µ→ P ′

1
[ µ ̸= X ]

P1 ||| P2
µ→ P ′

1 ||| P2

P2
µ→ P ′

2
[ µ ̸= X ]

P2 ||| P1
µ→ P ′

2 ||| P1

P1
X→ P ′

1 P2
X→ P ′

2

P1 ||| P2
X→ P ′

1 ||| P ′
2
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P1
d P ′

1 P2
d P ′

2

P1 ||| P2
d P ′

1 ||| P ′
2

The rules associated with the interleaving composition operator are as the following:

tos(interleave(P1,P2),T , [E ], interleave(P3,P2),T )
: −tos(P1,T , [E ],P3,T ).

tos(interleave(P1,P2),T , [E ], interleave(P1,P3),T )
: −tos(P2,T , [E ],P3,T ).

tos(interleave(P1,P2),T , [termination], interleave(P3,P4),T )
: −tos(P1,T , [termination],P3,T ), tos(P2,T , [termination],P4,T ).

tos(interleave(P1,P2),T1, [], interleave(P3,P4),T1 +D)
: −D > 0, tos(P1,T1, [],P3,T1 +D), tos(P2,T1, [],P4,T1 +D).

The clp relation interleaving(P1,P2) is used to present the interleaving process P1 ||| P2.

The First two rules state that either of the component can perform an external event in-

dependently, which will be appended to the trace of this process. The fifth rule models

the third transition rule of the operational semantics, which states that both components

must engage the termination event X simultaneously. The last expresses states that the

composition may allow time elapsing as long as both the components do.

3.2.4 Flow of control

Sequential

The mechanism for transferring control from a terminated process to another process is

sequential composition: P1; P2. It allows control to pass to a second process when the first

one terminates successfully, as indicated by the occurrence of the termination event X. The

operational semantics rules for deriving the transitions for a sequential combination are as

follows:

P1
µ→ P ′

1
[ µ ̸= X ]

P1; P2
µ→ P ′

1; P2
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P1
X→ P ′

1

P1; P2
τ→ P2

P1
d P ′

1 P2
d P ′

2

P1 ||| P2
d P ′

1 ||| P ′
2

The rules associated with the sequential composition operator are as the following:

tos(sequential(P1,P2),T , [E ], sequential(P3,P2),T )
: −tos(P1,T , [E ],P3,T ),not(E = termination).

tos(sequential(P1,P2),T , [tau],P2,T )
: −tos(P1,T , [termination],,T ).

tos(sequential(P1,P2),T1, [], sequential(P3,P2),T1 +D)
: −D > 0, tos(P1,T1, [],P3,T1 +D),not(tos(P1, , [termination], , )).

CLP relation sequentail(P1,P2) is defined to denote the sequential process P1; P2. The first

operational semantics rule is translated into the first tos/5 rule of sequential/3, which states

that the sequential composition P1; P2 initially executes as P1 before P1 terminates. The

second rule states that when P1 terminates, its X event becomes internal to the composition

and it passes control to process P2. The last expresses states that the composition may

allow time elapsing as long as P1 does, only if P1’s termination event is not enabled. The

last rule constraints that the passing of control is urgent.

Interrupt

The interrupt construction P1 ▽ P2 allows the first process P1 to execute, but it may be

interrupted at any time by an event from process P2. The process P2 is also able to perform

internal events without triggering the interrupt, which means that external interrupt events

maybe offered and retracted by P2 as the execution unfolds. The operational semantics rules

for deriving the transitions for an interrupt combination are as follows:

P1
µ→ P ′

1
[ µ ̸= X ]

P1 ▽ P2
µ→ P ′

1 ▽ P2
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P1
X→ P ′

1

P1 ▽ P2
X→ P ′

1

P2
τ→ P ′

2

P1 ▽ P2
µ→ P1 ▽ P ′

2

P2
a→ P ′

2

P1 ▽ P2
a→ P2

P1
d P ′

1 P2
d P ′

2

P1 ▽ P2
d P ′

1 ▽ P ′
2

The rules associated with the interrupt composition operator are as the following:

tos(interrupt(P1,P2),T , [E ], interrupt(P3,P2),T )
: −tos(P1,T , [E ],P3,T ),not(E == tau).

tos(interrupt(P1,P2),T , [], interrupt(P3,P2),T )
: −tos(P1,T , [tau],P3,T ).

tos(interrupt(P1,P2),T , [termination], interrupt(P3,P2),T )
: −tos(P1,T , [termination],P3,T ).

tos(interrupt(P1,P2),T , [], interrupt(P1,P3),T )
: −tos(P1,T , [tau],P3,T ).

tos(interrupt( ,P2),T , [E ],P3,T )
: −tos(P2,T , [E ],P3,T ),not(E = tau).

tos(interrupt(P1,P2),T1, [], interrupt(P3,P4),T1 +D)
: −D > 0, tos(P1,T1, [],P3,T1 +D), tos(P2,T1, [],P4,T1 +D).

CLP relation interrupt(P1,P2) is defined to denote the interrupt process P1 ▽ P2. The

two expressions capture the first operational semantics rule, which states that the process

is able to perform any execution of P1. The first expression captures the situation that

P1 performing an external event E which will be appended to the trace, while the second

expression captures an internal event engagement which will not be added to the end of

the trace. The third expression states that if P1 terminate while it is executing then the

entire structure is terminated and P2 is discarded. The forth expression captures the third

semantics rule when P2 performs an internal event and the forth rule captures the moment

when the interruption occurs where P2 is executed to P3 by engaging an external event E .

The last expression illustrates the evolution transition.
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Timed interrupt

The introduction of time allows an alternative approach to the interruption of processes. If

the process is permitted to run for no more than a particular length of time, then the passage

of time can itself trigger an interrupt to remove control from a process. The operational

semantics rules for deriving the transitions for a timed interrupt combination P1 ▽d P2. are

as follows:

P1
µ→ P ′

1
[ µ ̸= X ]

P1 ▽d P2
µ→ P ′

1 ▽d P2

P1
X→ P ′

1

P1 ▽d P2
X→ P ′

1

P1 ▽0 P2
τ→ P2

P1
d ′
 P ′

1
[ d ′ 6 d ]

P1 ▽d P2
d ′
 P ′

1 ▽d−d ′ P ′
2

The rules associated with the interrupt composition operator are as the following:

tos(tinterrupt(,Q2, 0),T , [tau],Q2,T ).
tos(tinterrupt(Q1,Q2,D),T , [E ], tinterrupt(Q3,Q2,D),T )

: −tos(Q1,T , [E ],Q3,T ),not(E == termination).
tos(tinterrupt(Q1, , ),T , [termination],Q3,T )

: −tos(Q1,T , [termination],Q3,T ).
tos(tinterrupt(Q1,Q2,D),T1, [], tinterrupt(Q3,Q2,D − T ),T1 + T )

: −not(D == 0),T > 0,T <= D , tos(Q1,T1, [t(T )],Q3,T1 + T ).

A CLP relation tinterrupt(P1,P2,D) is defined to denote the timed interrupt process P1 ▽d

P2.

There is a clear one-to-one correspondence between our rules and the operators which are

fully illustrated in Appendix A. Therefore, the soundness of the encoding can be proved

by showing there is a bi-simulation relationship between the transition system interpreta-

tion defined in [90] and ours, and the bi-simulation relationship can be proved easily via a

structural induction.
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3.3 Modeling Denotational Semantics of Timed CSP in CLP

In Section 3.2 operational semantics is encoded into CLP, where the encoding of operational

semantics serves most of our purposes. Nevertheless the encoding of the denotational se-

mantics offers an alternative way of proving systems modelled in Timed CSP as well as the

correctness of the encoding itself.

In this section, we encode both the timed traces and the timed failures model of Timed

CSP, where the semantics of a Timed CSP process is represented by a set of timed traces

or a set of timed failures [89]. A timed failure is a record of an execution, consisting of a

timed trace which contains information about event performed, and a timed refusal which

contains information about when events could be refused. In contrast to the operational

semantics, which focuses on a single step at once, the denotational semantics captures all

possible observations of systems modelled using Timed CSP. Therefore, it is easier to prove

over all possible behaviors in the denotational semantics model.

In the following, we illustrate our encoding using only a few fundamental constructors for

the sake of space saving. A relation timedfailure(P, f(Tr, R)) is defined to capture the timed

failure semantics, where P is a process expression and Tr is a sequence of timed events and

R is a set of timed refusals. For instance,

timedfailure(stop, failure([], )).
timedfailure(skip, failure([],R))

: −sigma(R,S ),notmember(termination,S ).
timedfailure(skip, failure([tevent(T , termination)],R))

: −T >= 0, before(R,T ,Z ), sigma(Z ,N ),
notmember(termination,N ).

The relation sigma(P, S) is used to retrieve all events S in a process expression P, i.e., S =

σ(P). Similarly, the relation before(R, T, Z) is defined accordingly as Z = R � T , i.e., the

refusals before time T. Basically, the first rule states that the failures of process Stop are an

empty trace with all possible refusals. Process Skip refuses everything until the occurrence

of event termination, and all events are refused afterwards. As for compositional operators,
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we take the interface parallel composition operator as an example.

timedfailure(parallel(Q1,Q2,A), failure(S ,N ))
: −timedfailure(Q1, failure(S1,N 1)),

timedfailure(Q2, failure(S2,N 2)), union(N 1,N 2,N ),
union(A, [termination],AT ), remove(N 1,AT ,N 11),
remove(N 2,AT ,N 22), setequal(N 11,N 22), tsynch(S1,S2,A,S ).

The relation union(X, Y, Z) is the set union, i.e., Z = X ∪ Y . The relation remove(X, Y,

Z) is the set subtraction, i.e., Z = X \ Y . The relation tsynch defines the ways in which a

trace tr1 from component Q1 and a trace tr2 from component Q2 can be combined to form

a trace of the parallel (formal definition in [89]). The interface parallel operator requires

synchronization on events from the interface event set A, and interleaving on events not in

A.

Notice that the denotational semantics focuses on observations of the system, which allows

us to query the system behaviors as a whole. For instance, it is more straightforward to

check timewise refinement using the denotational semantics, and irregular processes can

be handled if we replace the recursion using its fixed point. However, because there is no

guarantee that the derivation sequence is terminating, we have to limit the height of the

proving tree.

3.3.1 Handling Extensions to Timed CSP

Timed CSP is introduced in [82]. Since then, various extensions of Timed CSP have been

proposed. In this work, we identify some of the effective extensions and show that they

can be encoded in the CLP framework. For instance, the idea of signal by Davies [17] is a

simple yet useful extension to capture liveness as well as model broadcasting effectively. The

motivation of the concept signal is that when describing the behavior of a real-time process,

we may wish to include instantaneous observable events that are not synchronization. For

example, an audible bell might form part of the user interface to a telephone network, even

though the bell may ring (a signal) without the cooperation of the user. Informally, signal
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events are distinguished events that will occur as soon as they become available, and will

propagate through parallel composition. A process may ignore any signal performed by

another process, unless it is waiting to perform the corresponding synchronization. For any

observation that can be extended into the future, the only events that must be observed

are signals. Therefore, signals are useful both for modelling broadcast communication and

specifying liveness conditions, i.e., some events must be engaged.

sigTF (eventprefix (E , , ), sigfailure([],X ,T ))
: −not(E == sig( )), sigma(X ,Z ),

notmember(E ,Z ), end(X ,T1),T >= T1.
sigTF (eventprefix (E ,P ,D), sigfailure([tevent(T ,E ) | XS ],Y ,T1 +D + T ))

: −T >= 0,not(E == sig( )),
sigTF (P , sigfailure(S ,Y 1),T1),
backthrough(Y ,T +D ,Y 1), begin(S ,T2),
T2 >= T +D , end(S ,Y ,T3),max (T ,T3,T4),
T1 +D + T >= T4, before(Y ,T ,Z ), sigma(Z ,N ),
notmember(E ,N ), delay(S ,T +D ,XS ).

sigTF (eventprefix (sig(E ),P ,D), sigfailure([], [], 0)).
sigTF (eventprefix (sig(E ),P ,D), sigfailure([tevent(0,E ) | XS ],Y ,T ))

: −sigTF (P , failure(S ,Y 1),T1),
backthrough(Y ,T +D ,Y 1),T = T1 +D ,
before(Y ,T ,Z ), sigma(Z ,N ),
notmember(E ,N ), delay(S ,T +D ,XS ).

The relation sigTF (P , sigfailure(Tt ,Tr ,T )) is used to capture this time failure semantics

for signals, where P denotes the process, Tt is the timed trace, Tr denotes the timed refusal

set and T denotes a time value. The CLP clauses illustrate the possible evolution of signal

event prefixing. The first two clauses denote the semantics for event prefix process a → P

where a is not a signal, while the last two denote the one with signal event â, presented as

sig(a). In the above rules, end(X,T) computes the least upper bound of the time refusal

X . backthrough(Y,T,Y1) represents the relation: Y - T = Y1, i.e., timed refusal Y 1 is

generated from Y by translating it backwards through time T . begin(S, T) retrieves the

time of occurrence of the first event in timed trace S .

Another extension of special interest is Timed CSP integrated with state-based languages

like Z [107] to model systems with not only complicated control flow but also complex data
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structures [74, 92]. Instead of adopting a heavy language like TCOZ (Timed Communicating

Object-Z [74]), we allow a finite number of variables to be associated with a process3, called

state variables. In addition, we allow a state update transition, i.e., instead of engaging an

abstract event, the system may perform a state update which changes the valuation of the

state variables. A state update is specified as a predicate involving state variables before

and after the update, as in Z style where the after-variables are primed [107].

For instance, there is a fragment of the specification of this vending machine, in which we

allow different coins to be inserted via a channel communication coin?x where x is 10, 20

or 50, a data variable Quota is requested to accumulate the amount of all coins inserted by

the user.

Insert(Quota) =̂ coin?x → AddQuota

where AddQuota is an operation defined in Z , which is:

AddQuota =̂ [x?, quota, quota ′ : N | quota ′ = quota + x?]

This Timed CSP specification corresponds to the following CLP clauses where both the pre

and post values of the process parameter are presented as the parameters, namely Quota1

and Quota2, of the relation proc. The user is responsible to specify exactly how an action

updates the data variables, e.g., adding the amount of the coin to Quota.

proc(coin, eventpreifx (coin(X 1), addquota),Quota1,Quota2)
: −action(addquota,X 1,Quota1,Quota2).

action(addquota,X 1,Quota1,Quota2) : −Quota2 = Quota1 +X 1.

3.4 Verification of Timed CSP

This section is devoted to various proofs we may perform over systems modeled using Timed

CSP and then encoded in CLP. These kind of assertions can be proved or disproved against

3which are of types supported by current tools for CLP.
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a given real-time system. We also develope a number of shortcuts for easy querying and

proving.

In order to explore the full state space, we define the following4:

reachable(P ,P , [],T1,T1).
reachable(P ,Q ,N ,T1,T2)

: −tos(P ,T1, [tau],P1,T3), reachable(P1,Q ,N ,T3,T2).
reachable(P ,Q , [(E ,T1) | N ],T1,T2)

: −tos(P ,T1, [E ],P1,T3),not(E = t( ); E == tau),
reachable(P1,Q ,N ,T3,T2).

reachable(P ,Q ,N ,T1,T2)
: −tos(P ,T1, [],P1,T3), reachable(P1,Q ,N ,T3,T2).

The relation reachable(P, Q, N, T1, T2) states that it is possible to reach the process

expression Q at time T2 from P at time T1, with trace N.

reachable/5 is defined in four rules where the first states any process can remain at itself.

The second rule states process P at T1 would reach process Q with trace N by firstly

performing an internal event to process P1 at time T3 hence P1 would reach process Q

with trace N . The third rule models the case P at T1 will reach Q with trace [(E ,T1) | N ]

by first performing an external event E at time T1 to process P1; then P1 is able to reach Q

with trace N . The last rule captures the evolution transition from process P to P1 without

appending any event to trace N .

3.4.1 Safety and Liveness Properties

Specifications are the properties that the design must satisfy. There are different ways to

express properties. In state-based formalisms, properties are generally stated using temporal

logics to specify how the system evolves over time. These properties are divided into two

categories: safety properties and liveness properties.

We follow the informal classification of safety and liveness properties suggested by Lamport

[61, 17]: a safety property is a requirement that ’nothing bad happens’, while a liveness

4The possible state variables and local clocks are skipped for simplicity.
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property insists that ’some good thing will eventually occur’. In either case, we must exclude

undesirable behaviors from the semantic set of the process in question. In our model, a

safety property corresponds to the requirement that a given event may not occur except

under certain condition. For example:

• event a does not occur within time t after event b happens;

• if event a occurs, it must do so within time t after event b happens;

• event a may occur only at specific times.

[17] defines a safety specification on process Y in timed failure semantics as:

∀ s,X • (s,X ) ∈ Y ⇒ s ̸∈ U

where U is a set of undesirable traces which violate the safety property. (s,X ) is timed

observation in the denotational semantics where s is a timed trace and X is a timed refusal.

The formula says that if the safety specification is to be satisfiable, then there is no trace of

Y be an undesired trace.

Using CLP, we may make explicit assertion which is neither just a safety assertion, nor just

a liveness assertion. Yet it can be used for both purposes using a unique interpretation. An

assertion is defined as Definition 3.

Definition 3 (Assertion) An assertion is of the form G |= G ′ where G is a nonterminal

goal and G ′ is a possible terminal goal.

An assertion can be used as a safety assertion by having G ′ as a terminal goal which should

be the property/constraint that the system should satisfy. A safety property is generally

expressed in the form:

G |= Ψ , or G ,¬Ψ |= false

which means there is no trace of the process violates the desired safety property Ψ.
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Deadlock

One safety property of special interest is deadlock-freeness. The following clauses are used

to prove it.

deadlock(P ,T1) : −reachable(P ,P1,N ,T1,T2),
(not(tos(P1,T2, [],Q ,T ), tos(Q ,T , [ ], , )); (tos(P1,T2, [],Q , );
not(tos,P1,T2, [ ], , ))), printf (”deadlock at : %”, [N ]).

Basically, it states that a process P at time T1 may result in deadlock if it can reach the

process expression Q at time T2 where no event transition is available neither at T2 nor

at any later moment. The last line outputs the deadlocked trace as a counterexample.

Alternatively, we may present it as a result of the deadlock proving.

3.4.2 Trace-based Properties

We allow trace-based properties (safety or liveness5) that can be checked by exploring trace

set partially. The retrieve of a timed trace is done by the predicate trace(P ,N ,Q), which

finds a sequence of events through which process expression P evolves to Q :

timed trace(P ,N ,Q) : −reachable(P ,Q ,N , 0, ).

trace(P ,N ) : −timed trace(P ,M , ), remove time(M ,N ).

where remove time(M ,N ) is a predefined CLP relation which removes times stamps of all

event from a timed trace M .

We may prove that some event will always eventually be ready to be engaged using the

following rule: where rule member(N ,E ) returns true if event E appears at least once in the

event sequence N , rulenotmember(N ,E ) returns true if event E is not an element of event

sequence N .

finally(P ,E ) : −nottraceWOMember(P ,N ,E ).

5Liveness in CSP is a bit different from that in traditional temporal logic. In CSP, a process may wait

forever before engaging an available event.
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Predicate finally(P ,E ) captures the idea that there is no such trace without event E in this

process P . In other words, this process will eventually go to event E . Another property

based on traces would be identifying the relationship among events, e.g., event A can never

happen before (after) event B in a trace or trace fragment. Take the timed vending machine,

which is defined in Example 2.2.1 for example, we would like to ensure that in a round of

using the machine, the event tea will never be followed by an event dispatchcoffee.

Example 3.4.1 (Verification) For the timed vending machine (Example 2.2.1), we would

like to check that it is deadlock-free by running the following goal and expecting failure:

?− proc(vending ,P), deadlock(P , 0).

Moreover, we would expect that whenever we choose tea, it would never dispatch coffee

instead of tea, which can be checked by the following goal:

?− proc(vending ,P), trace(P ,N ), (notmember(N , tea); after(N , dispatchcoffee, tea)).

end

3.4.3 Time Related Checking

In addition to proving pre-specified assertions, one distinguished feature of our approach is

that implicit assertions may be proved. In real time systems, sometimes it is very useful to

find the lower and upper bound of a (time or data) variable such the applications like worst

or best case analysis of execution time.

In our work, relation duration(P) is defined to find the maximum execution time of a process

P . If P is not terminating, value of max will be infinity . duration(P) is defined as following

rules:

duration(P) : −duration time(P ,T , ), dump([T ]), fail .
duration( ).
durationt ime(P ,T ,N )

: −non termination(P)− > (T = infinity , fail); reachable(P , stop,N , 0,T ).
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where non termination(P) is a predefined relation which is to check whether process P is

terminating or not. If non termination(P) returns true, T will be infinity and the rule

checking is terminated.

We are also able to compute the duration of the engaging time of event e in some process

P . Relation engagedTime(P ,E ) is defined to fulfill this purpose.

engagedTime(P ,E ) : −happenTime(P ,E ,T , ), dump([T ]), fail .
engagedTime( , ).
happenTime(P ,E ,T ,X ) : −reachable(P , ,X , 0,T ), last(X , [E | ]).

Example 3.4.2 The process Wait(2); a
3→ Skip should terminate in more than 5 time

units, which can be identified by the following goal and expecting T ≥ 5.

?− duration(sequential(wait(2), delay(a, skip, 3))).

After executing the goal, it would return result T ∈ [5, infinity ]. The duration of engaging

time of event a can be found by running the following goal and expecting T ∈ [3, infinity ].

?− engageTime(sequential(wait(2), delay(a, skip, 3)), a).

end

3.5 HORAE

Our engineering efforts have realized the proposed techniques in this chapter into a prototype

HORAE, which is an interactive tool that provides composing and reasoning of Timed CSP

process descriptions.

HORAE uses Constraint Logic Programming (CLP [54]) as underlying reasoning mecha-

nism. CLP is designed for mechanized proving based on constraint solving. CLP has been

successfully applied to model programs and transition systems for the purpose of verifi-

cation. The main advantage of using CLP pertains to expressiveness. For example, [48]

demonstrates the proof of some standard properties, as well as properties such as time
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bounds between important events, on a CLP representation of Timed Safety Automata.

[56] can even specify the property for testing whether a system of processes is symmetric,

on a CLP representation of Timed Automata.

Built on the powerful constraint solver CLP(R) [55], HORAE can encode both operational

and denotational semantics of Timed CSP processes in CLP(R) [29] and perform the veri-

fication of the Timed CSP models. The front-end of the tool is implemented in Java. The

main features of this tool are listed as follows.

• Modeling Timed CSP models

• Specifying properties in a systematic way

• Verifying various kinds of properties with counterexamples provided if any, and

• Generating LATEX presentation of the Timed CSP models.

An overview of HORAE is shown in Figure 3.2, which mainly consists of five components,

i.e., a powerful GUI editor to compose Timed CSP models, an encoder which translates

Timed CSP processes to CLP models, a property specifier which is used to specify properties

in a systematic way, a verification engine which is used to verify properties and a LATEX code

generator. The software is implemented in Java and the CLP(R) is the CLP reasoning engine

used inside.

3.5.1 Building Timed CSP Models

In our system, Timed CSP processes are in ASCII form, i.e., machine reachable Timed CSP

which is used to enable machine readability. HORAE has a user-friendly editor to build

Timed CSP models. The encoder tcsp2clp can automatically transform Timed CSP model

in .tcsp-format into the CLP(R) .clpr -format by syntax rewriting.
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.tcsp
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Figure 3.2: Overview of HORAE

3.5.2 Verifying Models

The verification engine is the core component of HORAE. The verification is performed by

the engine which takes a Timed CSP model in .clpr -format from the encoder and a property

as input. This engine has two modules, which are opereng and denoeng, building on the

operational model and the denotational model respectively. Different kinds of properties are

checked by different modules.

Timed CSP Semantics in CLP

In the verification engine, the semantics of Timed CSP processes are modeled in CLP. In

our tool, both the operational semantics and denotational semantics are encoded.

Operational semantics is modelled by capturing both evolution relations and timed event

transition relations of a process. In denotational semantics, we encoded the timed traces

and timed failures model of Timed CSP, where a Timed CSP process is represented by a set

of timed traces or a set of timed failures. Detailed theory and encoding of both semantics

can be found in Section 3.2 and Section 3.3 respectively.
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Property Specification and Verification

The module Property Specifier is used to specify three kinds of properties in a systematic

way, which can later be verified by the verification engine.

Safety and Liveness Reachability properties are specified as: Reachable(P ,Q ,Ψ) = N

which tests whether N is a possible trace from process Q to P , with some constraint Ψ.

Deadlock freeness of process P can be checked in Deadlock(P).

Variable Bounds We can identify the lower or upper bound of a variable. For example,

we can identify whether a given value of a time variable T is an upper or lower bound of

duration of the execution of one process P to its subsequent process Q . These properties

are specified as: Upper(P , Q , time) = T or Lower(P , Q , time) = T . Similarly, the lower

or upper bound of the duration between two events A and B in a process P can also be

specified as P :: Upper(A, B , time) = T or P :: Lower(A, B , time) = T .

3.6 Case Studies and Experiments

In this section, we compare our method to the mature model checker for CSP, namely

(Failures-Divergence Refinement) [84] (version 2.78), in terms of flexibility as well as effi-

ciency. We implement a prototype as a normal CLP(R) program. In the following, we

demonstrate our experiments with three examples on a Unix system located at a Sunfire

sever with 1GB user memory. Because FDR is designed for CSP, the quantitative timing

aspects of the examples have been abstracted using discrete clock ticks first, then FDR is

used to perform verification.

3.6.1 Timed Vending Machine

The specification of the timed vending machine is presented in Example 2.2.1. Figure 3.1

shows the timed vending machine model in CLP. This example is customized into a FDR
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program (say P), in which the time-out operator is replaced with an external choice. The

following are the properties verified:

• tvm-1 Deadlock-freeness.

• tvm-2 Trace timewise refinement:

– in CLP, whether the process TVM is a trace timewise refinement of P .

– in FDR, whether the process P is a trace refinement of TVM .

• tvm-3 Whether there is such a case that coffee is selected while tea is dispatched.

3.6.2 Dining Philosopher

The classic dining philosopher example is also experimented. The specification is available

in [51]. We implement this example with N philosophers and N forks. The following

properties are experimented:

• philosopherN-1 It is not deadlock-free.

• philosopherN-2 No more than N+1/2 philosophers can eat at the same time.

• philosopherN-3 It is possible that one philosopher eat all the time with the others

starving. This property is checked with trace refinement.

3.6.3 The Railway Crossing

The railway crossing system is modelled and checked, which is complex enough to demon-

strate a number of aspects of the modelling and verification of timed systems. The system

consists of three components: a train, a gate and a controller. The gate should be up to

allow traffic to pass when no train approaching and lowered to obstruct traffic when a train

is coming. The controller monitors the approach of a train, and instructs the gate to be
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Figure 3.3: The Rail Way Control System

lowered within the appropriate time. The train is modelled abstractly with behaviors: near-

ing, entering and leaving the crossing. The Timed CSP modelling is as follows (originally

presented in [89]):

TRAIN =̂ µT • trainnear → nearind
300→ entercrossing

20→ leavecrossing → outind → T

GATE =̂ µG • downcom
100→ down → confirm → G

2 upcom
100→ up → confirm → G

CONTROLLER =̂ µC • outind
1→ upcom → confirm → C

2 nearind
1→ downcom → confirm → C

CROSSING =̂ CONTROLLER C ||G GATE
SYSTEM =̂ TRAIN T ||C∪G CROSSING

The timing information of the system is that: the train takes at least 5 minutes from

triggering the near .ind sensor to reach the crossing; and at least 20 seconds to get across

the crossing. The controller takes a negligible amount of time, say 1 second, from receiving

a signal from a sensor to relaying the corresponding instruction to the gate. The gate
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Property Goal in CLP

deadlock-freeness proc(system, P), tdeadlock(P, 0) |= false

if train enters crossing, proc(system, P), supersetp(P, X),

the gate must be down last(X, entercrossing),filter(X, [up,down], X2),

last(X2, up) |= false

lower bound for a train proc(system, P), dur(delay(nearind, , ),

passes the crossing is 320s eventprefix(outind, ), T1, T2),T2-T1<320 |= false

if the gate is up, the train proc(system,P), superstep(P, X),

must have left the crossing not(not in([up, entercrossing, leavecrossing], X);

after(X, leavecrossing, entercrossing))) |= false

legal trace checking proc(system, P),superstep(P, [trainnear, nearind,

downcomm, down, confirm, entercrossing,

leavecrossing, outind])|= true

Table 3.2: Properties Verification

process takes 100 seconds to get itself into position following an instruction. A number

of interesting properties can be formulated, evidenced in Table 5.1. The three properties

selected for comparing our approach with FDR verification are:

• railway-1 Deadlock-freeness

• railway-2 Whether trace ⟨trainnear ,nearind , downcomm, down, confirm,

entercrossing , leavecrossing , outind⟩ is a legal trace or not.

• railway-3 Whether the lower bound for a train passes the crossing is 320s.

We summarize our results in Table 3.3. We ran the examples in both CLP(R) and FDR

systems and we calculated the execution time of each property if the property is able to

be checked in that system. From the table, we can see that most of our timing analysis

performance are competitive with the well-known system, while in some cases, we are not
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Assertion CLP(R) (sec) FDR (sec)

tvm-1 0.00 0.23

tvm-2 0.03 0.27

tvm-3 0.01 −

railway-1 0.25 0.25

railway-2 0.02 0.26

railway-3 0.32 −

Assertion CLP(R) (sec) FDR (sec)

phi3-1 0.12 0.25

phi3-2 0.22 −

phi3-3 0.04 0.17

phi4-1 0.84 0.28

phi4-2 2.5 −

phi4-3 0.1 0.3

Table 3.3: Experiment Results

so competitive. The important metric of our experiments is the flexibility. The results show

that our reasoning method based on constraint solver.

3.7 Summary

In this chapter, we proposed a reasoning method for Timed CSP based on constraint logic.

we have shown that event-based process algebra Timed CSP can be encoded in CLP by

encoding both the operational and denotational semantics. This piece of work therefore

broadened real-time systems which can be specified and verified by CLP. It is a solid foun-

dation for the future research on extending Timed CSP and developing a reasoning engine

for this extended Timed CSP specification.

This approach starts with a formal translation of Timed CSP syntax to CLP relations,

where a library of all Timed CSP operators is built. We have also developed a collection

of supplementary rules for encoding operational semantics of each operator into CLP rules.

These serve as a solid foundation in our verification system. We can rigorously carry out

verification of Timed CSP models with a high level of automation. We investigated a wide

range of properties that may be proved based on constraint solving, namely CLP(R), for

instance we showed that using a unique interpretation, traditional safety and liveness can
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be proved effectively as well as properties such as lower or upper bound of a variable and

refinement.



Chapter 4

Timed Planning

As demonstrated in last chapter, Timed CSP is a powerful language to model real-time

reactive systems. However, limited by the expressive power, it lacks of support for stating

system requirements which constraints all behavioral traces of given processes, for example,

deadline and execution time of a process, time-related constraints among events which are

common requirements for many real time systems and etc. To increase the expressiveness of

Timed CSP, we propose an extension of Timed CSP, which named Timed Planning. Timed

Planning specification extends Timed CSP with the capability of stating complicated timing

behaviors for processes and events to model and verify complex compositional real-time

systems. A Timed Planning model is made up of a compositional timed process and a set

of constraints over processes, events and the data variables which are the requirements that

the process should satisfy. In this proposed formalism, each process is associated with a set

of localized timing/untiming requirements with keyword Where which can be specified in a

compositional way. The full syntax and operational semantics of Timed Planning language

are formally defined in this chapter.

A reasoning mechanism for the Timed Planning is hence developed based on Constraint Logic

Programming (CLP) by extending the reasoning engine for Timed CSP. Both syntax and

semantics of Timed Planning are formally translated into CLP. The operational semantics

57
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is encoded to CLP, where a set of global and local variables need to be captured during

the execution. Feasibility checking and various property verification can be applied to check

systems modeled in Timed Planning.

4.1 Syntax of Extended Timed CSP

In the extended Timed CSP specification, a process is extended with an optional Where

clause, which consists of a (first order) predicate over a predefined set of time variables.

4.1.1 Timed Variables

To capture the important timing information of a process, we introduce three time point

variables: Start, End, and Tes for processes and one time point variable Engage for

events, which are as explained as follows.

Starting and Ending Time of a Process

One important timing information of a process is when it is started and when it is ended.

Given a process P , the variable P .Start (P .End) denotes the exact starting (ending) time

of process P . More specifically, P .Start captures the starting time of a process P when

its first event is enabled or when the “wait d ” process is enabled if P starts with a wait

process.

P .End is the ending time of the process P . If the process is terminating, P .End is the engage

time of the termination event X. If the process is non-terminating, then P .End = ∞.

Naturally, condition P .End ≥ P .Start holds all the time. Using the two variables, a

deadline property (a task must be accomplished within a certain time) is expressed as

P Where P .End−P .Start 6 d where d is a constant (d ∈ R+), if and only if this process

is terminating.
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Example 4.1.1 Kate needs to attend a meeting which starts at 10:00 and lasts less than

two hours. She will go home after the meeting.

Kate =̂ arrive → Meeting ; gohome → Skip
Where arrive.Engage 6 10 ∧ Meeting .Start=10
∧ Meeting .End −Meeting .Start 6 2

where we write 10 to represent 10:00 for simplicity. Meaning of Engage is explained below.

end

Engagement Time of Events

In many scenarios, there are requirements on an event to perform at some expected time, for

example attending a meeting at 10am or printing the job within 15 minutes after receiving

this job. A time variable Engage is attached to an event e to denote the exact time when

e is engaged, in the form of e.Engage.

In an evaluation, event e is likely to be engaged more than once, for example, P =̂ a
2→ P .

The variable e.Engagei is introduced to denote the ith occurrence of e in an evaluation. For

instance, P =̂ a
2→ P , one possible evaluation is ⟨(0, a), (3, a), (5, a)...⟩. In this evaluation,

the engage time of event a is stored in a.Engagei , where i = 1...N : (a.Engage1 =

0, a.Engage2 = 3, a.Engage3 = 5, . . .).

For event e engaged more than once in a trace, e.Engage is the set of all occurrences of

event e in the process it is attached to. More specifically, e.Engage is the set of e.Engagei ,

e.Engagei is the element of set e.Engage, i.e.,

e.Engage = {e.Engagei}
e.Engagei ∈ e.Engage

For simplicity, we define a set of rules to eliminate the ∀ i to be used in our constraints. For

instance, to specify the constraint that event e must be engaged before time t , expression

e.Engage 6 t is used instead of ∀ i • e.Engagei 6 t , if this process is terminating.
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e.Engage 6 t ≡ ∀ i • e.Engagei 6 t
0 6 e1.Engagei − e2.Engagei 6 t ≡ ∀ i • 0 6 e1.Engagei − e2.Engagei 6 t
0 6 e1.Engage − e2.Engage 6 t ≡ ∀ i , j • 0 6 e1.Engagei − e2.Engagej 6 t ,

Constraint e1.Engagei − e2.Engagei 6 t is exactly the same as ∀ i • e1.Engagei −

e2.Engagei 6 t , which means that each time after e2 is engaged, e1 must be engaged within

t time units. While constraint e1.Engage − e2.Engage 6 t means ∀ i , j • e1.Engagei −

e2.Engagej 6 t , which specifies the requirement that e1 is not allowed to be engaged after

t time units with any occurrence of e2.

Timed Event Set

In addition, the variable P .Tes is introduced to capture the evaluation of a process P up

to the current time, where Tes stands for T imed Event Set. Tes is a set of timed events.

A timed event is a pair (e × R+, where e ∈ Σ1) consisting of a time and an event engage

time variable.

Tes is used to record the engage time of all events engaged so far, which can be viewed as a

history of the execution. Traces of the specific evaluation are able to be retrieved from Tes.

We can also retrieve other information we are interested in from the set Tes. The following

example illustrates a constraint concerning the number of occurrences of events in P .

Example 4.1.2 In a restaurant, the staff in the kitchen cook and supply food to the counter,

the staff at the counter takes orders and delivers food to the customers.

Kitchen =̂ cook → supply → Kitchen

Counter =̂ order
30→ serve → Counter

Where serve.Engage − order .Engage 6 60

Mcd =̂ Kitchen ∥ Counter

Where Tes ↓ supply ≥ Tes ↓ serve ∧ Tes ↓ supply − Tes ↓ serve 6 10

1Σ is the universal set of events.
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where Tes ↓ supply is the number of occurrences of event supply in the timed event set

Tes up to the current time. The Where clause guarantees for each order, there is available

food to be delivered. end

4.1.2 Syntax of Timed Planning

In this section, we present the formal syntax for Timed Planning process. A Timed Planning

process is a Timed CSP process attached with a optional Where predicate which is defined

by the following syntax tree.

P(x1, ..., xn) ::= ProcExp [Where WherePred ]
WherePred ::= WherePred ∧ WherePred

| WherePred ∨ WherePred
| WherePred ⇔ WherePred
| WherePred ⇒ WherePred
| ¬WherePred | true | false
| WhereExpr ∼ WhereExpr ,

∼ ∈ {<,6,=, >,≥}

WhereExpr ::= [Name.]Start | [Name.]End
| [Name.]Tes
| Name.Engage | Name.Engagei

| WhereExpr ⊙WhereExpr ,⊙ ∈ {+,−}
| WhereExpr ⊙ R,⊙ ∈ {∗, /}
| (WhereExp) | R

where P is the process name, x1, ..., xn is an optional list of process parameters and ProcExp is

a Timed CSP process expression. Each process can be attached with an optional WherePred

with keyword Where. Process P without WherePred is exactly the same as a Timed CSP

process.

Name is a sequence of characters starting an alphabet, i.e., an event or a process. Note that if

Name is missing, it defaults to the process name on the left hand side. To differentiate events

of the same name in different processes, we write P .a to denote the event a in P whenever

necessary. By using the syntax defined above, common Timed Planning requirements can

be specified easily.
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Example 4.1.3 Consider a printer system, which has a receiver and two printers. The

receiver receives jobs and the two printers print jobs.

Receiver =̂ accept → Receiver

Printer1 =̂ print
30→ print finish → Printer1

Whereprint finish.Engagei − print .Engagei 6 120

Printer2 =̂ print
30→ print finish → Printer2

Whereprint finish.Engagei − print .Engagei 6 120
PrintSys =̂ Receiver ||| Printer1 ||| Printer2

WhereTes ↓ print 6 Tes ↓ accept

Process Receiver receives printing jobs and processes Printer1 and Printer2 are the two

printers printing documents. For each document printing process, it should be finished

within 2 minutes (120 seconds) and it must take at least 30 seconds for the whole process.

Since receiver and the two printers are working interleavingly, we need to make sure that for

each printing, there must be at least one unprinted jobs. Constraint Tes ↓ print 6 Tes ↓

accept is used to capture this idea, where Tes ↓ print is the number of occurrences of event

print in the event set Tes. 2end

Tes ↓ e is to count the number of event e in an execution that has been engaged so far. It

is a unique feature of Timed Planning where Timed CSP or Timed Automata are unable to

achieve. To capture different aspects of the execution, we define a set of build-in libraries

which can be directly used in the where predicates.

• Tes ↓ e : the number of occurrences of event e in the timed event set Tes.

• first(Tes): The first event engaged in Tes.

• last(Tes): The last event engaged in Tesup to the current execution.

Since Tes is a set of pairs (e ×R+), Tes ↓ e is easily calculated by counting the number of

appearances of e in Tes which have been engaged so far. first(Tes) is retrieved by finding

the pair (e,T ) with the smallest T in Tes, while last(Tes) is to find the largest T . Users

are free to add their own functions to the libraries.
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Common requirements for a system can be easily specified. For instance, the deadline of a

process, order of events, separation time between events, etc as follows:

1. Process P must be finished within time d :

P .End − P .Start 6 d

2. Process P must be finished before time d :

P .End 6 d

3. Max separation time between two events e1, e2 is d :

e2.Engage − e1.Engage 6 d

4. e2 must be engaged before e1:

e1.Engage − e2.Engage 6 0

Data types

The Timed Planning specification supports a wide range of primitive data types, including

integers, real numbers, boolean values and lists. We can define global variables or process

parameters of these types. To be specific, the data types we are supporting are: R (Real

Number), N (Integers), B (Boolean) and T [] (a list of elements of type T where T ∈

{R,N,B}).

4.1.3 Healthiness Conditions

As illustrated in the last section, each process has a Where clause, which restricts the set

of timed traces of the process. The constraints associated with a process are divided into

two groups, namely the explicit ones defined in the Where clause and implicit ones. The

implicit constraints should always be satisfied, which is a set of healthiness conditions of

processes. The following are two examples of such healthiness conditions. The complete list

of healthiness conditions can be found in Appendix A.
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• For every event e in process P , e must be engaged between the starting time and

ending time of P . Let
∑

P be the alphabet of P .

∀ e :
∑

P • P .Start 6 e.Engage ∧ e.Engage 6 P .End

• Let Pi be a sub-process of P , written as Pi 4 P . The starting time of Pi must be

greater than or equal to the starting time of P and its ending time must be less than

or equal to that of P .

∀P ,Pi • Pi 4 P ⇒ P .Start 6 Pi .Start ∧ Pi .End 6 P .End

4.2 Operational Semantics

In the previous section, the syntax Timed Planning processes is illustrated. In this section,

we formally define the semantics of the new specification. An operational semantics provides

a way of interpreting a language by stepping through executions of programs written in

that language. It describes an operational understanding of the language. The operational

semantics of Timed CSP is precisely defined in Schneider [90] by using the combination of two

relations: event transition and evolution. The semantic model consists of three components:

the event and timed transitions which are inherited from Timed CSP, a Where predicate

which must be satisfied by this model, and an Timed stamped set.

A Timed stamped set (Tss) is a record of an execution, which is to store all the values of

the timed variables introduced in last section, namely Start,End,Engage,Engagei and

Tes. It consists of a set of process related time stamps, namely the starting and ending

times of processes, and a timed event set (Tes) which is a set of timed events. Tes is a

subset of Tss: Tes ⊆ Tss. A timed event is a pair drawn from e × R+ where e ∈ Σ,

consisting of a time and an event engage time value.

We define the state of a process as a quadruple ⟨P , t ,W ,Tss⟩ where P is the process, t

is the current time, W is the Where predicate and Tss is the timed stamped set of the

model. Tss keeps value for all variables. At each transition, an evaluation of the system
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requirement W is performed. If the current state satisfies the requirement, the transition

can be enabled, otherwise not. The operational semantics of Timed Planning is defined as

follows.

Definition 4 The operational semantics of the extended Timed CSP specification is a timed

transition where the state is a quadruple ⟨P , t ,W ,Tss⟩, and event transitions and evolution

transitions are defined by the rules:

• ⟨P , t ,W ,Tss⟩ a→ ⟨P ′, t ,W ,Tss ′⟩ where

a ̸= X ∧ ∃ i : N • Tss ∪ {(a.Engagei , t), (P .Start, t)} �W

• ⟨P , t ,W ,Tss⟩ X→ ⟨P ′, t ,W ,Tss ′⟩ where

Tss ∪ {(P .End, t)} �W

• ⟨P , t ,W ,Tss⟩ d ⟨P ′, t + d ,W ,Tss ′⟩ where

d > 0 ∧ Tss ∪ {(P .Start, t)} �W

where P ′ is the subsequent process of P by involving either a event transition (→) or a timed

transition ( ). Tss ′ is a timed stamped set with updated Engage, Engagei , Start,

End and Tes variables. The a→ represents an event transition, whereas d is a timed

transition. ∃ i : N • Tss ∪ {(a.Engagei , t), (P .Start, t)} � W is an evaluation of the

current state, which is used to check whether the current Tss fulfills the system requirements

W or not. 2

In the operational semantics, we define both event transition and timed transition relations

for all primary and compositional operators in Timed Planning specification.

Stop

In Timed Planning, process Stop is the same as it is in Timed CSP. It remains unable to

perform any internal or external events which must still be in the same state after any delay

has occurred. The inference rule for Stop is defined as follows:
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⟨Stop, t ,W ,Tss⟩ d ⟨Stop, t + d ,W ,Tss⟩

This states that process Stop can allow any amount of time d to elapse, and that the

resulting state will still be Stop. Tss remains unchanged.

Skip

The Timed CSP process Skip is the immediately terminating process. The inference rules

for the operational semantics of Skip are defined as follows:

Tss ∪ {(X.Engage, t)} |= W

⟨Skip, t ,W ,Tss⟩ X→ ⟨Stop, t ,W ,Tss ∪ {(End , t)}⟩

⟨Skip, t ,W ,Tss⟩ d ⟨Skip, t + d ,W ,Tss⟩

Event Prefix: a → Q

The CSP expression a → P describes a process which is prepared to engage in the event a,

after which it will behave as P . In Timed Planning, it remains in its initial state until event

a is able to be performed at the current environment and requirements. Alternatively, some

time may elapse without the event a being accepted. In this case, the process remains in

the same state, patiently maintaining the offer. These two possibilities are described by the

two following transitions.

Tss ∪ {(a.Engagei , t)} |= W
[ Tes ↓ a = i − 1 ]

⟨a → Q , t ,W ,Tss⟩ a→ ⟨Q , t ,W ,Tss ∪ {(a.Engagei , t)}⟩

⟨a → Q , t ,W ,Tss⟩ d ⟨Q , t + d ,W ,Tss⟩
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Timeout: Q1 ◃ {d}Q2

The timeout operator introduces a way of describing time-sensitive process behavior. Initial-

ly process Q1 is available, which means that the control is with process Q1 when execution

begins. If Q1 performs some external event before d units of time have elapsed, providing

that this event engaging at the current time satisfies the system requirements, then the

timeout choice is resolved in favor of Q1. In this case, Q2 is discarded without ever being

made available. Q1 performing an internal event would not resolve the choice. If Q1 does

not perform any visible event in the first d time units, the process would pass control to

process Q2, where the timeout occurs.

Tss ∪ {(a.Engagei , t)} |= W Q1
a→ Q ′

1
[ Tes ↓ a = i − 1 ]

⟨Q1
d
◃ Q2, t ,W ,Tss⟩ a→

⟨Q ′
1, t ,W ,Tss ∪ {(a.Engagei , t)}⟩

Q1
τ→ Q ′

1

⟨Q1
d
◃ Q2, t ,W ,Tss⟩ τ→ ⟨Q ′

1
d
◃ Q2, t ,W ,Tss⟩

⟨Q1
0
◃ Q2, t ,W ,Tss⟩ τ→ ⟨Q2, t ,W ,Tss⟩

Q1
d ′
 Q ′

1

⟨Q1
0
◃ Q2, t ,W ,Tss⟩ d ′

 ⟨Q ′
1
d−d ′
◃ Q2, t + d ′,W ,Tss⟩

External Choice: Q1 2 Q2

The external choice operator offers a choice between processes, which is resolved at the

instant the first visible event occurs, in favor of the process which performs it. In Timed

Planning, the choice is resolved only by an external event of one of participating process.

The choice is preserved when any participating process performing an internal event. Since

time passes for both processes are at the same rate, they both participate in any evolution.

The operational semantics of external choice operator are illustrated by the following rules.
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Tss ∪ {a.Engagei , t} |= W

Q1
a→ Q ′

1
[ Tes ↓ a = i − 1 ]

⟨Q1 2 Q2, t ,W ,Tss⟩ a→
⟨Q ′

1 2 Q2, t ,W ,Tss ∪ {(a.Engagei , t)}⟩

Tss ∪ {a.Engagei , t} |= W

Q2
a→ Q ′

2
[ Tes ↓ a = i − 1 ]

⟨Q1 2 Q2, t ,W ,Tss⟩ a→
⟨Q1 2 Q ′

2, t ,W ,Tss ∪ {(a.Engagei , t)}⟩

Q1
τ→ Q ′

1

⟨Q1 2 Q2, t ,W ,Tss⟩ τ→ ⟨Q ′
1 2 Q2, t ,W ,Tss⟩

Q2
τ→ Q ′

2

⟨Q1 2 Q2, t ,W ,Tss⟩ τ→ ⟨Q1 2 Q ′
2, t ,W ,Tss⟩

Q1
d Q ′

1 Q2
d Q ′

2

⟨Q1 2 Q2, t ,W ,Tss⟩ d ⟨Q ′
1 2 Q ′

2, t + d ,W ,Tss⟩

Parallel: Q1 X ||Y Q2

The operational semantics of the alphabetized parallel composition operator Q1 X ||Y Q2

are illustrated in the following rules.

Tss ∪ {(Start, t), (e.Engagei , t)} |= W

Q1
e→ Q ′

1
[ r1 ]

[e ∈ X ∪ {τ} \Y ,Tes ↓ e = i − 1]

⟨Q1 X ||Y Q2, t ,W ,Tss⟩ e→
⟨Q ′

1 X ||Y Q2, t ,W ,Tss∪
{(Start, t), (e.Engagei , t)}⟩

Tss ∪ {(Start, t), (e.Engagei , t)} |= W

Q2
e→ Q ′

2
[ r2 ]

[e ∈ Y ∪ {τ} \X ,Tes ↓ e = i − 1]

⟨Q1 X ||Y Q2, t ,W ,Tss⟩ e→
⟨Q1 X ||Y Q ′

2, t ,W ,Tss∪
{(Start, t), (e.Engagei , t)}⟩
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Tss ∪ {(Start, t), (e.Engagei , t)} |= W

Q1
e→ Q ′

1 Q2
e→ Q ′

2
[ r3 ]

[e ∈ X ∩Y − {X},Tes ↓ e = i − 1]

⟨Q1 X ||Y Q2, t ,W ,Tss⟩ e→
⟨Q ′

1 X ||Y Q ′
2, t ,W ,Tss∪

{(Start, t), (e.Engagei , t)}⟩

Tss ∪ {(Start, t), (X.Engage, t)} |= W

Q1
X→ Q ′

1 Q2
X→ Q ′

2
[ r4 ]

⟨Q1 X ||Y Q2, t ,W ,Tss⟩ e→
⟨Q ′

1 X ||Y Q ′
2, t ,W ,Tss∪

{(Start, t), (End, t)}⟩

Tss ∪ {(Start, t)} |= W

Q1
d Q ′

1 Q2
d Q ′

2
[ r5 ]

⟨Q1 X ||Y Q2, t ,W ,Tss⟩ d 
⟨Q ′

1 X ||Y Q ′
2, t + d ,W ,Tss ∪ {(Start, t)}⟩

The first two rules state that either of the components (Q1 or Q2) may engage an event

as long as the event is not shared if and only if the evaluation on whether the current Tss

appended with {(Start, t), (e.Engagei , t)} still satisfies process requirement W is true.

Tss will be updated to Tss ′ = Tss∪ {(Start, t), (e.Engagei , t)}. Rule r3 states that

a shared event can be engaged simultaneously by both components as long as the event

satisfies the requirements. Rule r4 is a special case for the third rule, whereas the event

is the X which is a special event used purely to denote termination. A new pair (End, t)

is added to the Tss and hence checked. Rule r5 says that the composition may allow time

elapsing when both the components do.

Interleaving: Q1 ||| Q2

The introduction of time to the interleaving operator is entirely similar to the approach

taken for the parallel composition. In an interleaved combination each internal or external
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event is performed by precisely only one of the components if and only if the evaluation on

the current Tss with this event satisfied the system requirements, while the other component

makes no progress at all. The passage of time occurs at the same rate in both processes,

so they must agree on timed transitions. The transitions reflecting operational semantics of

interleaving operator are defined as follows:

Tss ∪ {(e.Engagei , t)} |= W

Q1
e→ Q ′

1
[ Tes ↓ e = i − 1 ]

⟨Q1 ||| Q2, t ,W ,Tss⟩ e→
⟨Q ′

1 ||| Q2, t ,W ,Tss ∪ {(e.Engagei , t)}⟩

Tss ∪ {(e.Engagei , t)} |= W

Q2
e→ Q ′

2
[ Tes ↓ e = i − 1 ]

⟨Q1 ||| Q2, t ,W ,Tss⟩ e→
⟨Q1 ||| Q ′

2, t ,W ,Tss ∪ {(e.Engagei , t)}⟩

Tss ∪ {(X.Engage, t)} |= W

Q1
X→ Q ′

1 Q2
X→ Q ′

2

⟨Q1 ||| Q2, t ,W ,Tss⟩ X→ ⟨Q ′
1 ||| Q ′

2, t ,W ,Tss ∪ {(End, t)}⟩

Q1
d Q ′

1 Q2
d Q ′

2

⟨Q1 ||| Q2, t ,W ,Tss⟩ d ⟨Q ′
1 ||| Q ′

2, t + d ,W ,Tss⟩

Example 4.2.1 Take a printer process as an example. After the printer accepts a job, it

needs to print this job within 30 to 60 seconds. Assume the process starts at time 0.

Printer =̂ accept
30→ print → Printer

Where print .Engagei -accept .Engagei 6 60

W is the constraint print .Engagei -accept .Engagei 6 60. The following is one possible

execution sequence.
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⟨accept 30→ print → Printer , 0,

{print .Engage-accept .Engage 6 60}, {(Start, 0)}⟩ 10 
⟨accept 30→ print → Printer , 10,

{print .Engage-accept .Engage 6 60}, {(Start, 0)}⟩ accept→
⟨Stop

30
◃ print → Printer , 10, {print .Engage-accept .Engage 6 60},

{(Start, 0), (accept .Engage1, 10)}⟩
30 

⟨print → Printer , 40, {print .Engage − accept .Engage 6 60},
{(Start, 0), (accept .Engage1, 10)}⟩

20 
⟨print → Printer , 60, {print .Engage − accept .Engage 6 60},

{(Start, 0), (accept .Engage1, 10)}⟩
print→

⟨Printer , 60, {print .Engage − accept .Engage 6 60}
{(Start, 0), (accept .Engage1, 10), (print .Engage1, 60)}⟩

· · ·

In this execution, event accept is firstly engaged at 10, we insert (accept .Engagei10)

to Tss. It is not likely for event print to be firstly engaged after 40 seconds while it is

enabled, where print .Engagei will be greater than 70, since it is guarded by print .Engagei -

accept .Engagei 6 60. end

4.3 Modeling Timed Planning in CLP

4.3.1 Encoding Extended Timed CSP in CLP

The very initial step is to encode the extended Timed CSP models in to CLP rules. This

step is automatically done by syntax rewriting. A process “Proc WhereWherePred" is

encoded to a relation tproc(N, P, W) in CLP. tproc(N, P, W) consists of three parts, where

N is the name of this process, P is the CLP representation of Proc and W represents the

WherePred . The syntax translation consists of two parts, process operators translation and

Where clause translation.

All operators of the extended specification which inherited from Timed CSP are encoded

into CLP rules in a compositional way. A library of all operator translation is built. For

example:
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• a → Skip : eventprefix(a, skip)

• a
t→ Skip : delay(a, skip, t)

• P1 ||| P2 : interleaving(P1,P2)

• P1; P2 : sequential(P1,P2)

In our library, eventprefix (A,P) is defined to denote a process A → P . delay(A,P ,T )

is the CLP form of operator A
T→ P in Timed CSP. interleaving(P1,P2) is to represent

operator P1 ||| P2 where P1 and P2 are the CLP formate of process P1 and P2. Relations

sequential/2 is to represent a sequential operator “;”.

For each process, a Where clause WherePred is encoded into W in CLP. W is a list of the

form [W 1,W 2, ...,Wn]. Before we encode WherePred into a CLP list, we need to convert

WherePred into conjunctive normal form (CNF), which is a conjunction of Horn clauses.

Logically, W = W 1 ∧ W 2 ∧ ... ∧ Wn where each Wi is a Horn clause in the form of

or(Wi1,Wi2), not(Wik ) or an atom. If there are no Where predicates defined for this

process, W = []. The syntax encoding of task Kitchen (Example 4.1.2) is as follows.

tproc(kitchen, eventprefix (cook , eventprefix (supply , kitchen)), [ ]).
tproc(counter , delay(order , eventprefix (serve, counter), 30),

[leq(engage(serve), engage(order))]).
tpoc(mc, parallel(kitchen, counter),

[geq(number(tr(mc), supply),number(tr(mc), order)),
leq(minus(number(tr(mc), supply),number(tr(mc), order)), 5)]).

where relations leq , geq ,minus,number are built-in predicates defined in our library, which

represent 6,≥,−, ↓ respectively.

4.3.2 Encoding Semantics in CLP

Having defined the corresponding CLP syntax for the extended Timed CSP specifications,

we devote the rest of this section to describe how to embed the operational semantics into
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CLP rules. A relation of the form tpos(P1, T1, E1, M, P2, T2, E2) is used to denote the

t imed protocol operational semantics, by capturing both event transition relations and evo-

lution relations with a set of constraints. Informally speaking, tpos(P1,T1,E1,M ,P2,T2,E2)

returns true if the process P1 evolves to P2 through either a time evolution, i.e., let T2−T1

time units elapse (so that M = []), or an event transition by engaging an event e instantly

(M = e), as long as both transitions satisfy the Where requirements stored in E1. After

this transition relation, the local environment might change to E2 by adding more predi-

cates. E1 (and E2) is the environment of the system, which consists not only the Where

predicates, but also the current values of the variables appeared in the Where predicates.

We define the tpos/72 relation for each and every operator of Timed CSP according to the

semantics presented previously in Section 4.2.

tpos(stop,T1,E , [], stop,T2,E ) : −D >= 0,T2 = T1 +D .
tpos(skip,T ,E1, [termination], stop,T ,E2)

: −sat(E , termination,T ,E2).
tpos(skip,T1,E1, [], skip,T2,E2)

: −D >= 0,T2 = T1 +D , sat(E1,T1,E2).

The only transition for process Stop is time elapsing. Process Skip may choose to wait

some time before engaging the X event. We use termination to denote this special event

in CLP. Process Skip may not be able to terminate immediately since there might be some

constraints involving P .End defined in the Where clause. The relation sat is required to

be evaluated before the termination. Relation sat(E1,A,T ,E2) and sat(E1,T ,E2) are used

to test whether the current state fulfills the requirements. Relation sat/3 handles event

transition and sat/2 handles timed transition. The sat/3 and sat/2 rules are defines as:

sat(E1, termination,T )
: −get process(E1,N ), insert(end(N ,T ),E1,E2), evaluate(E2).

sat(E1,A,T )
: −get process(E1,N ), insert(engage(A,N ,T ),E1,E2), evaluate(E2).

sat(E1,T ) : −evaluate(E1).

2tpos/7 indicates the relation tpos of arity 7, same for sat/3 and sat/4.
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The first rule says that whenever there is a termination event, the predicate P .End = T need

to be validated in conjunction with all the current requirements in E1. Once the resultant

predicate is proved to be valid, we append this predicate to the current set of predicates.

The second rule is to validate the case when an event is engaged, by adding the predicate

A.Engagei = T to the environment. The last rule captures the timed transition relation by

evaluating the current environment with the current time. Relation get process(E ,N ) is to

find the current named process being executed. evaluate(E ) is to evaluate the requirements,

namely the constraint store.

In the operational semantics, there is a set of composition operators which are more complex.

For instance, the rules associated with the semantics of alphabetized parallel composition

operator P1 X ||Y P2 are as follows.

tpos(para(P1,P2,X ,Y ),T ,E1,A, para(P3,P2,X ,Y ),T ,E2)
: −member(A,X ),not(member(A,Y )),

sat(E1,A,T ), tpos(P1,T ,E1,A,P3,T ,E3),
update(E3, engage(A,T ),E2).

tpos(para(P1,P2,X ,Y ),T ,E1,A, para(P1,P4,X ,Y ),T ,E2)
: −member(A,Y ),not(member(A,X )), sat(E1,A,T ),

tpos(P2,T ,E1,A,P4,T ,E3), update(E3, engage(A,T ),E2).
tpos(para(P1,P2,X ,Y ),T ,E1,A, para(P3,P4,X ,Y ),T ,E2)

: −member(E ,X ),member(E ,Y ),not(E = termination),
sat(E1,A,T ), tpos(P1,T ,E1,A,P3,T ,E3),
tpos(P2,T ,E1,A,P4,T ,E4), update(E3,E4,E2).

tpos(para(P1,P2,X ,Y ),T ,E1, termination, para(P3,P4,X ,Y ),T ,E2)
: −sat(E1, termination,T ),

tpos(P1,T ,E1, termination,P3,T ,E3),
tpos(P2,T ,E1, termination,P4,T ,E4),
update(E3,E4, end(para(P1,P2,X ,Y ),T ),E2).

tpos(para(P1,P2,X ,Y ),T1,E , [], para(P3,P4,X ,Y ),T2,E )
: −tpos(P1,T1,E , [],P3,T2,E ), tpos(P2,T1,E , [],P4,T2,E ).

Other parallel composition operation, like |[X ]| and |||, can be defined as special cases

of the alphabetized parallel composition operator straightforwardly. There is a clear one-

to-one correspondence between our rules and the operators which are fully defined at [34].
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Therefore, the soundness of the encoding can be proved by showing there is a bi-simulation

relationship between the transition system interpretation defined in Section 4.2 and ours,

and the bi-simulation relationship can be proved easily via a structural induction.

4.4 Verification of Extended Timed CSP

Once we encode the semantics of processes as CLP rules, well-established constraint solvers

like CLP(R) [55] can be used to reason about those systems. Operational semantics defined

in Section 4.2 are all encoded systematically.

4.4.1 Feasibility Checking

After specifying the tasks using extended Timed CSP in CLP(R), the very first task is to

check whether the tasks are feasible before simulation or reasoning of the system. Feasibility

checking is necessary because there might be a conflict among the set of Where clauses

of a system, which potentially invalidates any proving result. To perform this task, the

conjunction of the Where predicates and the healthiness conditions are checked.

The output of the feasibility checking is either yes if the tasks are feasible or else no. In case

the tasks are infeasible, i.e., there is no way to satisfy all the constraints, a minimum set

of predicates which conflict each other can be generated so as to facilitate users to correct

easily. We use the CLP(R) predicate feasibility checking(N ,S ) to fulfill this purpose, where

N is the name of the process that is to be checked, and S is the minimum conflict set. If the

process N is a feasible process feasibility checking/2 returns false, otherwise the minimum

conflict set S is generated and returned. It is performed by a linear scan on a sequence of

constraints. We check whether after removing one constraint, the constraints store becomes

satisfiable or not. If it does, then this constraint must be important and have to be put

back, otherwise it can be discarded. It is an iterative process until a minimum set is found.
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feasibility checking(N ,S )
: −get where(N ,W ),min cons store(W ,S ).

min cons store(W ,S )
: −find min(1,W ,S ).

find min(N ,W ,W ) : −size(W ,L),L < N , !.
find min(N ,W ,S ) : −size(X ,L),L >= N ,

delete at(N ,W ,WS ), (satisfy(WS )− >
find min(N + 1,W ,S ); findm in(N ,WS ,S )).

Relation min cons store(W ,S ) is to generate the minimum conflict set S of W if W |=

false. It is performed by a linear scan on a sequence of constraints. We check whether after

removing one constraint, the constraints store becomes satisfiable or not. If it does, then

this constraint must be important and have to be put back, otherwise it can be discarded.

It is an iterative process until a minimum set is found.

4.4.2 Reasoning about Safety and Liveness

Feasibility checking is to check whether the tasks modeled in extended Timed CSP are

feasible. Once it is proven to be feasible, we can reason about safety or liveness properties

by making explicit assertions.

Relation reachable(P ,Q ,E1,E2,T1,T2,Tr) is defined to explore the full state space if

necessary. It states that “process P starts at T1 with environment E1 and is able to be

executed to Q at T2 with environment changed to E2 via trace Tr ”.

reachable(P ,P , , ,T ,T , []).
reachable(P ,Q ,E1,E2,T1,T2,N )

: −tpos(P ,T1,E1,A,P1,T3,E3),
(A = t( ); A == tau; A = reccall( )),
nottable(P1), assert(table(P1)),
reachable(P1,Q ,E3,E2,T3,T2,N ).

reachable(P ,Q ,E1,E2,T1,T2, [E | N ])
: −tpos(P ,T1,E1,A,P1,T3,E3),
not(A = t( ); A == tau; A = reccall( )),
nottable(P1), assert(table(P1)),
reachable(P1,Q ,E3,E2,T3,T2,N ).
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reachable/73 is used to build assertions for various property checking. The first property of

interest is to find one particular feasible execution for process, provided that the process is

feasible. Relation trace(P ,Tr ,T ) is able to generate such feasible trace Tr of process P ,

whose execution time is T .

trace(P ,Tr ,T ) : −notfeasibilitychecking(N , ),
init Env(N ,E ), reachable(P , ,E , , 0,T ,Tr).

Reachablity checking is performed by executing “? − trace(P ,Tr ,T ), property(Tr ,Prop)”,

which is to find a trace Tr that satisfies some property Prop. For example, event a is always

engaged before b in Tr .

One property of special interest is deadlock-freeness. Relation deadlock(P ,Tr) is used to

check the deadlock-freeness property, by trying to find a counterexample where P is dead-

locked at some trace Tr .

deadlock(P ,Tr) : −initEnv(P ,E ),
reachable(P ,P1,E ,E2, 0,T2,Tr),
(tpos(P1,T2,E2, [t( )],Q1,T3,E3)− >
not(tpos(Q1,T3,E3,A, , , ),notA = [t( )]);
not(tpos(P1,T2,E1,A,Q1,T3, ),notA = [t( )])).

It states that a process P at time 0 may result in deadlock if it can evolve to the process

expression Q at time T2 where no event transition is available neither at T2 nor at any later

moment. The last line outputs the trace which leads to a deadlock. Alternatively, we may

present it as the result of the deadlock proving. Note that the above is different from the

deadlock checking for standard Timed CSP as presented in [29]. Here the Where clauses

at each step must be fulfilled. In general, a deadlock-free Timed CSP process may become

a non deadlock-free process after it is enriched with certain Where clauses. It is, however,

also possible for a non deadlock-free process to become deadlock-free.

We can also find the execution duration of a specific event, more specifically, the range of

time that the event is able to be engaged. Relation engage time(P ,E ,R) is defined for the

3reachable/7 indicates the relation reachable of arity 7.
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purpose, which is to find the range R of the engage time of event E in process P . The

detailed definition for all relations can be found in [34].

engage time(P ,E , []) : −nothappen at(P ,E , ).
engage time(P ,E ,R) : −happen at(P ,E ,T ),

union(R,T ,R1), engage time(P ,E ,R1).

where R is the range of engaged time of event E in process P which is generated after

executing the relation.

4.5 Case Studies

4.5.1 Extended Railway Crossing System

We model a railway control system which is used to control trains passing a critical point

such as a bridge. When a train approaches the bridge it sends a signal to the controller

within a certain distance. If the bridge is occupied, then the controller sends a stop signal

within 10 time units to prevent the train from entering the bridge. Otherwise, if the train

does not receive a stop signal within 10 time units, it will start to cross the bridge within

20 time units. The crossing train is assumed to leave the bridge within 3 to 5 time units.

Traini =̂ approach.i → ((stop.i
7→

start .i → entercross.i
3→ leavecross.i → Traini)

△10 entercross.i
3→ leavecross.i → Traini)

Where entercross.i .Engage − approach.i .Engage 6 20,
leavecross.i .Engage − entercross.i .Engage 6 5,
start .i .Engage − end .i .Engage 6 10

Control⟨⟩ =̂ approach.i → Control⟨i⟩
Control

⟨j ⟩as
=̂ approach.i → stop.i → Control

⟨j ⟩asa⟨i⟩
2

out .j → Controls 2
start .j → Control

⟨j ⟩as

Where stop.i .Engage − approach.i .Engage 6 10
Trains =̂ Train1 ||| Train2 ||| Train3
System =̂ Trains ∥ Control⟨⟩
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After transferring this system into CLP(R) syntax, we can apply proving over this system.

Selected properties are shown as follows:

• Where it is a feasible system.

Property: feasible(system)

?− feasibility checking(system,S ).

Feasible

• Min and Max time for Train1 cross the bridge.

Property: Min = min(leavecross.1.Engage) , Max= max(leavecross.1.Engage)

?− set(approach.1 engage, 0), engage time(system, leavecross.1,R).

R>=13, R<=25

• Whether two trains can cross bridge at the same time

Property: -3<= entercross.1.Engage-entercross.1.Engage<=3

?− happen at(system, [entercross.1, entercross.2], [T1,T2]),T2− T1 <= 3.

False

4.5.2 Real Time Multi-lift System

In this section, we model a real time multi-lift system in Timed Planning specification and

hence verify various properties over the system. This real time multi-lift system is initially

described and modeled in TCOZ [74]. We also extend this multi-lift system with extra

requirements which cannot be modeled using Timed CSP or TCOZ.

The multi-lift system for a building consists of multiple lifts each providing transport between

the various floors for the building. The detailed description of the system is introduced in

[74].



4.5. CASE STUDIES 80

Figure 4.1: The Multi-Lift System Communication Diagram

Each component of the system is modeled as a Timed Planning process, where data infor-

mation of the system are modeled as global or local variables. Components of the system

are communicating with each other through channels. The system consists of several com-

ponents: Floors, Controller and lifts (Figure 4.1). Inside each lift, there are four parts: a

door for allowing access to and from the lift, a shaft for transporting the lift, an internal

queue for determining the lift itinerary and a lift controller (Figure 4.2). We model two

components Door and Shalf in this section and the specification of the system is partially

shown in Appendix B.

Lift Door

Lift door is modeled as a separate process which can communicate with a servomechanism

that activate the door to open or close through a channel servo and on another channel

sensor to determine when the door is open or closed. When the door is closing, a user can

press the outside button to request the door for opening again. To be fair to other users

in the lift or other users waiting for the lift, it’s not possible to keep the door open if one

is always pressing the button. So one more constraint is added to the lift door controller
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Figure 4.2: Internal Lift Communication Diagram

which would force the door close within td after it’s opened.

OpenDoor(i) =̂ servo!(i , toOpen) → sensor?(i , opened) → Skip
CloseDoor(i) =̂ servo!(i , toClose) → sensor?(i , closed) → Skip
CycleDoor(i) =̂ OpenDoor(i); confirm → (µ • CD Wait[t ]; CloseDoor

▽ sensor?(i , interrupt) → OpenDoor ; CD)
Door(i) =̂ open?i → CycleDoor(i); close!i → Door(i)

Whereclose.Engagei − open.Engagei 6 td

Shaft

Shaft would receive the number of floors to be moved from channel move and then it would

move to the destination floor. t is the time to move one floor up or down, delay is the

acceleration and braking delay. The time for the shaft to reach the destination floor will be

in the range of [t ∗ n, t*n+delay]. The model of shaft is shown as follows where i is the

index of this shaft.

Shaft(i) =̂ move?n → arrive → Shaft(i)
Wheren ∗ t 6 arrive.Engage −move.Engage

∧ arrive.Engage −move.Engage 6 n ∗ t + delay
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After encoding this system into CLP rules, verification can be applied to the system. Selected

properties are shown as follows:

• Is it a feasible system?

?− feasibility checking(system,S ).

Feasible

• Is the system deadlock free?

?− deadlock(system,Tr).

Deadlock free

4.6 Summary

In this chapter, we presented an extension of Timed CSP to support stating system re-

quirements which constraints all behavioral traces of given processes, for example, deadline

and execution time of a process, time-related constraints among events which are common

requirements for many real time systems and etc. A Timed Planning model is made up

of a compositional timed process and a set of constraints over processes, events and the

data variables which are the requirements that the process should satisfy. In this proposed

formalism, each process is associated with a set of localized timing/untiming requirements

with keyword Where which can be specified in a compositional way. The full syntax and

operational semantics of Timed Planning language are formally defined in this chapter.

A reasoning mechanism for the Timed Planning is hence developed based on Constraint Logic

Programming (CLP) by extending the reasoning engine for Timed CSP. Both syntax and

semantics of Timed Planning are formally translated into CLP. The operational semantics

is encoded to CLP, where a set of global and local variables need to be captured during

the execution. Feasibility checking and various property verification can be applied to check

systems modeled in Timed Planning. Feasibility checking is necessary which helps users to

debug the conflicts of the set of timing constraints specified in the systems.



Chapter 5

Job-shop Scheduling Problems

In many application domains, we are interested in selecting, among all possible behaviors,

one that optimizes some sophisticated performance measure. We apply Timed Planning

and its reasoning engine to solve classical job-shop scheduling problems, where finding an

optimal schedule corresponds to finding a shortest execution (in terms of elapsed time). The

observation underlying is that classical scheduling and resource allocation problems can be

modeled very naturally using Timed Planning whose runs correspond to feasible schedules.

In this case, the job-shop scheduling problem can be reduced to a problem of finding a

complete execution (an execution that terminates) with the minimum execution time. In

our work, Both deterministic [58] and preemptive [80] job-shop scheduling problems are

able to be solved. We also apply our approach to handle the extended job-shop scheduling

problems, where jobs can have more complex relations, such as a composition of operational

behaviors with communications, and jobs with deadlines and relative timing constraints,

which no other current work are able to support.

This chapter is organized as follows. In Section 5.1, we first introduce the deterministic job-

shop scheduling problem, and then we present how the problems can be modeled and solved

using Timed Planning specifications. In Section 5.2, we formalize the preemptive job-shop

scheduling problems into Timed Planning and then solve the problem by finding its optimal

83



5.1. DETERMINISTIC JOB-SHOP SCHEDULING PROBLEM 84

scheduler using its underlying reasoning engine. Extended job-shop scheduling problem is

shown in Section 5.3. In Section 5.4, a set of experiments are carried out hard bench marks

for job-shop scheduling problems. A summary of the work is presented in Section 5.5.

5.1 Deterministic Job-Shop Scheduling Problem

The job-shop scheduling problem (JSSP) is a generic resource allocation problem in which

common resources (“machines") are required at various time points (and for given durations)

by different jobs. The goal is to find a way to allocate the resources such that all the jobs

terminate as soon as possible, which is a schedule with the minimum time interval to finish

all jobs. The difficulty is both theoretical (even very constrained versions of the problem

are NP-hard) and practical (an instance of the problem with 10 jobs and 10 machines,

proposed by Fisher and Thompson [41], remained unsolved for almost 25 years, in spite of

the research effort spent on it). The difference between a deterministic and a preemptive

job-shop scheduling problem is for the latter case, jobs can use a machine for some time, stop

for a while and then resume from where they stopped. We define both problems formally

as follows.

5.1.1 Formal Definition of Deterministic Job-shop Scheduling Problem

Definition 5 (Job-shop scheduling problem) Given a set of O operations, a set M of m

machines, and a set J of n jobs. For each operation ν ∈ O there is a processing time

p(ν) ∈ N, a unique machine M (v) ∈ M on which it requires processing, and a unique job

J (ν) ∈ J to which it belongs.

It has the following requirements:

1. On O a binary relation A is defined, which represents the precedences of operations:

if (ν, ω) ∈ A, then ν has to be performed before ω.
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2. Relation A induces a total ordering of the operations belonging to the same job; no

precedence exists between operations of different jobs.

3. If (ν, ω) ∈ A and there is no υ ∈ O with (ν, υ) ∈ A and (υ, ω) ∈ A, then M (ν) ̸=

M (ω).

2

Definition 6 (Feasible Schedules for Deterministic Job-Shop Problem) A schedule is a func-

tion S : O → N that for each operation ν defines a start time S (ν). A schedule S is feasible

if

1.Covering :
∀ ν ∈ O : S (ν) > 0,

2.Non-Preemption :
∀ ν, ω ∈ O, (ν, ω) ∈ A : S (ν) + p(ν) 6 S (ω)

3.Mutual-Exclusion :
∀ ν, ω ∈ O, ν ̸= ω,M (ν) = M (ω) :
S (ν) + p(ν) 6 S (ω) or S (ω) + p(ω) 6 S (ν).s

The problem is to find an optimal schedule, i.e., a feasible schedule with minimum processing

time. 2

Example 5.1.1 Consider M={m1,m2} and two jobs J 1 = (m2, 4) and J 2 = (m1, 3), (m2, 4),

(m3, 6). The schedules S1 and S2 are depicted in Figure 5.1. The length of S2 13 is the

optimal schedule for a deterministic problem.

end

5.1.2 Modeling with Timed Planning

In this section, we show how deterministic job-shop scheduling problems are modeled in

Timed Planning processes. Hence the existing reasoning engine of Timed Planning can be
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Figure 5.1: The Gantt-Chart representations of two schedules

used to find the optimal schedules.

In our approach, each job is defined as a Timed Planing process and every machine that the

job runs on is modeled as an event.

Definition 7 (Timed Planning for a Job) Let J i = ⟨o1, ..., on⟩ be a job, which is a chain of

operations (ordered) on a set of machine M. Its associated process presentation Pi is

Pi =̂ m1
p(o1)→ m2

p(o2)→ ...mk
p(ok )→ Skip

where event mj in Pi denotes operation oj of job J i starting to process on machine mj

where mj = M(oj ). p(oj ) is the processing time required for oj on mj . Hence the delay

process mj
p(oj )→ mj+1

p(oj+1)→ ... denotes that oj must process at machine mj for p(oj ) time

units; then oj+1 can start to process which does not need to start immediately. 2

As defined in Definition 6, mutual exclusion is a requirement of a feasible schedule, which

is formalized in the following.

Definition 8 (Mutual Exclusion Constraints) Let J = {J 1, ..., J n} be a job-shop specifica-

tion and P = {P1, ...,Pn} be a set of timed planning processes defined for each job.

mutual-exclusion(P) =̂
∀Pi ,Pj ∈ P , i ̸= j , ∀m ∈

∑
Pi ∪

∑
Pj •

m
ti→ P ′

i 4 Pi ∧ m
tj→ P ′

j 4 Pj ⇒
Pi .m.Engage + ti 6 Pj .m.Engage ∨
Pj .m.Engage + tj 6 Pj .m.Engage

2
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Definition 9 (Timed Planning for Job-Shop specifications) Let J = {J 1, ..., J n} be a job-

shop specification and P = {P1, ...,Pn} be a set of timed planning processes defined for each

job. The timed planning presentation for the job-shop specification J will be an interleaving

of all processes Pi with the non-delay and mutual exclusion constraints:

JSSP =̂ |||0<i6n Pi Where mutual-exclusion(JSSP)

For every complete execution of JSSP (which terminates), its associated schedule S is a

feasible schedule. An optimal schedule is a trace of JSSP with the minimum ending time

min(JSSP .End). 2

The associated schedule of every complete execution of JSSP is a feasible schedule.

• Covering : For each Pi , every execution which terminates guarantees that each and

every event in Pi is engaged. JSSP which is an interleaving of all Pi also guarantees

that all events are engaged at every complete execution.

• Non-Preemptive : Non-Preemptive states that for every ordered pair of operations

(ν, ω) of the same job, the later one must start after the full completion of the previous

one. The process mν
p(ν)→ mω

p(ω)→ ... guarantees that operation ω is engaged after p(ν)

time unit of ω.

• Mutual Exclusion: This requirement is captured by the mutual -exclusion(JSSP)

defined in Definition 8, which guarantees that no two jobs evolve the same machine at

the same time.

5.1.3 Optimal Schedulers

To find the optimal schedule modeled in Timed Planning, we use a standard depth-first

search algorithm to explore the full pathes.
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Definition 10 (Non-delay Run) Let A be the set of enabled events for process P . non-

delay constraint says that once process P starts executing, at least one of the enabled event

with no side effects must be engaged at the same time.

non-delay =̂ ∀P • ∃ e ∈ enable(P) ∧ e.Engage = P .Start
JSSP =̂ |||0<i6n Pi

Wheremutual-exclusion(JSSP) ∧ non-delay

2

The corresponding timed planning representation for the two jobs in Definition 5.1.1 are

depicted as follows:

P1 =̂ m1
4→ Skip

P2 =̂ m1
3→ m2

6→ Skip
JSSP =̂ P1 ||| P2

Where(P1.m1.Engage + 4 6 P2.m1.Engage ∨
P2.m1.Engage + 2 6 P1.m1.Engage)

As illustrated in the above section, finding an optimal schedule is to find a execution of

timed planning process JSSP with the minimum ending time, i.e., min(JSSP.End). In the

rest part of this section, we apply several approaches to reduce the size of the transition

system and arrive at a more heuristic search algorithm.

Max Non-delay Test

Partial order reduction is a technique for reducing the size of the state-space to be searched

by a model checking algorithm. It exploits the commutativity of concurrently executed

transitions, which result in the same state when executed in different orders. For example:

P1 =̂ m1
4→ Skip

P2 =̂ m2
5→ Skip

JSSP =̂ P1 ||| P2

Wherenon-delay ∧ mutual -exclusion(JSSP)

≡ m1 → m2
5→ Skip ⊓m2 → m1

5→ Skip
Wherenon-delay
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The JSSP process is a choice of two process, where the order of the events denotes decision

to whom to give the first resource. The order of m1 and m2 does not affect the result.

Hence, JSSP is equivalent to m1 → m2
5→ Skip Wherenon-delay . The non-delay predicate

in the process guarantees that once m1 is engaged, m2 must be engaged immediately, which

is m1.Engage= m2.Engage. The job-shop process JSSP can be further simplified to

“JSSP =̂ {m1,m2}
5→ Skip”, where {m1,m2} is a new notation, which indicates that event

m1 and m2 are engaged simultaneously.

Consider the case that n jobs whose first operations are running on m machines where m<n

which means there are more or one jobs whose first operations are running on the same ma-

chine. It cannot directly apply the partial order reduction rules which still need to expand

the transition system.

Definition 11 (Max Non-delay Run) Let A be the set of events for process P that are

enabled. Max non-delay constraint says that once process P starts executing, at least one

subset of A with maximum distinct events must be engaged at the same time.

max -non-delay =̂
∀P , ∃E ∈ max sub(P) • E .Engage = P .Start

where enable(P) is the set of enabled events of P , max sub(P) is a set of max subset of

enable(P) with non duplicate events and no side effects, which means that no pair of events

in max sub(P) evolving the same mi and does not preserves any order implicitly. 2

Never Better Test

The max non-delay test removes the redundant paths where order of events evaluates to

be the same. Since we are interested only in optimal executions, we can apply stronger

reductions that do not preserve all runs, but still preserve the optimal runs. During the exe-

cution, we always keep the latest most optimal schedule, shortest(M). Whenever we reach a
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subprocess, we do a never better test, by estimating the best length of each subprocess. By

comparing the best length of the subprocess with the shortest(M), if the recent subprocess

can never result a better schedule, which means even this subprocess can reach its best

length, it won’t be shorter than shortest(M), then we will not expand this subprocess.

Best First Test

The searching algorithms described above all require the full state space search. The next

improvement consists of using a more intelligent search. At each step, a set of max sub(jssp),

maximum subset of enabled events with no duplicates, are enabled. We define a pre-

evaluation ranking function Order(jssp) for ordering the max sub(jssp) of enabled events.

We define another evaluation function Est(jssp) for estimating the possible best length of

the process jssp.

Algorithm 1 Best First Test
procedure BestFirst test(jssp)

Optimal := ∞

if jssp == stop then

Optimal:= 0;

else

if Est(jssp) < Optimal then

Sets:= Order(max sub(jssp))

for all s such that s ∈ Sets do

p’ := next(jssp, s, T)

Optimal:= min{Optimal, BestFirst test(p’)+T}

end for

end if

end if

return Optimal;
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Figure 5.2: The Gantt-Chart representations of a preemptive schedules

5.2 Preemptive Job-Shop Scheduling Problem

We extend the results on deterministic Job-shop scheduling problem to preemptive jobs, i.e.

jobs that can use a machine for some time, stop for a while and then resume from where

they stopped.

Example 5.2.1 Recall Example 5.1.1, two feasible schedule for the two jobs J 1 = (m2, 4)

and J 2 = (m1, 3), (m2, 4), (m3, 6) in shown in Figure 5.1. S2 is the optimal schedule if it is a

deterministic job-shop scheduling problem. Consider it is a preemptive problem, a feasible

schedule S3 is generated. In S3, J 1 is preempted at time = 2 on machine m3 to give the

machine to J 2. After J 2 has finished its operation on m3, J 1 resumes its previous operation

on m3. The length of S3 is 11 and it is a optimal schedule. end

The definition of a job-shop specification (Definition 5 remains the same. The main difference

between deterministic and preemptive job-shop scheduling problem is the feasible schedules

where the latter one does not satisfy the Non − Preemption requirement in Definition 6.

Definition 12 (Feasible Schedules for Preemptive Job-Shop Problem) Let T (O, i) ∈ N be

processing time of the ith step at which operation O executes. A schedule is a relation

S ⊆ O ×N×T so that (ν, st, t) ∈ S indicates that operation ν starts to process on time st

and processes for time t . A schedule S is feasible if
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1.Ordering :
∀ ν, ω ∈ O, (ν, ω) ∈ A,
(ν, st , t) ∈ S , (ω, st ′, t ′) ∈ S : st + t 6 st ′ + t ′

2.Covering :
∀ ν ∈ O :

∑
(ν,st ,t)∈S t = p(ν)

3.Mutual-Exclusion :
∀ ν, ω ∈ O, ν ̸= ω, (ν, st , t) ∈ S , (ω, st ′, t ′) ∈ S ,
M (ν) = M (ω) : st + t 6 st ′ or st ′ + t ′ 6 st .

2

5.2.1 Solving Preemptive Job-shop Scheduling Problems

Definition 13 (Timed Planning for a Preemptive Job) Let J i = ⟨o1, ..., on⟩ be a job, which

is a chain of operations (ordered) on a set of machine M. Each operation oi should process

on machine mj for p(oi) time unit. Its associated process presentation for oi is:

Oi =̂ µX • ms → me → Skip; X 2 Skip
Where

∑
me .Engage −ms .Engage 6 p(oi) ∧∑

me .Engage-me .Engage = p(oi) ⇔ End < ∞

Event ms denotes that operation oi starts to process on its corresponding machine m, me

denotes that it leaves m. Expression
∑

me .Engage−ms .Engage represents the total time

oi processes on m.

The associated process presentation Pi for each job is Pi =̂ Oi1 ; Oi2 ; ...; Oik . 2

Definition 14 (Mutual Exclusion Constraints) Let J = {J 1, ..., J n} be a job-shop specifi-

cation and P = {P1, ...,Pn} be a set of timed planning processes defined for each job.

mutual-exclusion(P) =̂
∀Pi ,Pj ∈ P , i ̸= j , ∀{ms ,me} ⊆

∑
Pi ∩

∑
Pj •

(µX • ms → me → ... 4 Pi ∧
µX • ms → me → ... 4 Pj ) ⇒

Pi .me .Engage 6 Pj .ms .Engage ∨
Pj .me .Engage 6 Pi .ms .Engage
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2

Definition 15 (Timed Planning for Preemptive Job-Shop specifications) Let J = {J 1, ..., J n}

be a job-shop specification and P = {P1, ...,Pn} be a set of timed planning processes defined

for each job. The timed planning presentation for the preemptive job-shop specification J

will be an interleaving of all processes Pi with mutual exclusion constraints:

PJSSP =̂ |||0<i6n Pi

Wheremutual-exclusion(PJSSP)

2

For every complete execution of PJSSP (which terminates), its associated schedule S is

a feasible schedule. An optimal schedule is a trace of PJSSP with the minimum ending

time min(JSSP .End). The solution of this problem turns out to be finding the minimum

execution time of process PJSSP .

The associated schedule of every complete execution of PJSSP is a feasible schedule, which

satisfies the three requirements defined in 12:

• Covering : For each Pi , every execution which terminates guarantees that each and

every event in Pi is engaged. JSSP which is an interleaving of all Pi also guarantees

that all events are engaged at every complete execution.

• Covering : Non-Preemptive generally says that for every ordered pair of operations

(ν, ω) of the same job, the later one must start after the full completion of the previous

one. The process mν
p(ν)→ mω

p(ω)→ ... guarantees that operation ω is engaged after p(ν)

time unit of ω.

• Mutual Exclusion: This requirement is captured by the mutual-exclusion(PJSSP)

defined in Definition 8, which guarantees that no two jobs evolving the same machine
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at the same time.

5.3 Extended Job-shop Scheduling

Timed Planning is flexible to specify system behaviors with operational behaviors and criti-

cal timing constraints. Therefore, those extended job shop scheduling problems with several

additional features that are often specified in task scheduling problems can be easily and

naturally modeled and solved using Timed Planning. In this section, we focus on the com-

positional behaviors and the deadline and relative times extension. To the best of our

knowledge, no other approaches are capable for those extensions.

Compositional Job Behaviors

In traditional job-shop scheduling problems, all jobs are executed synchronously, which

means that they are enabled at the same time. In our approach, jobs can be constructed in

a more general way, for example, we can specify choices of jobs, sequences of jobs and inter-

ruption of one job by another job, by using the composition operators in Timed Planning.

For example, a job-shop scheduling problem consists of 4 jobs J = {J 1, J 2, J 3, J 4}, where

either J 1 or J 2 is running concurrently with J 3 which is interrupted by J 4 in 10 time units

after execution. This scheduling problem can be specified as follows:

JSSP =̂ (P1 2 P2) ||| (P3 ▽10 P4)
Wheremutual -exclusion(JSSP) ∧ non-delay

In our interpretation, jobs can communicate with each other through channels. A job P1

can activate another job P2 after some time t or after P1 finishes its first ith operations. A

job can also stop another job for some time units.

An extended job-shop scheduling problem consists of 2 jobs J 1, J 2, J 1 = (1, 2), (0, 3), (2, 5),

J 2 = (2, 3), (0, 3), (1, 3). J 1 will activate J 2 after J 1 finishes its first operation. The Timed
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Planning model of this problem is specified as follows where a channel naming c is used to

fulfill this purpose.

P1 =̂ 1
2→ c!activate → 0

3→ 2
5→ Skip

P2 =̂ c?activate → 2
3→ 0

3→ 1
3→ Skip

JSSP =̂ P1 ||| P2
Wheremutual -exclusion(JSSP) ∧ non-delay

Deadlines and Relative Timing Constraints

Another extension of job-shop scheduling problem is that we can specify the deadline, rel-

ative timing constraints of each job. Those constraints can be naturally handled in Timed

Planning by using its Where predicate. We formulate the constraints into 3 rules as follows:

Rule 1 Every operation oi must be imperatively terminate before time d(oi)

∀ oi ∈ O • S (oi) + p(oi) 6 d(oi)

Rule 2 Every job J i must terminate before time d(J i)

∀ J i ∈ J • J i .End 6 d(J i)

Rule 3 Relative timing constraints between operations

∃ oi , oj ∈ O • p(oi)⊙ p(oj ) < t ,where⊙ ∈ {+,−}

5.4 Experiments

In order to show the efficiency of the optimization, we carry out an experiment for n jobs

with 4 operations, n = 2,...,61. We compare performance in terms of the state space and

execution time of algorithms employing, progressively, the max non-delay and the cut test.

The obtained results are depicted in Table 5.1 (m.o. indicates memory overflow), where

n = 2, ..., 6. ♯j , ♯states, time represents number of jobs, number of state space and the

1The problems can be found in http://www.comp.nus.edu.sg/~zhangxi5/horae/jobshop1.txt
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Problem Size Max non-delay Never Better Test

♯j ♯states time(s) ♯states time(s) ♯states time(s)

2 764 0.07 16 0.01 12 0

3 6475 0.44 43 0.02 33 0

4 1.07e+06 40.8 202 0.04 96 0.01

5 m.o. m.o. 4813 0.5 584 0.2

6 m.o. m.o. 112299 5.9 4614 1.2

Table 5.1: The result for n jobs with 4 machines, where n = 2, ..., 6. ♯j , ♯states, time

represents number of jobs, number of state space and the execution time.

execution time. The table shows the performance, in terms of execution time (in seconds) and

state space, of algorithms employing, progressively, none, max non-delay test and the never

better test. As we can see from Table 5.1, Never better test has much better performance

in turns of both state space and execution time.

We test ten problems among the benchmarks of the job-shop scheduling problems on Win-

dows XP with a 2.0 GHz Intel CPU and 2 GB memory. In Table 5.2, we compare our

best result on the problems with the result reported in Table 15 of the survey paper [58],

as well as the best result among randomly generated solutions for each problem. The first

three columns give the problem name, no. of jobs and no. of machines. Out results (time

in seconds, length of the best schedule and the deviation) appear next. The following two

columns shows the best out of 2000 randomly-generated solutions, followed by the optimal

result of each problem.

5.5 Summary

In this chapter, we presented a novel approach of solving classic job-shop scheduling problem

using Timed Planning and underlying reasoning engine. We applied Timed Planning to solve
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Problem Timed Planning Random Opt

name ♯j ♯m time(s) length deviation length deviation length

FT10 10 10 18 1001 7.63% 1761 89.35% 930

LA02 5 10 2 720 9.90% 1056 61.68% 655

LA19 10 10 0.2 902 7.12 % 1612 91.45% 842

LA21 15 10 102 1104 5.54% 2339 123.61% 1046

LA24 15 10 66 1007 7.58% 2100 124.00% 936

LA25 15 10 19 1098 12.38% 2209 126.10% 977

LA27 20 10 25 1441 16.68% 2809 127.45% 1235

LA29 20 10 112 1357 17.79% 2713 135.50% 1152

LA36 15 15 35 1341 5.57% 2967 133.90% 1268

LA37 15 15 56 1489 6.58% 3188 128.20% 1397

Table 5.2: The result for the ten hard bench marks deterministic job-shop scheduling prob-

lems. The first three columns give the problem name, no. of jobs and no. of machines
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both deterministic and preemptive job-shop scheduling problems. There are some work using

formal method approach to solve job-shop scheduling problems. [2] proposed a mechanism

for modeling the job-shop scheduling problems in Timed Automata and hence finding the

optimal solutions. [3] presented an approach of solving preemptive job-shop scheduling

problem using stopwatch Timed Automata where some of the clocks might be freezed at

certain states.

In our approach, the job-shop scheduling problem can be naturally modeled as Timed Plan-

ning processes. We also worked with the extended job-shop scheduling problems, where

all jobs have composition operational behaviors. Besides, jobs with deadline and relative

timing constrains are also able to be captured in our approach. We believe that the insight

gained from this point of view will contribute both to scheduling and to the study of timed

processes. We have demonstrated that the performance of the Timed Planning approach of

solving job-shop scheduling problem can be highly improved by applying a set of optimiza-

tions. There are still many potential improvements to be explored to reduce the execution

time, such as new partial-order methods and heuristics, etc.



Chapter 6

Modeling and Verification of Timed

Security Protocols

Security protocols are widely used for securing application-level data transport crossing

distributed systems, typically by exchanging messages constructed using cryptographic op-

erations (e.g. message encryption). In general, designing security protocols is notoriously

difficult and error-prone. Many protocols proposed in the literature and many protocols ex-

ploited in practice turned out to be awed, or their well-functioning was found to be based on

implicit assumptions. Since the late eighties various approaches [22, 46, 19, 15, 20, 16] have

been put forward for the formal verification of security protocols to overcome the problems

of faulty implementations and hidden requirements.

The new challenges are raise when different timing aspects are required in the security pro-

tocol design, such as timestamps, delays, timeout and a set of timing constraints. In the

past years, there has been an increasing interest in the formal analysis of timed crypto-

graphic protocols. However, there are few tool supports for modeling and analyzing security

protocols with the capability of capturing various timing features. A particularly successful

approach to analyze untimed security protocols is using CSP [51] to model and CSP mod-

el checker FDR [42] to analyze protocols [87, 70]. Motivated by this approach, we focus

99
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on timed extensions of CSP to accomplish the modeling and analyzing of timed security

protocols, particularly Timed Planning.

In this chapter, we show how to model timed security protocols by using Timed Planning

language proposed in this thesis. Our approach is different from the previous approaches

by taking the timing information into account. The use of explicit timing information al-

lows us to specify security protocols with timestamps, timeout and retransmissions which

can be naturally modeled using the specification. In the timing analysis, we could verify

timed non-injective agreement authentication property which can be easily extended to oth-

er authentication property verification [46]. We also propose a novel approach of using the

capability of Timed Planning to avoid such attacks without changing the original specifi-

cations of the protocols. Besides, we can model timing requirements/constraints and verify

other timed sensitive properties such as execution time of a protocol which is beyond the

capability of existing approaches.

6.1 Formal Specification of Timed Security Protocols

In this section, we show how to model timed security protocols using Timed Planning in a

structured way. All the protocols we consider here have a similar objective: in each protocol,

an initiator A seeks to establish a session with a responder B , possibly with the help of a

sever S , where A, B , and S are principals.

Principals (including initiator, responder and server) and intruder are modeled as Time

Planning processes. The whole network would be the parallel execution of all processes.

Event send .S .R.M is introduced to denote the behavior sending the message M from sender

S to receiver R. Event receive.S .R.M denotes receiver R receives a message M from sender

S .

We use the Wide Mouth Frog protocol (WMF) [13] as a running example to illustrate

the ideas. The Wide Mouth Frog protocol is a computer network authentication protocol
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Figure 6.1: Timeout patterns: (a) typical (b) count-bounded (c) time-bounded

designed for insecure networks. The goal is to allow two principals A and B to exchange a

secret key Kab via a trusted server S . The model is described as follows, where Kas and Kbs

are shared keys of A and B with sever S respectively. Ta and Ts are timestamps generated

and sent by A and S respectively.

A,B ,S : principal
Kas,Kbs,Kab : Key
Ta,Ts : timestamp
1. A → S : A, {Ta,B ,Kab}Kas
2. S → B : {Ts,A,Kab}Kbs

Timeout and Retransmissions

Look at the following simple protocol, where A sends a message MAB to B , and later B will

send an acknowledgement ACKBA to A after receiving MAB .

1.A → B : MAB

2.B → A : ACKBA

After principal A sends a message in a session of a protocol, A starts a timer that will timeout

if A does not get ACKBA from the receiver B . When a timeout is reached, the principal A
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can execute two actions: retransmit or reset a session. We are able to model both actions,

where an implementation of the protocol should specify which action to perform. In some

study with the introduction of timeout [16], principal A will resend the message if it detects

a timeout. But they do not discuss the case if the resent message also gets timeout. In

our specification, we introduce a bounded timeout, including count-bounded timeout and

time-bounded timeout discussed as follows.

• Count-bounded timeout After principal A sends a message in a session of a protocol, it

will start a timer and a counter. Once detecting a timeout, it will resend this message.

If the resent message also gets timeout, it would resend again, by increasing number

of resending by 1. If the number of times exceeds the max value, A will send request

to abort this protocol (see Figure 6.1 (b)).

• Time-bounded timeout After principal A sends a message in a session of a protocol,

it starts two timers. If it detects a timeout from the first timer, it will resend this

message; if the resent message also gets timeout, A will resend again. Once the second

timer reaches a timeout for the whole sending message process, A will send a request

to abort this protocol (see Figure 6.1(c)).

Timed Planning specification of both count-bounded timeout and time-bounded timeout are

shown in process CBTimeout(d ,max ) and TBTimeout(d1, d2), respectively, where d and d1

are the timeout for sending a message, max is the maximum retransmission times and d2 is

the timeout for the whole process. c = Tes ↓ send .A.B .{mAB .A} is the number of times of

retransmission.

CBTimeout(d ,max ) =̂ (µX • send .A.B .{mAB .B}
→ (receive.B .A.{ackBA.B} → Skip

d
◃ X ))

▽ ([c > max ]Skip)
Wherec = Tes ↓ send .A.B .{mAB .A}

TBTimeout(d1, d2) =̂ (µX • send .A.B .{mAB .B} →
(receive.B .A.{ackBA.B} → Skip ▽d1 X ))
d2
◃ Skip
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Timestamps and Lifetime

Timestamp is a typical way to prevent replay attacks, by simply attaching the current time

value to a message. It is later used by the receiver of this message to make sure that it

was recently generated, not a replay. A timestamp of a message can be easily recorded

by m.Engage which is the engage time of the event m, where event m denotes sending the

message. In our implementation, we keep TES , a set of all timed events, which is a record of

all engage time of all event engaged so far. It is easy to check whether m.Engage is the most

recent one or not by using the predefined predicate fresh(m,m.Engage,TES ) in Section 4.1.

Initiator, Responder and Server

We model each principal (initiator, responder, server) as a process. For the Wide Mouth

Frog protocol, the behavior of the initiator A is sending a message {Ta , b, kab} to Server S

using public key kas and waiting for acknowledgement from S , where ta is the timestamp.

The responder B receives message from the server and then send the acknowledgment to S .

The server receives message from A and then message {Ts , a, kab} to B with new timestamp

Ts . The three components are modeled as follows.

Initiator =̂ start encrpt → end encrpyt →
(µX • send .A.S .{Ta .b.kab}kas
(receive.S .A.{ackSA} → Skip

d1
◃ X ))

▽d2 Skip Where
Ta = send .A.S .{Ta .b.kab}kas .Engage1

Responder =̂ receive.S .B .{Ts .a.kab}kbs →
send .B .S .{ackSB} → start decrypt →
end decrypt → Skip Where
Ts 6 receive.S .B .{Ts .a.kab}kbs .Engage
∧ fresh(receive.S .B .{Ts .a.kab},Ts ,Tes)1

1fresh(e,t,Tes) is defined in Section 4.1.
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Server =̂ receive.A.S .{Ta .b.kab}kas →
send .S .A.{ackSA} → start decrypt →
end decrypt → (µX •
send .S .B .{Ts .a.kab}kbs →
(receive.B .S .{ackbs} → Skip

d3
◃ X ))

▽d4 Skip Where
Ts = send .S .B .{Ts .kab}kbs .Engage1

∧ fresh(receive.A.S .{Ta .b.kab},Ta ,Tes)
Network =̂ Initiator || Responder

|| Server || Cryptograph

The network is a parallel composition of the three processes, as well as the Cryptograph.

Intruder

The intruder works basically as a Dolev-Yao intruder [22]. The difference is that our intruder

takes time. The intruder can impersonate each agent executing the protocol, so it can play

each of the roles in the protocol. Even thought the intruder has got its own keys, nonces

etc., it can also try to use all the information it is receiving in the protocol run as its own

(e.g., nonces). For the purpose of this paper, we restrict the behaviors of the intruder that it

cannot read the mind of other principals to get some secret and it is unable to guess values.

We restrict the behaviors of the intruder to the following actions:

• encrypt and decrypt a message

• intercept a message

• replay a message

• send a message to any principals

• delay a message with arbitrary time

The models of intruder and the new system with intruder are specified as follows:
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Intruder =̂ start encrypt → end encrypt → Intruder
2 start decrypt → end decrypt → Intruder
2 receive.S .I .M → Intruder
2 send .I .R.M → Intruder

2 receive.S .I .M
T→ send .I .R.M → Intruder

System =̂ Network ∥ Intruder

where I is the identity of itself, S is the sender, R is the receiver and M is the message. The

intruder would intercept into the protocol sessions through channel send and receive.

We present a natural way for specifying security protocols using Timed Planning, including

the initiator, responder, server and intruder, with timestamps and timeout. It shows that

Timed Planning is a good mechanism to model timed security protocols in a compositional

way.

6.2 Verification of Authentication

For verifying timed security protocols, protocols are firstly modeled in Timed Planning

models, and then translated into CLP programs. Properties which need to be verified are

encoded into CLP goals using relations defined in Section 4.4. In this section, we show how

to define and verify timed security properties, including timed authentication properties.

Moreover, by using timing information of each protocol run, potential attacks are also to be

found.

6.2.1 Timed Authentication Property

Authentication property is very important in security protocols. Protocols need to accom-

plish authentication of the Initiator and Responder . [46] classified a set of authentication

requirements. We will focus on timed non-injective agreement, which is an extension of the

non-injective agreement defined in [46].
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Definition 16 (Timed Non-Injective Agreement) A timed security protocol guaran-

tees timed non-injective agreement, only if responder B thinks it has completed a run of

the protocol with A using data D , then A was actually running the protocol with B using

data D . To check the authentication property, signals are added to principals to indicate

principal B has completed a protocol run with A and A is actually running a protocol with

B , whenever necessary. 2

Our method is to insert signals, which are special kind of events, into each process, and

then to check the corresponding relationship of these signals. In our approach, event

commit .B .A.D is used to denote that principal B has completed a protocol running with A

using data D , run.A.B .D as principal A is running a protocol with B using data M .

Initiator =̂ start encrpt → end encrpyt →
run.a.b.{ta .b.kab} →
(µX • send .A.S .{ta .b.kab}kas
→ (receive.s.a.{acksa} → Skip

d1
◃ X ))

▽d2 Skip
Whereta = send .a.s.{ta .b.kab}kas .Engage

Properties which need to be verified are specified as assertions. There is a one-to-one rela-

tionship between the runs of A and B for protocol satisfying timed non-injective agreement

property. The timed non-injective agreement means that once there is a commit event, there

should be at least one run event appearing previously. The assertion is defined as:

non inj agr(P ,Tr) : −trace(P ,Tr , ),
end(Tr , commit .B .A.M ),not in(Tr , run.B .A.M ).

This predicate is to find a trace Tr , where there is no event run occurred before event

commit . Tr is an instance of an attack. Predicate trace(P ,Tr ,T ) is defined in previous

section. After checking the timed non-injective agreement property over WMF protocol,

such attack has been found where responder B finds that it has more than one sessions with

initiator A but in fact there should be only one [6]. We also model the Needham-Schroeder

Public-Key protocol as process NSP , by executing the following goal:

?− non inj agr(NSP ,Tr).
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We are able to find an attack where the responder B commits a session with the initiator

A, but A did not establish a protocol run with B , where A is running the protocol with the

intruder I [70]. The trace is:

⟨start encrypt , end encrypt , send .A.I .M ,
receive.A.I .M , send .I .B .M , receive.I .B .M ,
send .B .I .M 2, receive.B .I .M 2, send .I .A.M 2,
receive.I .A.M 2, send .A.I .M 3, receive.A.I .M 3,
send .I .B .M 4, receive.I .B .M 4, commit .B .A.D⟩

Preventing Attacks

By preventing the authentication attack, we propose appending a constraint WhereTes ↓

run.A.B .D > Tes ↓ commit .B .A.D to the protocol process to guarantee number of event

commit is always less than event run. The revised Wide Mouth Frog protocol is modeled

as WMF R1.

Another approach of preventing attacks is by changing the timeout values. There is a

particular timed authentication attack for Wide Mouth Frog protocol where the intruder

can extend the life time of a (possibly compromised) key Kab as wanted, whereas A and B

think that it has expired and been destroyed [87].

i .1. A → S : – A, {Ta, B, Kab}Kas
i .2. S → I (B): – {Ts, A, Kab}Kbs
ii .1. I (B) → S : – B, {Ts, A, Kab}Kbs
ii .2. S → A : – {T’s, B, Kab}Kas
iii .1.I (A) → S : – A, {T’s, B, Kab}Kas
iii .2. S → B : – {T”s, A, Kab}Kbs

This attack cannot be checked using timed non-injection agreement because there is exactly

one session for both initiator and responder. For step i .2 I takes the place of B to get the

message from server S where S should be expecting an ack from B . If S does not get the ack

within the timeout window, it could choose to terminate the session. Let dn be the network

transaction delay for each message passing. S should be able to get the ack message from

B after 2 ∗ dn if there is no attack. By changing the timeout window for S to less than
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Property Protocol Description Result

P1 CoreWMF non-injection agreement Yes

P2 CoreWMF timed non-injection agreement Yes

P3 CoreWMF + Intruder timed non-injection agreement No

P4 CoreWMF + Intruder replay attack Yes

P5 CoreWMF + Intruder timed authentication attack Yes

P6 WMF R1 + Intruder timed non-injection agreement Yes

P7 WMF R1 + Intruder replay attack No

P8 WMF R1 + Intruder timed authentication attack Yes

P9 WMF R2 + Intruder timed non-injection agreement Yes

P10 WMF R2 + Intruder replay attack No

P11 WMF R2 + Intruder timed authentication attack No

Figure 6.2: Analysis of Wide Mouth Frog protocols

6 ∗ dn , this attack will be avoided because B can only send ack to S after step iii .2, which

takes more than 6 ∗ dn time unites. We model the Wide Mouth Frog protocol with bounded

timeouts in WMF R2.

We list a set of properties over Wide Mouth Frog protocols, where the results are shown

in Figure 6.2. CoreWMF is the protocol without intruder; and CoreWMF + Intruder is

the protocol with intruder I . The results are computed in minutes or even seconds in PC

with 2.83GHz Intel Q9550 CPU and 2 GB memory. Comparison with other approaches are

ignored since there is no other tool supporting timed analysis of security protocols.

6.2.2 Using Timing Information

We are able to check other timing properties of the protocol. For example, find the minimum

and maximum execution time of a run of a protocol P by finding P .End, using predicate

engage time(P , termination, R) defined in Section 4.4.



6.3. SUMMARY 109

execution time(P ,R) : −engage time(P , termination,R).

where termination is a special event denoting the end of the execution, R is the range of

execution time of protocol P .

By using the minimum and maximum execution of a protocol run, we can also check timing

authentication properties. In our approach, if there is a run of a protocol between two

principals A and B , it must be finished within a time interval [Tmin ,Tmax ], without intruders.

If a protocol run ends before Tmin , this may be a result of an attack which omits at least

one instructions or performs at least one instructions faster than it is expected. If a protocol

run ends after Tmax , this may be a result of an attack performing with extra actions, such as

replays. We define a predicate time attack (P ,Tr ,Min,Max ) to find a trace which exceeds

the time interval [min,max ], which is also an instance of an attack.

time attack(P ,Tr ,Min,Max ) : −
trace(P ,Tr ,T ), (T < Min; T > Max ).

Assume for a protocol run, once a sender sends a message to the receiver, the message reaches

the receiver within [2, 4] time units because of the network delay. for WMF protocol, without

introducing an intruder, the execution time of a protocol run is [4,8]. By executing goal ?−

time attack (WMF ,Tr , 4, 8). We find a trace whose execution time is more than 8. If the

execution time of a protocol run exceeds the expected time interval, there must be some

attack in this protocol run. But if the execution time is within the time interval, attack-free

is not guaranteed.

6.3 Summary

In this work, we have proposed a new method of modeling and analyzing timed security

protocols which consists of various timing aspects such as timestamps, delays, timeouts and

a set of timing constraints. To fulfill the aim, we substantially Timed Planning with capa-

bilities to stating complicated and critical timing requirements of timed security protocols,
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in a compositional way. Based on our previous work on building a reasoning tool for Timed

CSP, a prototype mechanized proving system, based on CLP(R) to verify various properties

over systems modeled in this extended specification has been built. We model principals

as processes, as well as the cryptograph device, including timestamps, timeout, retrans-

missions and delays. The timed non-injective agreement authentication property can be

verified using our underlying reasoning engine, which can be easily extended to verify other

authentication properties. We propose a novel approach to find timing attacks using timing

information of protocol sessions. We can also model timing requirements of the protocols in

our Wherepredicates and verify other timing properties of the protocols.

There are many works on analyzing security protocols. In literature, methods for formal

verification of security protocols do not take time into account, and this choice simplifies

the analysis [8]. Powerful theorem provers like Isabelle and PVS have been applied to verify

timed dependent security properties [7, 39]. A common practice in the area of modeling and

verification of security protocols is to abstract away timestamps [9]. Our approach is similar

to [87] which uses CSP to model and analyze untimed security protocols. Recently there have

been also other approaches to verify such protocols [20], which does not discuss timeout and

retransmissions. One more recent work, using Timed Automata for verifying timed security

[16], also introduces timeout. The difference of our timeout and retransmissions is that we

propose a bounded timeout, which also consider timeout over retransmissions. Moreover,

they cannot model timedstamps which needs global synchronization on clocks.

As a future work, we will apply Timed Planning specifications to other domains, such

as timed scheduling problems, complex real-time systems and etc. For analyzing timed

security protocols, we will expand the verification of security properties, such as secrecy,

integrity, fairness and the timing properties such as the time range for an easy attack. For

our underlying reasoning engine, there are many potential improvements to be explored to

reduce the execution time, such as symmetry reduction and heuristics.



Chapter 7

Modeling and Verification of

Pervasive Computing

Timed Planning is a powerful modeling language. In this section, we demonstrate the

effectiveness of this language by applying it into pervasive computing domain.

Alzheimerąŕs disease is characterized by progressive deterioration of the patientąŕs intellec-

tual capacities that evolves during a period of 7 to 10 years on the average [59]. In most

developed countries, the demographical, structural and social trends tend towards more and

more elderly people, which will create dramatic impact on the society on both financial and

organizational aspects. Dementia is a progressive, disabling, chronic disease affecting 5%

of all persons above 65 years old and over 40% of people above 90 [43, 44]. Elders with

dementia often have declining short-term memory and have difficulties to remember neces-

sary activities of daily living (ADLs) [38]. It is widely believed that the reminding system

is a potential way to assist elderly people to complete ADLs [35]. From the demographic

changes, we can expect a rise in the quantity of aging people with mild dementia. The

impact of such increment will be long waiting lists for sheltered housing projects, homes

for the elderly, nursing homes and other care facilities. It has been suggested that most

aging people prefer to stay at home as long as possible, even if they are at risk [14]. From

111
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social, economic and elder’s perspectives, it is very important to enable the elders with mild

dementia to stay in their own homes safely and regularly as long as possible and to reduce

the burden of care givers. Even though, it is still a great pressure on nursing homes and

other similar type of care facilities. It also increases the pressure on care givers [12].

Pervasive computing techniques have been proposed to assist elders with mild dementia to

improve their level of independence and quality of life through cognitive reinforcement. To

support formal analysis, we propose an approach of using Timed Planning to model and

verify critical properties. In this chapter, we model and verify systems in two different

settings. Firstly, in Section 7.1, a context-aware reminding framework for elders living at

home alone is built and modeled using Timed Planning. Secondly, in Section 7.2, a reminding

framework for elders living at nursing home is modeled using Timed Planning. The first

case study focuses on the various reminders and conflicts between reminders. The second

case study focuses on the various sensors and reasoning about the rules.

7.1 Timed Reminding System for Dementia Elderly at Home

In smart home systems [109, 36], a centered design approach is adopted with user studied at

three different sites [76, 38]: Amsterdam (Netherland), Belfast (UK) and Lulea (Sweden).

The summary of needs and wants from the three workshops is illustrated in Table 7.1.

As can be seen from the user study, a well designed reminding service is a fundamental

function for assisting elders with mild dementia living at home. The reminding system can

help them to perform daily activities properly and regularly, and also increase their feeling

of safety and security at home.

[109] identifies the activities needed to be reminded to the elders are: meal preparation,

brushing teeth, making phone calls, appointments, turning off stoves, closing refrigerators,

taking medication, bringing the keys and locking doors when going outside. All of those

activities are modeled using Timed Planning and presented later, where we also consider
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Area of Cognitive Reinforcement Summary of required services/solutions

for people with mild dementia

Remembering Item locator (keys, mobile devices)

Maintaining Social Contact Means to provide communication

support with carer/family network

Performing daily activities Support with daily activities

associated with pleasure

Control of household devices

e.g., television, radio, planning activities

Enhanced feeling of safety Warnings of doors left open

Warning for devices left on

General: way to contact others in

instances of emergency

Table 7.1: Summary of needs and wants for mild dementia people living at home

some other activities such as flushing and washing hands after toilet, turning off lights/tv

when going to sleep.

7.1.1 Reminding Service Classifications

Based on the observations of elder’s daily activities described above, [36] classifies the re-

minding services into four kinds of categories, based on time and event. Time-based services

are used to capture the daily schedule of the elder people based on calendar time. However,

the dynamic nature of people’s daily activities poses potential risks for the elderly where

prompting services based on activities are necessary.

Time-based Prompting Two kinds of prompting service relate to time are described be-

low.
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• Timed fixed prompting services: the prompting is issued at pre-defined time such

that the subject understands the urgency of executing certain activity.

• Timed relevant prompting services: the prompting is relevant to a time, but can

be delayed within an acceptable time window.

Event-based Prompting Two kinds of prompting service triggered by events are de-

scribed below.

• Event urgent prompting services: triggered by events and need to be prompt

immediately.

• Event related prompting services: triggered by events, but can be delayed up to

an acceptable delay time, or must be delayed after an min delay time.

Timed fixed promoting services are reminders be executed at certain time, such as time for

wake up, time for appointments, etc. Timed relevant prompting services are the reminders

that are more flexible than time fixed reminders, such as preparing lunch between 11:30am

to 12:30pm. Event urgent prompting services are those reminders must be prompted imme-

diately when some event is performed, for example, stove must be turned off if the elderly

is going to leave the house. Event related prompting services are reminders triggered by

events but can be delayed within an acceptable time window or must be delayed to some

time, for example, medication must be taken after 30 minutes of lunch.

7.1.2 Modeling using Timed Planning

Modeling time with calendar time

One important issue for timed reminding system is that how to model calendar time using

Timed Planning specification. As we all know that Timed CSP only considers relative time

where all time are relative to the start time of the process.

There are two possible options to model the calendar time.
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1. Abstract the detailed information, use a ‘channel’ to get the information required from

the environment.

2. Build extra functions to compute the current calendar time using the starting time of

the system and the relative current time to it. Most programming languages have the

library to support those functions.

In this work, we choose the second option, which uses extra techniques to model the calender

time in terms of (week, hour, minute and second). Every time the system starts, record the

start time of the system in the 4 terms. We can easily compute the current calendar time

with the start time and relative passing time.

Week : [0..6]
Hour : [0..23]
Minute : [0..59]
Second : [0..59]
Calendar : ⟨Week ,Hour ,Minute,Second⟩
Calendar .week = Calendar(1)
Calendar .hour = Calendar(2)
Calendar .minute = Calendar(3)
Calendar .second = Calendar(4)
Calendar .time = (Calendar(2),Calendar(3),Calendar(4))

In the following, calendar time(c1, t) defines a function which returns the current time

according to the start time of the system; relative time(c1, c2) defines a function which

returns the current time according to the current relative time (in seconds).

convert(i , j ) = {(s, t) | ∀ i , j , s, t : R • t = i mod j ∧ j ∗ s + t = i}

calendar time(c1, t) =
{c2 | ∀ c1, c2 : Calender ,w1,w2 : W , h1, h2 : H ,m1,m2 : M , s1, s2 : S , t : R •

(w1, h1,m1, s1) = c1 ∧ (w2, h2,m2, s2) = c2 ⇒
∃ x , y , z , d : R •

convert(s1 + t , 60) = (x , s2) ∧ convert(m1 + x , 60) = (y ,m2) ∧
convert(h1 + y , 24) = (z , h2) ∧ convert(w1 + z , 7) = (d ,w2)}



7.1. TIMED REMINDING SYSTEM FOR DEMENTIA ELDERLY AT HOME 116

relative time(c1, c2) =
{t | ∀ c1, c2 : Calendar ,w1,w2 : W , h1, h2 : H ,m1,m2 : M , s1, s2 : S , t : R •

(w1, h1,m1, s1) = c1 ∧ (w2, h2,m2, s2) = c2 ⇒
∃ x , y , z , d : R •

convert(s1 + t , 60) = (x , s2) ∧ convert(m1 + x , 60) = (y ,m2) ∧
convert(h1 + y , 24) = (z , h2) ∧ convert(w1 + z , 7) = (d ,w2)}

convert(i , j ) is a function converting number i to a pair (s, t), where s is the multiple of

j and t is the mod of j . The purpose of this function is to convert seconds into minutes,

minutes into hours and hours into days. For example, converting 63 minutes (1 hours and 3

minutes) would use function convert(63, 60), returning pair (1, 3).

calendar time(c1, t) is a function converting the relative t time units passing starting on

initial calendar time c1 to the current calendar time c2. For example, the starting calendar

time c1 = (0, 0, 0, 0) (denoting time 0:00:00 am, Sunday), after 90061 seconds passing, the

current calendar time would be c2 = (1, 1, 1, 1) (denoting time 1:1:1 am, Monday).

relative time(c1, c2) is a function find the relative time between calendar time c1 and c2,

providing c2 is later than c1.

The following defines a set of global variables:

c : Calendar

Modeling location and activities

In this reminding system, locations of the participant are modeled as global variables which

can be of type boolean, integer, string or tuple. We abstract the changes of the variables

which should be updated by the environment. The activities of the participant, which should

be detected by sensors, are modeled as events, such as getup, leaving , take medication,

pick phone and etc.
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Timed fixed reminders (TFR)

Timed fixed reminders: the prompting is issued strongly at defined time so that the subject

understands the urgency of executing certain activity. e.g.,

• get up at 7 a.m.

• catch flight at 11:30 a.m.

• attend lecture/meeting/seminar at 2p.m.

Timed fixed reminders can be modeled as processes whose starting time and prompting time

must be exactly as the required time.

TFR(t) =̂ [guard ]prompt → Skip
Where calendar time(c,Start).time = t ∧
prompt .Engage = Start

Example 7.1.1 The reminder which wakes up the elder at 7 a.m. would be:

wake up((7, 0, 0)) =̂ [athome ∧ sleeping ]prompt → Skip
Where calendar time(c,Start).time = (7, 0, 0) ∧
prompt .Engage = Start

end

Timed related reminders (TRR)

Timed related reminders: prompting is related to a time, but can be delayed within an

acceptable time. e.g.,

• Start to cook dinner between 5 p.m and 5:30 p.m.

• Start to preparing tutorials/lectures at 3p.m.
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At a specific time t , this reminder is enabled, but it does not need to prompt immediately

if there are other reminders prompting. It needs to be prompted within an acceptable delay

d .

TRR =̂ [guard ]prompt → Skip
Where calendar time(c,Start) > t ∧

calendar time(c, promp.Engage) 6 t + d

Example 7.1.2 Remind the elderly to start preparing his/her dinner at around 5:30 p.m.

to 5:30 p.m. every day if he/she is at home.

prep dinner((17, 0, 0), (17, 30, 0)) =̂ [athome ∧ ¬sleeping ]prompt → Skip
Where calendar time(c,Start).time > (17, 0, 0)
∧ prompt .Engage 6 (17, 30, 0)

end

Event urgent reminders (EUR)

Event urgent reminders: reminders triggered by event, which must be prompted as soon as

the event is engaged.

• turnoff the stove after cooking

• bring the key while going out

Event urgent reminders can be modeled as a process whose first event is the triggering event.

To make sure the prompt event happen immediately, the constraints trigger event .Engage =

prompt .Engage is added in the Where clause.

EUR =̂ trigger event → [guard ]prompt → Skip
Where trigger event .Engage = prompt .Engage

Example 7.1.3 Remind the elderly to turnoff the stove after he finishes cooking.

turnoff stove =̂ cooking end → prompt → Skip
Where cooking end .Engage = prompt .Engage

end
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Event related reminders (ERR)

Event related reminders: prompting is triggered by an event, but can be delayed within an

accepted time. For example,

• wash hands after toilet within 3 minutes.

• take medication after 30 minutes of lunch.

We call the minimum delay time after the triggering event mdt , and the maximum delay

time after after the triggering event dt . Event related reminders can be modeled as a process

whose first event is the triggering event. After that a delay of mdt occurs. The Where

clause makes sure that the engagement time of prompt event is bounded by the maximum

delay dt .

ERR =̂ trigger event
mdt→ [guard ]prompt → Skip

Where prompt .Engage 6 trigger event .Engage + dt

Example 7.1.4 Remind the elderly to wash hand after toilet in 3 minutes if there is no

phone call.

Wash hand =̂ finish toilet → [¬phonecall ]prompt → Skip
Where prompt .Engage 6 finish toilet .Engage + 3minute

end

Daily/ Weekly reminders

These reminders will prompt at a specific time every day, or every week with some conditions.

For example, the wake up reminder which will prompt 8 a.m. every weekdays. The attending

lecture reminder which will prompt every 10 a.m. every Monday if not public holidays.

We need other techniques (rules) to identify that whether today is weekday or weekend or

public holiday. We have two alternative options:
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• retrieve the information of whether today is weekday or weekend from the environment

by channels and abstract the details.

• use Calendar Logic to calculate those information in our system. Therefore, Ontology

can be a good candidate for modeling Calendar Logic.

Daily promoting services: prompt at time t everyday.

Daily Reminder =̂ Reminder ; Wait 1day ; Daily Reminder
Where calendar time(c,Reminder .Start).time = t

Daily promoting services: prompt at time t everyday, except Saturday and Sunday

Daily Reminder =̂ Reminder ; Wait 1day ; Daily Reminder
Where 1 6 calendar time(c,Reminder .Start).week 6 5

∧ calendar time(c,Reminder .Start).time = t

7.1.3 Medication Planner

In this subsection, we use a medication planner [104] to demonstrate the modeling of re-

minders using timed planning. The system requirements of the medication planner are

described below.

1. Never prompt outside the window: within a certain time interval: [st, st+dt]

2. Do not prompt if pill is already taken within the current window

3. Do not prompt if the participant is not at home: athome=true

4. Do not prompt if the participant is sleeping

5. Do not prompt if participant is on the phone

6. Resume prompting if the participant returns home before the window expires

7. Prompt at plan 2 if participant is leaving
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8. Wait till the time the user usually takes the pill. If it is earlier than the recommended

pill taking time, start checking for plan 1 prompting opportunities at the usual pill

time.

9. If only less than 20 minutes left till the window expires, start prompting at plan 1

disregarding all other rules (except 1-3)

There are two kinds of promptings in the system.

Plan 1 Prompt using the nearest device. The chime is played 10 seconds each time and

lights stay on till location changes. Stop if pill is taken. Escalate to Plan 2 after 10

minutes.

Plan 2 Prompt using all prompting devices in the house every minute. Lights on devices

stay on and chime is played for 10 seconds every minute.

Plan1 =̂ prompt
10→ Skip; Wait(10minute); Plan2 ▽ taken?yes → Skip

Plan2 =̂ prompt
10→ Skip; Wait(1minute); Plan2 ▽ taken?yes → Skip

Medi =̂ ([athome ∧ ¬taken ∧ ¬onThePhone ∧ ¬sleeping ]Plan1 – rule 2 - 6
2 leaving?yes → Plan2) – rule 7
▽dt−20minute Plan2 – rule 8
Where calendar time(c,Start) > st ∧

calendar time(c, promp.Engage) 6 st + dt – rule 1

For rule 6: prompting will resume if the participant returns home before the window expires.

Our modeling is able to preserve this requirement in a more clever way. Once the participant

returns home, the boolean variable athome will be changed to true, hence this process is

able to be executed. So this model satisfies a more general requirement:

• Prompting will resume if the participant returns home or wakes up or finishes phone

call before the window expires.
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7.1.4 Specific domain: Elderly Reminding System

In this section, we present the Timed Planning model for the elderly reminding systems.

The reminders required in the system are listed as follows.

• wake up reminder (Timed fixed reminder)

• brush teeth (Timed related reminder)

• meal preparation (Timed related reminder)

• making phone calls (Timed related reminder)

• appointment (Timed related reminder)

• turn off stoves (Event urgent reminder)

• taking medication (Timed related reminder)

• bring keys while going out (Event urgent reminder)

• wash hands after toilet (Event related reminder)

There are four possible events, which would trigger new reminders, i.e., get up, toilet, going

out and go to toilet. There are several external events, which cannot trigger new reminders,

i.e., phone call, knock the door and come back. The Elderly can choose to either response or

not. In the following, we define a set of global variables to keep the status of the elderly.

athome : boolean
sleep : boolean
goingout : boolean
bringkey : boolean
washhand : boolean

There is one assumption about the system, i.e., the time stamp 00:00 a.m. is set to be 0.

Hence 1:00 a.m. is 60, 2:00 a.m. is 120, and so on. In the following, we introduce the

reminder models in the system.
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Wake up reminder

Wakeup reminder service is provided to wake up dementia patients at a specific time.

The template defined for wakeup reminder is shown as:

Wakeup(t) =̂ [athome ∧ sleeping ]prompt wakeup → Skip
Where Start = calender time(c,Start) = t

∧ prompt wakeup = Start

The wakeup reminder set at 7:00 am every morning is specified using process Wakeup((7, 0, 0)),

where (7,0,0) represents time 7:00 am.

Watch TV

Reminders for the elderly to watch his favorite TV program at 10am, which is timed fixed

reminder.

TV =̂ [athome]prompt tv → Skip
Where calender time(c,Start) = (10, 0, 0) ∧ prompt tv .Engage = Start

Bring key

Bringkey reminder service is provided to remind the elderly to bring his keys while going

out, which is an event urgent reminder.

channel:{bring key} is a sensor detecting whether the elderly brings his keys or not.

channel :{goingout}

Key =̂ goingout?yes → ([¬bringkey ]prompt bringkey → Skip 2 [bringkey ]Skip)
Where prompt bringkey .Engage = goingout?yes.Engage

Wash hands

WashHands reminder service is provided to remind the elderly to wash hands after toilet,

if the elderly does not wash his hand in one minute. The maximum delay allowed in this
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reminder is 5 minutes. This is an event related reminder, which is modeled below.

channel:{toilet, wash hands}

WashHands =̂ toilet?finish → (wash hand?yes → Skip ▽1minute

prompt washhand → Skip)
Where prompt washhand .Engage − toilet?finish.Engage 6 5minute

Prepare Breakfast

WashHands reminder service is provided to remind the elderly to start preparing his break-

fast at around 8:30 a.m. to 9:00 a.m. every day if he/she is at home.

PrepareBreakfast =̂ [athome ∧ ¬sleep](prompt breakfast
45minute→ Skip)

Where calender time(c,Start) = (8, 30, 0) ∧
prompt breakfast .Engage 6 Start + 30

7.2 Smart Nursing Home for Mild Dementia Elderly

The primary goal of this project is to enable the person with mild dementia, through ambient

intelligence and assistive technologies, to maximize his physical and mental functions and

to continue to engage in social networks, so that he can lead an independent and purposeful

life. The person with mild dementia is usually able carry out the actual task in most basic

activities of daily living but is often handicapped by his poor memory and thus forgets to

carry out these tasks. These can include bathing, changing clothes and taking medication

on time. Ambient intelligence enables the capture of context information in a pervasive and

non-intrusive manner. Assistive technology that provides timely prompts and reminders will

enable him to preserve his abilities and independence.

This project focuses on the automated recognition of activities and behaviors in smart

nursing homes and providing assistance / intervention accordingly. We will carry out the

automated monitoring of basic Activities of Daily Living (bADL) and instrumental Activ-

ities of Daily Living (iADL) among single and multiple residents in smart nursing homes.
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Technically, these objectives translate to significant advances in sensitivity and specificity

in activity and plan recognition of finer grained bADLs / iADLs for single subject; and

improved location tracking, object / human dissociation and activity recognition among

multiple subjects.

As mentioned above, the target is to support ageing people with mild dementia in performing

Activities of Daily Living (ADLs) at home. Elders with dementia often have declining short-

term memory and have difficulties in planning and performing the necessary activities of

daily living. It is conceivable that a system of timely reminders is a potential way to assist

elderly people to complete bADLs/iADLs, which moderates their memory impairment and

reduces the burden of care givers.

7.2.1 System Design

Activity Daily Living (ADLs)

Activities of Daily Living (ADLs) is a term used in health care to refer to daily self-care

activities within an individual’s place of residence, in outdoor environments, or both. Health

professionals routinely refer to the ability or inability to perform ADLs as a measurement

of the functional status of a person, particularly in regards to people with disabilities and

the elderly. Activity of Daily Living (ADL) monitoring is important in order to determine

the well being of elderly persons in their home settings.

In the current phase of this project, we mainly consider ADLs within bed room and shower

room which are important activities for early dementias patients living in the nursing home.

ADLs are including:

• Enter/Leave bed room

• Sitting/Sleeping on bed

• Go to the shower room for toilet



7.2. SMART NURSING HOME FOR MILD DEMENTIA ELDERLY 126

Figure 7.1: The Sensor Setup for Bedroom and Bath Room
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• Go to the shower room to wash hands

• Go to the shower room to take shower

Process Residence(i , status) is defined below to model all the possible activities of a resi-

dence, where i is the identity of the patient and status is the current location of the residence.

Initially, each residence is outside of the room, status = outside. Activities happened in room

are composed of sub-activities, where each sub-activity is modeled as a process. EnterRoom

specifies the activity entering the bed room if and only if the residence is outside of the

bedroom. LeaveRoom specifies the activity leaving the bed room if and only if the residence

is inside the bedroom. BedActivity is defined the capture the activities in bed, which can be

sitting on the bed, sleeping on the bed and get up. Detailed models of the three activities are

defined as follows, where the complete model of all residence activities is shown in Appendix

C. Possible status of each residence: {outside, inRoom, inShowerRoom, inBed}

Residence(i , status) =̂ (EnterRoom(i , status); Residence(i , inRoom))
2 (LeaveRoom(i , status); Residence(i , outside))
2 (Shower(i , status); Residence(i , status))
2 (BedActivity(i , status); Residence(i , status))
2 (Toilet(i , status); Residence(i , status))

EnterRoom(i , status) =̂ [status == outside]enterRoom.i → Skip
LeaveRoom(i , status)) =̂ [status == inRoom]leaveRoom.i → Skip
BedActivity(i , status) =̂ [status == inRoom]gotoBed →

((sitonbed .0.i → BedAct (i , 0))
2 (sitonbed .1.i → BedAct (i , 1)))

BedAct (i , j ) =̂ (SittingOnBed(i) 2 Sleeping(i));
(BedAct(i , j ) 2 GetUp(i , j ))

SittingOnBed(i) =̂ sitting .i → Skip
Sleeping(i) =̂ laydown → sleeping → Skip
GetUp(i , j ) =̂ leavebed .j .i → Skip

Sensor Modalities

Various sensors are deployed in the environment to capture targeted activities. Sensors send

their current status to the control system via a wireless network. Sensors are used to monitor
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the changes in the environment. In real life, sensors are sending signals representing their

status in certain interval according to their frequencies. Note that the details about signal

encoding/decoding and transmission between sensors and system are related to hardware

components, which are fairly reliable. Therefore we abstract out these details in our model

to simplify the modeling as well as the verification.

Before modeling the sensor behaviors, we briefly introduce different sensors and their working

mechanism which are used in our system.

RFID Radio-frequency identification (RFID) is a technology that uses communication via

electromagnetic waves to exchange data between a terminal and an object such as a

product, animal, or person for the purpose of identification and tracking. Some tags

can be read from several meters away and beyond the line of sight of the reader. In

our project, RFID sensors are mainly used to:

• To detect the presence of subject at specific location

• To identify and infer who is doing what activity in the environment

Reed Switch is a small electromechanical device having two ferromagnetic reeds that are

hermetically sealed in a glass envelope. It is mainly used to:

• To detect the opening and closing status of the door, cabinet and drawers

• To infer the direction of entering/leaving with PIR

Motion Sensing (PIR) A Passive InfraRed sensor (PIR sensor) is an electronic device

that measures infrared (IR) light radiating from objects in its field of view. PIR

sensors are often used in the construction of PIR-based motion detectors (see below).

Apparent motion is detected when an infrared source with one temperature, such as a

human, passes in front of an infrared source with another temperature, such as a wall.

In our project, PIR sensors are used to:

• To detect the presence of inhabitant at particular location
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• To detect whether the inhabitant makes movements or not (coarse-grained)

Shake Sensing(Vibration)

• To detect the usage of water from inlet pipe (tap open/tap close)

• To infer the correct/incorrect activities inside bathroom with location information

Range Sensing (Infrared/Ultrasonic) To localize/detect the presence of subject/object

at specific location

Pressure Sensing (FSR) A Force-sensing resistor (FSR) is a material whose resistance

changes when a force or pressure is applied. In this project, we place a set of FSR

under the mattress of each bed to detect various activities in bed. The detailed usage

of FSR is:

• To detect the coarse-grained activities of the subject on the bed

• To activate/deactivate the RFID sensing according to the events detected from

pressure sensing push

In the modeling, each sensor is modeled as a process which is triggered by residence activities

and hence send signal to the control station. Process Sensors is an interleaving of all

individual sensor modeled in the system. DoorRFIDReader is a RFID sensor placed on the

bed room door to capture entering/leaving behavior of each residence. BedPressureS is a

pressures sensor place on each bed to detect residence activities on the bed. Once it detects

pressure sensing push on the bed, it would activate the BedRFID sensor to detect who is on

the bed. The three sensors are modeled as follows where the complete model of all sensor

behaviors are listed in Appendix C.
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DoorRFIDReader =̂
(EnterDoorRFID 2 LeaveDoorRFID); DoorRFIDReader

EnterDoorRFID =̂
enterRoom.0 → rfid room!(0, outside) → Skip

2 enterRoom.1 → rfid room!(1, outside) → Skip
Where enterRoom.0.Engage = rfid room!(0, outside).Engage
∧ enterRoom.1.Engage = rfid room!(1, outside).Engage

LeaveDoorRFID =̂
leaveRoom.0 → rfid room!(0, inRoom) → Skip

2 leaveRoom.1 → rfid room!(1, inRoom) → Skip
Where leaveRoom.0.Engage = rfid room!(0, inRoom)

∧ leaveRoom.1.Engage = rfid room!(1, inRoom).Engage
BedPressureS (i , j ) =̂

sitonbed .j .i → bed pressure sensor !(j , 0) → BedRFID(i , j )
2 laydown.j .i → bed pressure sensor !(j , 1) → Skip
2 leavebed .j .i → BedRFID(−1, j )
Where sitonbed .j .i .Engage = bed pressure sensor !(j , 0).Engage

∧ laydown.j .i .Engage = bed pressure sensor !(j , 1).Engage
BedRFID(i , j ) =̂ bed rfid !j .i → Skip
BedPressureSensor =̂

(BedPressureS (0, 0) 2 BedPressureS (0, 1)) |||
(BedPressureS (1, 0) 2 BedPressureS (1, 1));
BedPressureSensor

Sensors =̂ SRDoorRFIDReader ||| ShowerSensor Tap ||| BedPressureSensor
||| DoorRFIDReader ||| WashSensor Tap

Controller and Reminding Service

When a sensor detects an activity in the environment, it will send signal to the control system

and then the system receives the signal and then make corresponding response to the change.

The main functions of the controller are i) updating system status, ii) activate/deactivate

related reminders. LocationMonitor receives signals from RFID sensor placed at the bed

room door and then updates the system of the status of the location of each residence.

ShowerTapMonitor receives signals from the shower tap shake sensor and then updates the

on/off status of the shower tap. BedMonitor monitors the bed pressure sensor and bed

RFID sensor and updates the bed activities as well as the occupation of each bed. The
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three monitors are modeled as follows where the complete model of all monitors are listed

in Appendix C.

LocationMonitor =̂ (rfid room?(i , status) →
[status == outside]detectEnterRoom.i → Skip

2 [status == inRoom]detectLeaveRoom.i → Skip);
LocationMonitor

ShowerTapMonitor =̂ (showerroom tap?1 → tapIsOn → Skip
2 showerroom tap?0 → tapIsOff → Skip);
ShowerTapMonitor

BedMonitor =̂ (bed pressure sensor?(j , s) → bed rfid?(i , j ) →
[i ! = −1 ∧ i ! = j ]prompt sleepInWrongBed .i → Skip
2 [i ! = −1 ∧ i == j ]prompt goodnight .i → Skip);
BedMonitor

Monitor =̂ LocationMonitor ||| ShowerRoomRFID ||| ShowerTapMonitor
||| BedMonitor ||| WashTapMonitor ;

In this project, we studied the daily behaviors of residences of the nursing home and final-

ly choose to implement six reminders. The reminders are customized under supervising.

Detailed descriptions of each reminder are as listed as follows:

Showering For Too Long Reminder Once the system detects a residence has been show-

ering for too long (e.g., more than 1 hour), it will send a reminder to him/her/nurse

to finish the shower and leave the shower room. If an elderly with mild dementia has

been showering for too long, is likely that he falls down or gets stuck in the shower

room; but it is not possible for the nurses to check each shower room from time to

time. The showering for too long reminder is of special importance in terms of safety

issue.

Sleeping in Wrong Bed Reminder Once the system detects a residence sleeps on other

residence’s bed, it will send a reminder to him/her to sleep on his/her own bed. It is

important because most of time, when a residence is sleeping on another residence’s

bed, they are very likely to argue withe each other.

Flushing Toilet Reminder Once system detects a residence forgets to flush toilet after

using the toilet, the system will send a reminder to him/her to flush toilet. Elderly
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with mild dementia is very likely to forget flushing after toilet which results in serious

hygiene issue.

Turnoff Shower Tap Reminder Once system detects a residence forgets to turnoff water

tap after showering, it will send a reminder to him/her to turnoff the shower tap.

Turnoff Wash Basin Tap Reminder Once the system detects a residence leaves the

wash basin tap on while finishing washing hands, it will send a reminder to him/her

to turnoff the water tap.

Wake Up Reminder It is a morning wake-up alarm for each residence if they are required

to wake up by some time.

Selected reminders, more specifically, Sleep in wrong bed reminder, showering for too long

reminder and flush toilet reminder , are specified as follows, where the complete model is

shown in Appendix C.

Reminder SleepingInWrongBed =̂
(prompt sleepInWrongBed .0 → prompt !(wrong bed , 0) → Skip

2 prompt sleepInWrongBed .1 → prompt !(wrong bed , 1) → Skip);
Reminder SleepingInWrongBed
Where prompt !(wrong bed , 0).Engage−

prompt sleepInWrongBed .0.Engage ≤ 60 ∧ prompt !(wrong bed , 1).Engage
− prompt sleepInWrongBed .1.Engage ≤ 60

Reminder Flushing(duration) =̂

(start toilet → finish toilet → Skip
duration

◃
flush → promptf lushtoilet → Skip);
Reminder Flushing(duration)

Reminder ShowerLong(duration) =̂

(detectEnterShowerRoom.0 → Skip
duration

◃
detectLeaveShowerRoom.0 → prompt !showertoolong → Skip

2 detectEnterShowerRoom.1 → Skip
duration

◃
detectLeaveShowerRoom.1 → prompt !showertoolong → Skip);

Reminder ShowerLong(duration)

Prompting is the implementation of the prompting service which receives signals from prompt

channel and then send alarms according to the type of reminder received from the channel.

It is specified as:
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Prompting =̂ prompt?status → prompting → Prompting ;

7.2.2 Verification

With the Timed Planning model presented above, this section is devoted to the verification

of various properties of the system. We categorize the properties according to the following

three types.

Deadlock Freeness

Deadlock is a common undesired state for safety-critical systems, especially in our case, a

smart nursing home for mild dementia patients. The existence of a deadlock state indicates

there might be potential error for the system which can lead to sensor erroneous or re-

minder erroneous. An assertion for verifying deadlock freeness is defined in a CLP relation

deadlock(P ,Tr), where P is the reference of the smart nursing home model and Tr is a

deadlock witness trace. By executing the goal:

?− deadlock(smartnursinghome,Tr).

Reminder Correctness

The most important (safety) properties that we want to preserve are that whenever the

critical situation occurs, the reminders will work as designed. For example, if the shower

tap is left on and nobody is inside the shower room, will the Turnoff Shower Tap Reminder

be sent out on time. It’s important to check the prompting of reminders based on time. To

check the correctness of each reminder, we list the following properties as follows.

• FTRP: After a residence has finished toilet for sometime and no flushing action has

been taken, whether the flushing toilet reminder would prompt within 1 minute (60

seconds) or not?
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Property Result Execution Time

Deadlock-freeP true 421

FTRP true 12

STLRP true 5

SWBRP true 20

TSTRP true 13

TWTRP true 25

FalseAlarmP1 true 5

FalseAlarmP2 true 7

Table 7.2: Results of Experiment

• STLRP: If a residence is showering for more than the maximum time, will showering

for too long reminder prompt in 1 minute?

• SWBRP: If a residence sleeps in a bed which not his, whether the sleeping in wrong

bed reminder would prompt in 30 seconds?

• TSTRP: Once a residence exits the shower room and leaves shower tap on, will turnoff

shower tap reminder would prompt in 1 minute?

• TWTRP: Once a residence exits the washing basin area and leaves the washing tap

on, whether the turnoff wash basin tap reminder would be prompted or not?

Experiments

In this section, we discuss how each component is modeled as Timed Planning processes and

how the properties are defined as CLP goals. We test seven properties defined previously

among the Smart Nursing Home system on Windows XP with a 2.0 GHz Intel CPU and 2

GB memory. The result is shown in Table 7.2.
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7.2.3 Modeling with PAT

To compare with PAT model checker, we model the smart nursing home system in PAT’s

syntax and verify the same properties.

Since the modeling language of PAT is also an extension of Timed CSP, the PAT module of

smart nursing home system is very similar to the Timed Planning model described in the

previous section, hence ignored here. The complete PAT model of the smarting home system

is shown in Appendix D. However, we remark that there are two differences in the modeling.

Firstly, PAT supports global variables but not Timed Planning. Therefore, Timed Planning

model of smart nursing home system adopts a different approach in modeling the status

changes of the sensors. Secondly, Timed Planning supports Where clause but not in PAT.

Therefore, PAT model uses the timeout or ranged wait or within operators to achieve the

same effects.

For the properties presented in Section 7.2.2, PAT can verify only partial of them due to

the different approach in verifying the system. On the other hand, some LTL properties

that can be verified by PAT, but hardly encoded in the CLP syntax. We list some LTL

properties below that can be checked by PAT only.

• SWBRP: [](tapon nobodyin -> <>prompt TurnOffTap)

• TSTRP: [](laydown.0.1 -> <> prompt sleepInWrongBed.0)

• TWTRP: [](enterShowerRoom.0 || enterShowerRoom.1 -> <> showertapon)

In summary, PAT and Timed Planning provides different ways to modeling and verifying

the real-time systems. Their modeling language is very similar and can be used to model

hierarchical real-time systems. PAT supports the global variables, which can make the

modeling easier sometimes. For the verification support, PAT can support safety properties,

LTL properties and refinement checking. Timed Planning can verify properties related to

time.
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7.3 Summary

Pervasive computing techniques have been proposed to assist elders with mild dementia to

improve their level of independence and quality of life through cognitive reinforcement. In

this chapter, we demonstrate how to support formal analysis of pervasive computing systems

by using Timed Planning to model and verify critical properties.

To demonstrate the feasibility of our approach, we use model and verify systems in two

different settings. Firstly,a context-aware reminding framework for elders living at home

alone is built and modeled using Timed Planning specification. Secondly, a reminding

framework for elders living at nursing home is modeled using Timed Planning. The first

case study focuses on the various reminders and conflicts between reminders. The second

case study focuses on the various sensors and reasoning about the rules. For the second case

study, we compare our approach with the PAT modeling techniques. The results shows that

PAT has better performance but cannot verify the properties related to timing, while our

approach has the advantage in expressing complication property. The future work for us

is to improve the performance of the approach by adding more reduction and optimization

techniques.



Chapter 8

Conclusion

This chapter concludes the thesis. Section 8.1 summarizes the contribution of this thesis

and Section 8.2 discusses some on-going and future directions.

8.1 Summary of the Thesis

In this thesis, we focused on the modeling and verification of real-time systems by using

timed process algebra. In particular, we have tried to address four issues related to real-

time systems modeling and verification.

1. Proposing a formal language for modeling real-time systems with hierarchical strutures,

2. Exploring efficient verification techniques to perform formal analysis of the proposed

models,

3. Implementing a toolkit to support effective real-time verification, and

4. Applying the proposed techniques in different domains.

137
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Timed CSP is a timed extension of CSP, which has been proposed for decades. Such specifi-

cation languages are elegant and intuitive as well as precise, which have been widely accepted

and applied to a wide arrange of systems. The first piece of work we have done is building a

reasoning mechanism for a timed process algebra, Timed CSP. The chosen underlying rea-

soning support is Constraint Logic Programming (CLP). We have shown that event-based

formalism like Timed CSP can be encoded in CLP by following its semantics. Our approach

therefore broadened real-time systems which can be specified and verified by CLP. This

setups a solid foundation for extending Timed CSP with more expressive operators and

developing a reasoning engine for this extended Timed CSP specification. In details, our

approach started with a formal translation of Timed CSP syntax to CLP relations, where

a library of all Timed CSP operators is built. Next, a collection of supplementary rules for

translating the operational semantics of each Timed CSP operator into CLP relations were

defined. We carried out verification of Timed CSP models with a high level of automation.

We investigated a wide range of properties that may be proved based on constraint solving,

namely CLP(R), for instance we showed that using a unique interpretation, safety proper-

ties and liveness properties can be proved effectively as well as properties such as lower or

upper bound of variables and timewise refinement. A prototype tool HORAE, which is an

interactive software that provides composing and reasoning of Timed CSP models.

The second piece of work in the thesis is to propose a new formalism for real-time systems

by extending Timed CSP. This extension names Timed Planning. Due to the fact that the

semantics of Timed CSP lacks of support for stating system requirements which constraints

all behavioral traces of given processes, for example, deadline and execution time of a pro-

cess, time-related constraints among events which are common requirements for many real

time systems and etc. Timed Planning extends Timed CSP with the capability of stating

complicated timing behaviors for processes and events to model and verify complex compo-

sitional real-time systems. A Timed Planning model is made up of a compositional timed

process and a set of constraints over processes, events and the data variables which are the

requirements that the process should satisfy. In this approach each process is associated

with a set of localized timing/untiming requirements with keyword Where, which can be
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specified in a compositional way. The Timed Planning provided a framework to specify

a number of compositional timed/untimed behaviors to capture various requirements over

the system. It has more expressive power than Timed Automata, for example it has the

capability of keeping timed event set during execution and applying some operations on

the set. In this thesis, we formally defined complete syntax and operational semantics of

Timed Planning. Due to the expressive power, CLP can express the syntax and semantics

of Timed Planning completely. A mechanized proving system, based on CLP(R), has been

developed by extending the reasoning mechanism for Timed CSP. For verifying systems built

using Timed Planning specification, a set of rules for feasibility testing are defined to find

the conflict constraints among processes. Besides, various safety and liveness properties can

also be verified over systems modeled in Timed Planning. We believe that Timed Planning

is not just a syntax sugar over Timed CSP, but it has more expressive power than Timed

CSP.

An important goal of formal specification languages is to solve problems in various domains.

In the thesis, we applied Timed Planning in three different domains, namely, scheduling,

security protocols and pervasive computing. Firstly, we applied Timed Planning and its

reasoning engine to solve classical job-shop scheduling problems, where finding an optimal

schedule corresponds to finding a shortest execution (in terms of elapsed time) in the Timed

Planning. In our approach, the job-shop scheduling problem was naturally modeled as

Timed Planning processes. We also worked with the extended job-shop scheduling problems,

where all jobs have composition operational behaviors. Besides, jobs with deadline and

relative timing constrains are also able to be captured in our approach. We believe that the

insight gained from this point of view will contribute both to scheduling and to the study

of timed processes. We have demonstrated that the performance of the Timed Planning

approach of solving job-shop scheduling problem can be highly improved by applying a set

of optimizations. There are still many potential improvements to be explored to reduce the

execution time, such as new partial-order methods and heuristics, etc.
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Another piece of work is we proposed a new method of modeling and analyzing timed security

protocols which consists of various timing aspects such as timestamps, delays, timeouts and

a set of timing constraints. To fulfill the aim, we substantially extended Timed Planning

with capabilities to stating complicated and critical timing requirements of timed security

protocols, in a compositional way. Based on our previous work on building a reasoning tool

for Timed CSP, a prototype mechanized proving system, based on CLP(R) to verify various

properties over systems modeled in this extended specification has been built. We model

principals as processes, as well as the cryptograph device, including timestamps, timeout,

retransmissions and delays. The timed non-injective agreement authentication property

can be verified using our underlying reasoning engine, which can be easily extended to

verify other authentication properties. We propose a novel approach to find timing attacks

using timing information of protocol sessions. We also modeled timing requirements of the

protocols in our Where predicates and verify other timing properties of the protocols.

8.2 Future Works

Based on this thesis, there are a number of directions for future work that may be beneficial

to the verification system of timed process algebra languages and the applications. In this

section, some of these possible research directions are briefly discussed.

8.2.1 Reduction and Optimization Techniques

First, we plan to investigate methods to combine well-known state space reduction tech-

niques. We know that systems that accept an infinite number of threads or unbound data

structures make model checking impossible. Symmetric properties among threads can re-

duce infinite number of threads to a small number. Data abstraction for infinite domain

data variables can also be incorporated into the model checking to handle unbounded data

size. Furthermore, combining the effective search heuristics in the CLP(R) with the verifi-
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cation algorithm is always attractive for us. These solutions are valuable for our verification

algorithms.

8.2.2 New Application Domains

As a future work, we will apply Timed Planning specifications to other domains, such

as timed scheduling problems, complex real-time systems and etc. For analyzing timed

security protocols, we will expand the verification of security properties, such as secrecy,

integrity, fairness and the timing properties such as the time range for an easy attack. For

our underlying reasoning engine, there are many potential improvements to be explored to

reduce the execution time, such as symmetry reduction and heuristics.

8.2.3 Tool Development

To perform efficient verification, tool implementation is the key. Based on the current

prototype, we shall improve it in the following directions. Firstly, a user friendly GUI can

help users to input the model easily. Secondly, integrate the new version of CLP(R) into

the system. The current CLP(R) we are using is based on the IBM version released at

1992. The new version of CLP(R) is under active development with a lot of bug fixing and

performance improvement. To adopt the new CLP(R) and investigate the new reduction

technique can be very effective for the verification of real-time systems. Lastly, we want

to formally define the property patterns, which could help users easily come up with the

predicates for properties.
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Appendix A

Healthiness Conditions for Timed

Planning

Implicit predicates for most of the process operators are defined as follows, where P denotes

process, e denotes event, X and Y are set of events.

Event Prefix: an → P : ∀ a → P • an .Engage 6 P .Start

Sequence: P1; P2 : ∀P1; P2 • P1.End 6 P2.Start

Choice: P12P2 : ∀P1 ||| P2 • P1.Start = P2.Start ∧ P1.End = P2.End

Timeout: P1 ◃ {d} P2 : ∀P1 ◃ {d} P2 • init{P1}.Engage <= d ∨ P2.Start = d

Interleaving: P1 ||| P2 : ∀P1 ||| P2 • P1.Start = P2.Start ∧ P1.End = P2.End

Interrupt: P1 ▽ P2 : ∀P1 ▽ P2 • P1.Start 6 P2.Start

Timed Interrupt: P1 ▽ {d}P2 : ∀P1 ▽{d} P2 • P1.Start + d 6 P2.Start

Parallel: P1 X ||Y P2 : ∀P1 X ||Y P2,∀ a ∈ X ∩Y • P1.Start = P2.Start ∧

P1.End = P2.End ∧ P1.a.Engage = P2.a.Engage

153



Appendix A. Healthiness Conditions for Timed Planning 154



Appendix B

Real-time Multi-lift System

noOfFloor : N; noOfLifts : N

GroundFloor =̂ request?(1, up) → upbottomon → enter !(1, up) → GroundFloor
2service?(1, up) → upbottomoff → GroundFloor

TopFloor =̂ request?(noOfFloor , down) → downbottomon →
enter !(noOfFloor , down) → TopFloor

2service?(noOfFloor , down) → downbottomoff → TopFloor
MidFloor(level) =̂ request?(level , up) → upbottomon →

enter !(level , up) → MidFloor(level)
2request?(level , down) → downbottomon →
enter !(level , down) → Floor(level)

2service?(level , up) → upbottomoff → MidFloor(level)
2service?(level , down) → downbottomoff → MidFloor(level)

Floors =̂ (|||1<i<noOfFloor MidFloor(i)) ||| GroundFloor ||| TopFloor

OpenDoor(i) =̂ servo!(i , toOpen) → sensor?(i , opened) → Skip
CloseDoor(i) =̂ servo!(i , toClose) → sensor?(i , closed) → Skip
CycleDoor(i) =̂ OpenDoor(i); confirm → (µ • CD Wait[t ]; CloseDoor

▽ sensor?(i , interrupt) → OpenDoor ; CD)
Door(i) =̂ open?i → CycleDoor(i); close!i → Door(i)

Where close.Engagei − open.Engagei 6 td
Servomech =̂ servo?(i , toOpen) → Servomech

2servo?(i , toClose) → Servomech
2sensor !(i , opened) → Servomech
2sensor !(i , closed) → Servomech
2sensor !(i , request) → Servomech
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Shalf (i) =̂ move?n → arrive → Shalf (i)
Where n > 0 ∧| n | ∗t − delta 6 arrive.Engage −move.Engage

∧ arrive.Engage −move.Engage 6| n | ∗t + delta

Move1(i , dest ,fl) =̂ move!(dest − fl) → arrive?dest →
open!i → confirm → Skip
Where ¬(dest = fl)

Move2(i , dest ,fl) =̂ open!i → confirm → Skip
Where dest = fl

Move(i , dest ,fl) =̂ Move1(i , dest ,fl)2Move2(i , dest ,fl)
Get External(i ,fl) =̂ select?(dest , dir) → Move(i , dest ,fl);

service!(fl , dir) → close → Skip
Get Internal(i ,fl ,md) =̂ int sched !(fl ,md) → int sched?(dir) →

check !(fl , dest ,md) → check → Move(i , dest ,fl);
init serv !fl → close?i → Skip

LiftControl(i ,fl ,md) =̂ (Get Internalfl ,md)
2(Wait[tp ]; Get External(fl)));
LiftControl(i ,fl ,md)

Lift(i) =̂ Door(i) || Shalf (i) ||
LiftControl(i , 0, 0) || Internal Q(i , [])
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Patient Behaviors:

Patient status: {inRoom, inShowerRoom, outside, inBed}
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Residence(i , status) =̂ (EnterRoom(i , status); Residence(i , inRoom))
2 (LeaveRoom(i , status); Residence(i , outside))
2 (Shower(i , status); Residence(i , status))
2 (BedActivity(i , status); Residence(i , status))
2 (Toilet(i , status); Residence(i , status))

EnterRoom(i , status) =̂ [status == outside]enterRoom.i → Skip
LeaveRoom(i , status)) =̂ [status == inRoom]leaveRoom.i → Skip
BedActivity(i , status) =̂ [status == inRoom]gotoBed →

((sitonbed .0.i → BedAct (i , 0))
2 (sitonbed .1.i → BedAct (i , 1)))

BedAct (i , j ) =̂ (SittingOnBed(i) 2 Sleeping(i));
(BedAct (i , j ) 2 GetUp(i , j ))

SittingOnBed(i) =̂ sitting .i → Skip
Sleeping(i) =̂ laydown → sleeping → Skip
GetUp(i , j ) =̂ leavebed .j .i → Skip
Toilet(i , status) =̂ [status == inRoom] start toilet

30→
(leave toilet → Skip 2 flush → leave toilet → Skip);
(Skip 2 WashHand(i))

WashHand(i , status) =̂ [status == inRoom] turnonwash tap →
(washhand

20→ (turnoff wash tap → fin washhand → Skip
2 fin washhand → Skip))

Shower(i , status) =̂ [status == inRoom] enterShowerRoom.i
→ (Skip 2 Wash()); leaveShowerRoom.i → Skip

Wash() =̂ turnon shower tap → start apply soap
60→

(Skip 2 turnoff shower tap → Skip); getDressed → Skip

Sensor Groups:

BedPressureS (i , j ) =̂ sitonbed .j .i → bed pressure sensor !(j , 0) → BedRFID(i , j )
2 laydown.j .i → bed pressure sensor !(j , 1) → Skip
2 leavebed .j .i → BedRFID(−1, j )
Where sitonbed .j .i .Engage =

bed pressure sensor !(j , 0).Engage
∧ laydown.j .i .Engage =

bed pressure sensor !(j , 1).Engage
BedPressureSensor =̂ (BedPressureS (0, 0) 2 BedPressureS (0, 1)) |||

(BedPressureS (1, 0) 2 BedPressureS (1, 1));
BedPressureSensor

BedRFID(i , j ) =̂ bed rfid !j .i → Skip
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DoorRFIDReader =̂ (EnterDoorRFID 2 LeaveDoorRFID); DoorRFIDReader
EnterDoorRFID =̂ enterRoom.0 → rfid room!(0, outside) → Skip

2 enterRoom.1 → rfid room!(1, outside) → Skip
Where enterRoom.0.Engage =

rfid room!(0, outside).Engage
∧ enterRoom.1.Engage = rfid room!(1, outside).Engage

LeaveDoorRFID =̂ leaveRoom.0 → rfid room!(0, inRoom) → Skip
2 leaveRoom.1 → rfid room!(1, inRoom) → Skip
Where leaveRoom.0.Engage = rfid room!(0, inRoom)
∧ leaveRoom.1.Engage = rfid room!(1, inRoom).Engage

SRDoorRFIDReader =̂ (EnterSRRFID 2 LeaveSRRFID); SRDoorRFIDReader
EnterSRRFID =̂ enterShowerRoom.0 → rfid showerroom!(0, inRoom) → Skip

2 enterShowerRoom.1 → rfid showerroom!(1, inRoom)
→ Skip

Where enterShoerRoom.0.Engage =
rfid showerroom!(0, inRoom).Engage

∧ enterShowerRoom.1.Engage =
rfid showerroom!(1, inRoom).Engage

LeaveSRRFID =̂ leaveShowerRoom.0 → rfid showerroom!(0, inShowerRoom)
→ Skip

2 leaveShowerRoom.1 → rfid showerroom!(1, inShowerRoom)
→ Skip

Where leaveShowerRoom.0.Engage =
rfid showerroom!(0, inShowerRoom).Engage

∧ leaveShowerRoom.1.Engage =
rfid showerroom!(1, inShowerRoom).Engage

ShowerSensor Tap =̂ turnon shower tap → showerroom tap!1 → Skip
2 turnoff shower tap → showerroom tap!0 → Skip);
ShowerSensor Tap
Where turnon shower tap.Engage =

showerroom tap!1.Engage
∧ turnoff shower tap.Engage = showerroom tap!0.Engage

WashSensor Tap =̂ (turnon wash tap → washbasin tap!1 → Skip
2 (turnoff wash tap → washbasin tap!0 → Skip);
WashSensorTap();
Where turnonwash tap.Engage = washbasin tap!1.Engage
∧ turnoff wash tap.Engage = washbasin tap!0.Engage

Sensors =̂ SRDoorRFIDReader ||| ShowerSensor Tap ||| BedPressureSensor
||| DoorRFIDReader ||| WashSensor Tap
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LocationMonitor = =̂ (rfid room?(i , status) →
[status == outside]detectEnterRoom.i → Skip
2 [status == inRoom]detectLeaveRoom.i → Skip);

LocationMonitor
ShowerRoomRFID =̂ (rfid showerroom?(i , status) →

[status == inRoom]detectEnterShowerRoom.i → Skip
2 [status == inShowerRoom]detectLeaveShowerRoom.i

→ tapoff prompt → Skip); ShowerRoomRFID
ShowerTapMonitor =̂ (showerroom tap?1 → tapIsOn → Skip

2 showerroom tap?0 → tapIsOff → Skip);
ShowerTapMonitor

WashTapMonitor =̂
(washbasin tap?1 → basinTapIsOn → Skip
2 washbasin tap?0 → basinTapIsOff → Skip);

WashTapMonitor
BedMonitor =̂ (bed pressuresensor?(j , s) → bed rfid?(i , j ) →

[i ! = −1 ∧ i ! = j ]prompt sleepInWrongBed .i → Skip
2 [i ! = −1 ∧ i == j ]prompt goodnight .i → Skip);

BedMonitor
Monitor =̂ LocationMonitor

||| ShowerRoomRFID
||| ShowerTapMonitor
||| BedMonitor
||| WashTapMonitor
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Reminder Toilet(duration) =̂ (start toilet → Skip
duration

◃
finish toilet → prompt !toilet → Skip);
Reminder Toilet(duration)

Reminder Flushing(duration) =̂ (start toilet → finish toilet → Skip
duration

◃
flush → promptf lushtoilet → Skip);
Reminder Flushing(duration)

Reminder ShowerLong(duration) =̂ (detectEnterShowerRoom.0 → Skip
duration

◃
detectLeaveShowerRoom.0

→ prompt !showertoolong → Skip

2 detectEnterShowerRoom.1 → Skip
duration

◃
detectLeaveShowerRoom.1

→ prompt !showertoolong → Skip);
Reminder ShowerLong(duration)

Reminder SleepingInWrongBed =̂ (prompt sleepInWrongBed .0
→ prompt !(wrong bed , 0) → Skip

2 prompt sleepInWrongBed .1
→ prompt !(wrong bed , 1) → Skip);

Reminder SleepingInWrongBed
Prompting =̂ prompt?status → prompting → Prompting
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Appendix D

Complete PAT Model of Smart

Nursing Home

#define N 2; //No. of residents, 2 residents per room
#define Bed 2; // No. of beds

//channels
channel bed pressure sensor 0 0; //pressure sensor for bed 0;
channel bed pressure sensor 1 0; // pressure sensor for bed 1;
channel chair pressure sensor 0 ;
channel rfid room 0;
channel bed rfid 0 0;
channel bed rfid 1 0;

//channels
channel showerroom reed 0;
channel rfid showerroom 0;
channel showerroom tap 0;
channel washbasin tap 0;
channel doorlock 0;
channel shakesensor 0;
channel reminderc 0;

/ ∗ status of residences ∗ /
var isInRoom[2] = [1, 1];
var isShowering [2] = [0, 0];
var bedStatus[2] = [−1, − 1];
var isInBed [2] = [−1, − 1];
var isInShowerRoom = [0, 0];

/ ∗ tap status ∗ /
var isShowerTapOn = false;
var isBasinTapOn = false;
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//−−−−−−−− ADLS −−−−−−−−
Residence(i) = (Shower(i) 2 Sleep(i) 2 EnterRoom(i)

2 LeaveRoom(i) 2 Toilet(i)) ; Residence(i);
Sleep(i) = if (isInRoom[i ] == 1) {gotoBed →

(((sitonbed 0.i → SittingOnBed(i);
(Sleeping(i) 2 Skip); GetUp(i , 0))
2 (sitonbed 1.i → SittingOnBed(i);
(Sleeping(i) 2 Skip); GetUp(i , 1))))};

SittingOnBed(i) = sitting .i → Skip;
Sleeping(i) = laydown → sleeping → Skip;
GetUp(i , j ) = if (j == 0){leavesbed 0.i → Skip}

else{leavesbed 1.i → Skip};
EnterRoom(i) = ifb(isInRoom[i ] == 0){enterRoom.i → Skip};
LeaveRoom(i) = ifb(isInRoom[i ] == 1 && isInBed [i ] ! = 1

&& isShowering [i ] == 0 ){leaveRoom.i → Skip};
Toilet(i) = if (isInRoom[i ] == 1) {start toilet → Wait [30];

(leave toilet → Skip 2 flush → leave toilet → Skip);
(Skip 2 WashHand(i))};

WashHand(i) = if (isInRoom[i ] == 1) {turnon wash tap →
(washhand → Wait [20]; (turnoff wash tap →
fin washhand → Skip 2 fin washhand → Skip))};

Shower(i) = readyForShower → Wait [30];
if (isInRoom[i ] == 1) {
enterShowerRoom.i → (Skip 2 Wash());
leaveShowerRoom.i → Skip};

Wash() = turnon shower tap → start apply soap → Wait [60, 2000];
(Skip 2 turnoff shower tap → Skip);
getDressed → Skip;



Appendix D. Complete PAT Model of Smart Nursing Home 166

/ ∗ − −−−−−−−−− Sensors −−−−−−−−−−− ∗/
BedPressureSensor() =

((sitonbed 0.0 → bed pressure sensor 0!0 → BedRFID(0, 0))
2 (sitonbed 0.1 → bed pressure sensor 0!0 → BedRFID(1, 0))
2 (sitonbed 1.0 → bed pressure sensor 1!0 → BedRFID(0, 1))
2 (sitonbed 1.1 → bed pressure sensor 1!0 → BedRFID(1, 1))
2 (laydown → bed pressure sensor 0!1 → Skip)
2 (laydown → bed pressure sensor 1!1 → Skip)
2 (leavesbed 0.0 → BedRFID(−1, 0))
2 (leavesbed 0.1 → BedRFID(−1, 0))
2 (leavesbed 1.0 → BedRFID(−1, 1))
2 (leavesbed 1.1 → BedRFID(−1, 1))
); BedPressureSensor();

BedRFID(i , j ) = if (j == 0) {bed rfid 0!i → Skip}
else {bed rfid 1!i → Skip};

DoorRFIDReader() = ( atomic{enterRoom.0 → rfid room!0 → Skip}
2 atomic{enterRoom.1 → rfid room!1 → Skip}
2 atomic{leaveRoom.0 → rfid room!0 → Skip}
2 atomic{leaveRoom.1 → rfid room!1 → Skip}
); DoorRFIDReader();

ShowerRoomDoorRFIDReader() =
(atomic{enterShowerRoom.0 → rfid showerroom!0 → Skip}
2 atomic{enterShowerRoom.1 → rfid showerroom!1 → Skip}
2 atomic{leaveShowerRoom.0 → rfid showerroom!0 → Skip}
2 atomic{leaveShowerRoom.1 → rfid showerroom!1 → Skip}
); ShowerRoomDoorRFIDReader();

ShowerSensor Tap() =
2 i : {0..N − 1}@(atomic{turnon shower tap
→ showerroom tap!1 → Skip}

2 (atomic{turnoff shower tap → showerroom tap!0 → Skip})
); ShowerSensor Tap();

WashSensor Tap() =2 i : {0..N − 1}@((
atomic{turnon wash tap → washbasin tap!1 → Skip })
2 (atomic{turnoff wash tap → washbasin tap!0 → Skip })
); WashSensor Tap();

Sensors() = ShowerRoomDoorRFIDReader()
||| ShowerSensor Tap()
||| BedPressureSensor()
||| DoorRFIDReader()
||| WashSensor Tap();
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/ ∗ − −−−−−−−−− Monitor System −−−−−−−−−−−−−−−
LocationMonitor() = atomic{rfid room?i →

if (isInRoom[i ] == 0){tau{isInRoom[i ] = 1; } → Skip}
else{
if (isInRoom[i ] == 1){ tau{isInRoom[i ] = 0; } → Skip}
}}; LocationMonitor();

ShowerRoomRFID() = atomic{rfid showerroom?i →
if (isInShowerRoom[i ] == 0) {
tau{isInShowerRoom[i ] = 1; } → Skip}
else{
if (isInShowerRoom[i ] == 1){
tau{isInShowerRoom[i ] = 0; } → tapoff prompt → Skip }}
}; ShowerRoomRFID();

ShowerTapMonitor() = (atomic{showerroom tap?1 →
tau{isShowerTapOn = true; } → Skip}
2 atomic{showerroom tap?0 → tau{isShowerTapOn = false; } →
Skip}); ShowerTapMonitor();

WashTapMonitor() = (atomic{washbasin tap?1
→ tau{isBasinTapOn = true; } → Skip}

2 atomic{washbasin tap?0 → tau{isBasinTapOn = false; }
→ Skip}) ; WashTapMonitor();

BedMonitor() = BedMonitor1() ||| BedMonitor2();
BedMonitor1() = (atomic{bed pressure sensor 0?i → tau{isInBed [0] = i ; } →

if (i ! = −1 && i ! = 0) {sleepInWrongBed .1 → Skip}}
2 atomic{bed pressure sensor 1?i → tau{isInBed [1] = i ; } →
if (i ! = −1 && i ! = 1) {sleepInWrongBed .0 → Skip}});
BedMonitor1();

BedMonitor2() = (atomic{bed rfid 0?i → tau{bedStatus[0] = i ; } → Skip}
2 atomic{bed rfid 1?i → tau{bedStatus[1] = i ; } → Skip});
BedMonitor2();

Monitor() = LocationMonitor()
||| ShowerRoomRFID()
||| ShowerTapMonitor()
||| BedMonitor()
||| WashTapMonitor();
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/ ∗ − −−−−−−−−− Services/Reminders/Control System −−−−−−
Toilet Reminder(duration) =

start toilet → Skip timeout [duration] finish toilet →
prompt toilet → Skip; Toilet Reminder(duration);

Flush Toilet Reminder(duration) =
start toilet → Skip timeout [duration] flush →
prompt flushtoilet → Skip;

Reminder Shower TooLong(duration) =
2 i : {0..N − 1}@enterShowerRoom.i → (leaveShowerRoom.i
→ Skiptimeout [duration] prompt finishshower → Skip);

SleepingInWrongBedReminder() =
2 i : {0..N − 1}@atomic{sleepInWrongBed .i →
prompt wrong bed .i → Skip}; SleepingInWrongBedReminder();

Reminder TurnOff Tap() = atomic{tapoff prompt → if (isShowerTapOn == true)
{if (isInShowerRoom[0] == 0 && isInShowerRoom[1] == 0 )
{tapon nobodyin → Skip}; prompt TurnOffTap →
CheckFalseAlarm(1) }}; Reminder TurnOff Tap();

/ ∗ − −−−−−−−−− Errorness cases −−−−−−−−−−−−
var falsealarm = false;
CheckFalseAlarm(type) = if (type == 1){if (isInShowerRoom[0] == 1

∥ isInShowerRoom[1] == 1){tau{falsealarm = true; } → Skip}};

/ ∗ − −−−−−−−−− Define Smart Nursing Home System −−−−−
Reminders() = Toilet Reminder(1800) ||| Reminder Shower TooLong(1800)

||| SleepingInWrongBedReminder() ||| Reminder TurnOff Tap() ;
Residences() = Residence(0) ||| Residence(1) ;
SmartNursingHome() = (Residences() ∥ Sensors() ∥ Reminders()) ∥ Monitor() ;


