
Using Multi Decision Diagram in Model Checking

Nguyen Truong Khanh
School of Computing

National University of Singapore
Email: dcsntk@nus.edu.sg

Quan Thanh Tho
Faculty of Computer Science and Engineering

Hochiminh City University of Technology
Email: qttho@cse.hcmut.edu.vn

Abstract—Model checking[1] is an automatic verification
technique for finite concurrent systems. In this method, the
assertion is verified by exhaustively searching over the state
space. However, the number of states of the system will grow
exponentially with the number of processes. It limits model
checker to handle with complex systems. In explicit model
checking[1], system states are explored one-by-one and stored
in memory explicitly, so the verified system is restricted by the
memory resource. Most of the memory is consumed by the
hash table which contains the visited states and the queue of
states whose successors are already generated. In this paper,
we will present a new way of storing the visited states by
using a tree. We show that our approach is memory efficient.
Organization of the report: Section 1 is the introduction, and
section 2 introduces PAT model checker. Section 3 describes
how to implement the tree storing the visited states. Section
4 presents the heuristic to improve the performance for the
tree. Section 5 is the experiment result. Lastly section 6 is the
conclusion and future work.

Keywords-model checking; state space explosion; multi deci-
sion diagram;

I. INTRODUCTION

Nowadays, the hardware and software systems are playing
a vital role in our life. They appear in all our devices
from the smartcards to the air-traffic controllers. Computers
are increasingly used in safety-critical applications such as
medical treatment and mission control. The presence of bugs
in such applications is unacceptable. Model checking is an
effective way to find bugs, especially the subtle ones. It uses
the model of the system and properties to do the verification.
The verification procedure is to search exhaustively all the
possible states. On the progress of traversing states, each
visited state is stored in a certain data structure, often in a
hash table, to ensure that each state is explored at most once.
This process continues until either there is a counterexample
found or the whole state space is explored or the model
checker runs out of memory. The problem when the memory
is used up is called state space explosion. To handle with
that problem, many techniques are provided to search the
state space efficiently before running out of memory. In this
paper, we present a new way to store each state into a tree
called Multi Decision Diagram (MDD). This approach has
been implemented in the PAT model checker.

In this approach, the data structure is implemented as a
tree and each visited state is a branch in that tree. The tree

will store the states and can verify whether or not a state
has been visited before. The performance of the using tree
is better in memory compared with storing directly states in
the built-in hash-table Dictionary in .NET Framework 2.0.

II. PAT INPUT LANGUAGE

PAT (Process Analysis Toolkit) is an enhanced simulator,
model checker and refinement checker. Its homepage is at
http://www.comp.nus.edu.sg/ pat/ [2].

PAT[3, 4] supports a wide range of modeling languages
including CSP# [5] (short for communicating sequential pro-
grams), which shares similar design principle with integrated
specification languages like TCOZ[6, 7]. The input language
supports high-level compositional constructs like choice,
parallel, interrupt, etc, as well as low-level programming
language constructs like shared variables, arrays, if-then-
else, etc. A process is defined by the following syntax:

P = StopA | Skip | e → P | P ; P | P [] P | P ? P | P
 P | P 9 P | P ‖ P where A is a set of events, e is
an event, b is a Boolean expression. Process StopA never
engages in any event from the set A. Process Skip means
”terminate successfully”. Action prefixing e → P is initially
willing to engage the event e and behaves as P afterward.
The sequential composition P1 ; P2 behaves as P1 until P1
terminates and then behaves as P2. One way to introduce
diversity of behaviors is through choices. A choice between
two processes is denoted as P1 [] P2. P1 ? P2 behaves as P1
until the first event of P2 is engaged, then P1 is interrupted
and P2 takes control. Process P Q behaves as P is
b evaluates to true. Otherwise, it behaves as Q. Interleave
process P1 9 P2 includes 2 processes P1 and P2 running
parallel without synchronization. Parallel composition of two
processes is written as P1 ‖ P2, where common events of
P1 and P2 are synchronized.

Example: The following specifies the classic dining
philosopher problem [8]
Phil(i) = get.i.(i+1)%N → get.i.i → eat.i → put.i.(i+1)%N
→ put.i.i → Phil(i);
Fork(x) = get.x.x → put.x.x → Fork(x) [] get.(x-1)%N.x →
put.(x-1)%N.x → Fork(x);
College() = ‖x:0..N-1@(Phil(x)‖Fork(x));
where N is number of philosophers, get.i.j (put.i.j) is the
action of the i-th philosopher picking up (putting down) the

j-th fork. In this specification, the i-th philosopher will first
get the (i+1)-th fork, and i-th fork and then eat. After eating,
he will put down the (i+1)-th fork, i-th fork respectively. The
definition of Fork(x) is used to make sure that each fork at
each time can be used by only one philosopher. The reason
is because Phi(x) processes and Fork(x) are synchronized in
the definition of College(). So when a fork is got by one
philosopher, other philosophers can not use that fork.

III. IMPLEMENTATION OF MDD
The memory problem which PAT faces is the same

with other tools. Dictionary is currently used to store the
visited states and it uses a lot of memory. The state space
explosion happens in PAT with the parallel processes. In
these processes, the number of states will grow exponentially
with the number of sub processes. So our new approach will
focus on the parallel processes to save memory. Suppose that
we have a parallel process P = P1 ‖ P2 ‖ P3. One by one
each process P1, P2, P3 in P changing creates a new state.
For example, state P1‖P2‖P3 and state P1‖P2‖P3’ are some
states of P and only their last sub process is different. The
first two sub processes are unchanged.

Tree will be used to store the visited states as following.
The tree consists of one root node. This root node contains
the link to other nodes. Each node includes the sub process’s
name and links to other below nodes. Each visited state is a
branch of the tree. Checking whether a state was visited
before is equivalent to check whether its corresponding
branch belongs to the tree.

To make the algorithm clear, we consider an example.
Suppose we have traversed 3 states (1, 2, 4), (1, 2, 3), (1,
2) respectively. The growth of the tree is as below

root

1

2

4

End

root

1

2

3 4

End

root

1

2

4 4

End

Figure 1. The growth of the tree when added 3 states (1, 2, 4), (1, 2, 3)
and (1, 2)

Now suppose we want to check whether the state (1, 2,
4) is visited before. We will go across the tree and the
branch (1, 2, 4) is found as no new node is created. The
tree guarantees that checking whether a state is traversed
for the first time or not is correct. The decision is based on
if any new node is added to the tree while traversing the
tree.

IV. HEURISTIC TO ORDER MDD

Suppose the parallel process P = P1 ‖ P2 ‖ P3. The
domain of P1 is {1, 2, 3, 4}, the domain of P2 is {1, 2}
and the domain of P3 is {1}. Then the tree for all states of
the process P is as the Figure 2.

root

1 2 3 4

1 2 1 2 1 2 1 2

1 1 1 1 1 1 1 1

Figure 2. The state space of the process P = P1 ‖ P2 ‖ P3

The number of node is 21. However if we change the
order P = P3 ‖ P2 ‖ P1 which does not change P, then the
tree will be like the Figure 3.

root

1

1 2

1 2 3 4 1 2 3 4

Figure 3. The state space of the process P = P3 ‖ P2 ‖ P1

The number of the node is now only 12 nodes. This
example shows that the shape and size of the tree depends
on the order of sub processes. We will apply the heuristic
to determine the complexity of a process, in other word, to
find the cardinal of the domain of each process. And then,
the sequence of sub processes in the MDD will be changed
in the increasing-complex order. In this order, the size of the
tree is smaller.

The complexity of a process will be calculated by a
function whose input is the function and output is a positive
integer number. The function is defined by recursive as
below:
f(Stop) = 1
f(Skip) = 2
f(e → P) = 1 + f(P)
f(P1 ; P2) = f(P1) + f(P2)
f(P1 [] P2) = max (f(P1), f(P2))
f(P1 P2) = max(f(P1), f(P2))
f(P1 ‖ P2) = f(P1) . f(P2)
where P, P1, P2 are processes, b is a Boolean expression.
This function object is to calculate the number of states in

the graph describing the process although it varies at the
runtime. We cannot know the value of the expression b and
similarly, it is difficult to care the common events of P1
and P2 in P1 ‖ P2. Therefore, it will take a lot of time to
know exactly how many states for a process. In the current
implementation of the tree, we only need the relative order
of the complexity of the processes, and the exactly number
is no need. So, the definition of the function is acceptable
and it helps in most case.

V. EXPERIMENTS

To know the performance of the MDD, we made some
experiments and compared the memory used by the MDD
with the Dictionary.

Milner Number of states Time (seconds) Memory (bytes)
Dictionary MDD Dictionary MDD

n = 9 65,796 5 15 8,003,964 4,691,892
n = 10 161,540 76 212 23,407,516 11,394,768
n = 11 389,124 49 144 56,671,420 27,206,508
n = 12 922,628 189 512 136,984,356 64,072,488

Table I
COMPARISON BETWEEN DICTIONARY AND MDD IN TIME EXECUTION

AND MEMORY USING WITH MILNER PROBLEM

From the Table I, the more states the problem has,
the more memory the MDD saves. When the number of
processes increases, the representation of each state is bigger.
That leads the average memory for each state of Dictionary
increases a lot; however, with the MDD, it increases a
little. It saves about 50% memory as compared with the
Dictionary. This rate still keeps stable when the size of the
problem becomes bigger.

Leader Election Number of states Time (seconds) Memory (bytes)
Dictionary MDD Dictionary MDD

n = 5 2,587 6 10 1,225,458 544,712
n = 6 7,831 37 61 5,075,626 1,601,496
n = 7 22,058 197 327 20,728,314 4,432,772
n = 8 58,946 949 1,571 75,004,134 11,747,508

Table II
COMPARISON BETWEEN DICTIONARY AND MDD IN TIME EXECUTION

AND MEMORY USING WITH LEADER ELECTION PROBLEM

The result in ”Leader Election in Complete Graph” is even
better than the previous. According the Table II, the MDD
saves about 80% memory as compared with the Dictionary.
Again, the rate still keeps stable with bigger problem. The
reason for this better result depends on which problem or
the added branches in the MDD. Moreover the MDD works
more efficiently in Interleave process (the last experiment)
than in Parallel process (the first experiment). In Parallel
process, each element process will be synchronized together,
so there are some states that never happen, but can happen
in the Interleave process. For example, we have process P1
whose domain is 1, 2 and process P2 whose domain is 3, 4.
If P1 is synchronized with P2, sometimes when P1 changes

from 1 to 2, P2 will change from 3 to 4 simultaneously. So
with P = P1 ‖ P2, process P’s states will never be (2, 3). On
the other hand, when P = P1 9 P2, process P’s state can be
(2, 3). Therefore, in the Interleave process, the MDD will
have a lot of nodes to share. It’s why the MDD saves a lot
in the ”Leader Election in Complete Graph”.

VI. CONCLUSION AND FUTURE WORK

In summary, there were many studies about storing the
visited states while traversing in model checking. Most of
them concentrated on how to hash the state representation
into a lower-cost representation such as: bit-state hashing
and hash compaction [9]. On the other hand, in this paper,
the approach works as a later stage which concentrating
on how to store the state representation effectively. This
approach can be applied with the former approaches to
have a better performance. When each state is hashed as
a sequence of bits 0 and 1, the tree will become Binary
Decision Diagram (BDD) [10] which is more saving and
faster.

REFERENCES

[1] Clarke E M, Grumberg O, Peled D A, Model Checking. The
Massachusetts Institute of Technology(MIT) Press, 2000.

[2] Sun J, Liu Y, Dong J S. PAT, PAT: process analysis toolkit.
http://www.comp.nus.edu.sg/ pat/

[3] J. Sun, Y. Liu, J. S. Dong and J. Pang, PAT: Towards Flexible
Verification under Fairness. 21th International Conference on
Computer Aided Verification (CAV 2009), Grenoble, France,
June 2009.

[4] J. Sun, Y. Liu, J. S. Dong and H. Wang, Specifying and
Verifying Event-based Fairness Enhanced Systems. 10th Inter-
national Conference on Formal Engineering Methods (ICFEM
2008). Japan, Oct 2008.

[5] Hoare C A R, Communicating sequential processes. Interna-
tional Series in Computer Science, Prentice-Hall, 1985.

[6] B. Mahony and J.S. Dong, Timed Communicating Object Z.
IEEE Transactions on Software Engineering, 26(2):150-177,
Feb 2000.

[7] B. Mahony and J.S. Dong, Blending Object-Z and Timed
CSP: An introduction to TCOZ. In Proceedings of the 20th
International Conference on Software Engineering (ICSE’98),
IEEE Press, pages 95-104, Kyoto, Japan, 1998.

[8] D. Lehmann and M. Rabin, On the Advantage of Free Choice:
A Symmetric and Fully Distributed Solution to the Dining
Philosophers Problem (Extended Abstract). In Proc. 8th
Annual ACM Symposium on Principles of Programming Lan-
guages (POPL’81), pages 133–138. 1981.

[9] Gerard J. Holzmann, An Analysis of Bitstate Hashing. Formal
Methods in System Design archive.

[10] Burch J R, Clarke E M, McMillan K L, et al, Symbolic
model checking: 1020 states and beyond. Information and
Computation, 1992, 98(2): 142170.

Listing 1. Implementation of MDD
p u b l i c s t r u c t Node

p u b l i c i n t v a l u e ;
p u b l i c T a i l t a i l ;

p u b l i c boo l V i s i t (L i s t<i n t> v a l u e)
Node temp = r o o t ;
boo l r e s u l t = f a l s e ;
Vis i tTemp (va lue , r e f temp , r e f r e s u l t) ;
i f (r e s u l t | | (! (temp . t a i l [0] . v a l u e == i n t . MinValue && temp . t a i l [0] . t a i l == n u l l)))

c o u n t ++;
Node l e a f N o d e = new Node () ;
l e a f N o d e . v a l u e = i n t . MinValue ;
l e a f N o d e . t a i l = n u l l ;
temp . t a i l . I n s e r t (0 , l e a f N o d e) ;
re turn true ;

e l s e
re turn f a l s e ;

p r i v a t e vo id Vis i tTemp (L i s t<i n t> va lue , r e f Node temp , r e f boo l r e s u l t)
f o r (i n t i = 0 ; i < v a l u e . Count ; i ++)

i f (temp . t a i l . Count == 0)
r e s u l t = t rue ;
Node ch i ldNode = new Node () ;
ch i l dNode . v a l u e = v a l u e [i] ;
ch i l dNode . t a i l = new T a i l () ;
temp . t a i l . Add (ch i ldNode) ;
temp = temp . t a i l [0] ;

e l s e
i n t pos = B i n a r y S e a r c h (temp . t a i l , v a l u e [i]) ;
i f (pos >= 0)

temp = temp . t a i l [pos] ;
e l s e

r e s u l t = t rue ;
Node ch i ldNode = new Node () ;
ch i l dNode . v a l u e = v a l u e [i] ;
ch i l dNode . t a i l = new T a i l () ;

temp . t a i l . I n s e r t (˜ pos , ch i l dNode) ;
temp = temp . t a i l [˜ pos] ;

