Modeling and verifying security protocols
using PAT approach

Luu Anh Tuan
School of Computing,
National University of Singapore
tuanluu @comp.nus.edu.sg

Abstract—Security protocols play more and more important
role nowadays, ranging from banking to electronic commerce
systems. They are designed to provide properties such as au-
thentication, key exchanges, key distribution, non-repudiation,
proof of origin, integrity, confidentiality and anonymity, for
users who wish to exchange messages over a medium over
which they have little control. These properties are often
difficult to characterize formally (or even informally). The
protocols themselves often contain a great deal of combinatorial
complexity, making their verification extremely difficult and
prone to error. To overcome these obstacles, many different
approaches are proposed such as using theorem provers or
ranking systems. However, they are lack of automation, suffi-
ciency in demand or time verification. In this paper, we will
propose an approach using Real Time System (RTS) and an
model checker PAT to deal with these problems.

Keywords-Security protocol; PAT; verification; RTS;

I. INTRODUCTION

With the explosion of the Internet, electronic transactions
have become more and more common. The security for
these transaction is very crucial to many applications, e.g.
electronic commerce, digital contract signing, electronic
voting, and so on. However, these large open networks where
trusted and untrusted parties coexist and where messages
transit through potentially dangerous environment pose new
challenges to the designers of communication protocols.
Properties such as authenticity, confidentiality, proof of
identity, proof of delivery, or receipt are difficult to assure
in this scenario.

Security protocols, communications protocols with an
essential use of cryptographic primitives, aim at solving this
problem [16]. By a suitable use of shared and public key
cryptography, random numbers, hash functions, encrypted
and plain messages, a security protocol may assure an agent
that the invisible responder at the other side of the network
really is who he claims to be.

Not surprisingly, security protocols are very difficult to
design by hand, as errors may creep in by combining
protocols actions in ways not foreseen by the designer [9].
Thus, the formal verification of security protocols became
the subject of intense research in recent. For instance,
methods based on beliefs logics [9] [24], theorem proving
with induction [14][1], and state exploration methods [5]

have been successfully used to verify and debug security
protocols. However, it became apparent that the formaliza-
tion process itself was a serious bottleneck in the design
process. At first, formalizing a protocol was hardly doable by
somebody different from the proposer of the formal method
itself. Second, the ambiguity of the goals of the protocol
made it possible to find “attacks” with formal methods that
security analysts will never regard as such. Indeed, a security
analyst can easily define a ”security violation” in terms of
sent, received, and missing messages, while the language gap
between the analyst and the formal method makes it difficult
to formally and exactly capture what is needed. Moreover,
the verification in these methods has a little subtle: some
methods can use theorem prover as PVS for semi-automated
supporting, but mainly proving by hand, experience and
tricky. Therefore, it is very hard to prove for the large-scale
protocol.

In this paper, we introduce an approach to automatically
verify the security protocols using Real Time System (RTS).
By transforming the user specification into RTS model, we
use the model checker named PAT to verify the security
properties. We also introduce a new security language and
a transformation tool to help the user more convenient and
easier in specifying the security protocols precisely.

Outline The rest of the paper is organized as follows. Sec-
tion II discusses related works on others formal models and
verifications of security protocols. Section III and IV present
some background knowledge about security protocols, RTS
model and PAT model checker. Section V details the RTS
models of security protocols. Security goals and results of
experiments of verifying are presented in Section VI. SEVE
language and translation tool are introduced in Section VII
and Section VIII finally concludes the whole paper.

II. RELATED WORKS

In recent years, method for analyzing security protocols
using the process algebra CSP [4] has been developed
[18][7]. An advantage of using process algebra for modeling
security protocols is that the model is easily extended. This
technique has proved successful, and has been used to dis-
cover a number of attacks upon protocols [17][18][20][19].

However; the technique has required producing a CSP de-
scription of the protocol by hand; this has proved tedious and
error-prone. The verification is also mostly base on manual
proofs or theorem proving, not suitable for large system.

ProVerif [2] is an automatic cryptographic protocol veri-
fier, in the formal model (so called Dolev-Yao model). This
protocol verifier is based on a representation of the protocol
by Horn clauses. It can handle many different cryptographic
primitives and an unbounded number of sessions of the pro-
tocol and message space. However, it does not support timed
language specification and focus mainly on authentication
and secrecy only. The NRL protocol analyzer [15] , based on
narrowing in rewriting systems, can verify correspondences
defined in a rich language of logical formulae. It is sound
and complete, but does not always terminate.

Developed originally by Gavin Lowe, the Casper/FDR
tool set as described in [7] automatically produces the CSP
description from a more abstract description, thus greatly
simplifying the modeling and analysis process. The user
specifies the protocol using a more abstract notation, similar
to the notation appearing in the academic literature, and
Casper compiles this into CSP code, suitable for checking
using FDR. However, Casper just supply some forms of
specification for protocols, mostly focus on authentication
and secrecy, not for other security properties such as in-
tegrity, fairness, non-repudiation, anonymity ... Casper also
support for security protocols involved time, but this time is
just the simulation captured by variables, not by the semantic
of the language, so it is difficult to describe the essence and
semantic of the time in timed protocols.

Our approach is using Real Time System (RTS), an dialect
of Timed CSP, to model the security protocols. Therefore,
we can specify and verify precisely the time related security
model. Moreover, we also support many kind of security
properties such as secrecy, agents and data authentication,
data integrity, non repudiation and LTL assertion checking.
In addition, to ease the difficulty in specify the protocol in
RTS , which is very easy to get error and only suitable
for those master in this language, we introduce a new
security specify language and a transformation tool from
this language to RTSwhich is suitable input for PAT model
checker.

III. INTRODUCTION ABOUT SECURITY PROTOCOLS

Security protocols describe the messages sent between
honest participants during a session. A session is a single run
of the protocol. Most protocols allow multiple concurrent
sessions. Participant of the session are called agents and
are usually denoted A (for Alice) and B (for Bob). A
third participant I (for Intruder) represents the adversary
who tries to break the protocol (for example by getting
some secret information). In some cases. we also have a
trusted third party named server, who intervenes in case

of disputes or who provides non repudiable evidence that
certain transactions took place.

The goals of the particular security protocol that Alice
and Bob run are application dependent, but may be loosely
classified as follows:

e Secrecy is obtained when during the protocol, the
information which Alice or Bob want to keep secret
is not leaked.

o Authenticity means that whenever Alice follows the
protocol and gets a message allegedly from Bob, then
Bob actually sent the message (possibly to Alice,
depending on how strong we want authentication to
be).

« Confidentiality is obtained when Alice gets some secret
information from Bob that is only shared by her, Bob,
and possibly by some other entity trusted by her.

o Freshness (or timeliness) means that Alice is assured
that the message was sent recently, after she has done
a certain action or after a given time.

o Proof of identity is obtained when Alice is convinced
that Bob is really the entity she is communicating with.

o Proof of delivery means that Alice gets some message
that convinces her that Bob received (and read) some
crucial information from her.

« Non repudiation usually refers to a mixture of the above
in which the evidence in the hands of Alice must be
sufficient to convince somebody else (usually server).

To make things rather more concrete, let us consider
an example: the Needham-Schroeder protocol [13]. This
protocol involves two agents A and B.

Messagel : A — B : {A,Na}pk,
Message2 : B — A : {Nx,Ng}p,
Message3 : A — B : {Ng},

These lines describe a correct execution of one session of
the protocol. Each line of the protocol corresponds to the
emission of a message by an agent (A for the first line) and
a reception of this message by another agent (B for the first
line).

In line 1, the agent A is the initiator of the session. Agent
B is the responder. Agent A sends to B her identity and a
freshly generated nonce Ny, both encrypted using the public
key of B, pkp. Agent B receives the message, decrypts it
using his secret key to obtain the identity of the initiator
and the nonce Nj4.

In line 2, B sends back to A a message containing the
nonce N4 that B just received and a freshly generated nonce
Np. Both are encrypted using the public key of A, pks. The
initiator A receives the message and decrypts it, A verifies
that the first nonce corresponds to the nonce she sent to B
in line 1 and obtains nonce Np.

In line 3, A sends to B the nonce Np she just received
encrypted with the public key of B. B receives the message

and decrypts it. Then B checks that the received nonce
corresponds to Np.

The goal of this protocol is to provide authentication of A
and B. When the session ends, agent A is sure that she was
talking to B and agent B is sure that he was talking to A. To
ensure this property, when A decodes the second message,
she verifies that the person she is talking to correctly put Ny
in it. As N4 was encrypted by the public key of B in the
first message, only B could infer the value of Ny. When B
decodes the third message, he verifies that the nonce is Np.
As Np only circulated encrypted by the public key of A, A
is the only agent that could have deduced Ng. For these two
reasons, A thinks that she was talking to B and B thinks
that she was talking to A.

The protocol seems very secure. However, there are still
many attacks which we will consider in later sections.

IV. INTRODUCTION ABOUT RTS AND PAT MODEL
CHECKER

RTS (Real-time System) is presented in [23], as an di-
alect of Timed CSP with extensions like variables, event
operations, and so on. Interested readers are strongly rec-
ommended to refer to [23] for its operational semantics. An
RTS process is a timed process defined as the following BNF,
where P and Q range over processes, ¢ € X is an observable
event, b is a Boolean expression on global variables or
process parameters and d is an integer constant.

P = Stop | Skip — primitives
| action — P — data-operation prefixing
| if b then P else Q — if-then-else
| POQ — general choice
| PO — parallel composition
| P; Q — sequential composition
| P\X — hiding
| P=Q — process referencing
| Wait [do,dl] — delay
| P timeout[d] Q — timeout

| P interruptld] QO
| P Wilhin[do,dl]
| P waituntil[d]

| P deadline[d|

— timed interrupt

— react within some time
— wait until

— deadline

Process Stop does nothing but idling. Process Skip termi-
nates (possibly after some idling). Process e — P engages
in event e first and then behaves as P. Notice that e may
be an abstract event or a data operation, e.g. written in the
form of e{x = 5; y = 3; } or an external C# program. The
data operation may update data variables (and is assumed
to be executed atomically). A guarded process is written
as if b then P else Q. If b is true, then it behaves as P,
else it behaves as Q. Parallel composition of two processes
is written as P || Q, where P and Q may communicate
via multi-party event synchronization or shared variables.
Process P; Q behaves as P until P terminates and then

behaves as Q immediately. Given a channel ch with pre-
defined buffer size, process chlexp — P evaluates the
expression exp (with the current valuation of the variables)
and puts the value into the respective buffer and then behaves
as P. Process ch?x — P gets the first element in the
respective buffer, assigns it to variable x and then behaves
as P.

Timed process constructs are used to capture common
real-time system behavior patterns. Process Wait[d] idles for
exactly d time units. In process P timeout[d] Q, the first
observable event of P shall occur before d time units elapse
(since the process starts). Otherwise, QO takes over control
after exactly d time units elapse. Process P interrupt[d] O
behaves exactly as P (which may engage in multiple ob-
servable events) until d time units elapse, and then Q takes
over control. Process P within[d]behaves as P but will not
terminate before d time unit elapse. Process P deadline|d]
constrains P to terminate before d time units.

Our home-built model checker PAT' (Process Analysis
Toolkit) is designed to apply state-of-the-art model checking
techniques for system analysis. PAT [22][21] supports a
wide range of modeling languages including CSPY (short for
communicating sequential programs), which shares similar
design principle with integrated specification languages like
TCOZ [10][11]. The verification features of PAT are abun-
dant in that on-the-fly refinement checking algorithm is used
to implement Linear Temporal Logic (LTL) based verifica-
tion, partial order reduction is used to improve verification
efficiency, and LTL based verification supports both event
and state checking. Furthermore, PAT has been enhanced to
accept RTS models, for verifying properties such as deadlock
freeness, divergence freeness, timed refinement, temporal
behaviors, etc [23].

V. MODELING SECURITY PROTOCOLS IN PAT

The typical security protocol involves some agents and
perhaps a server that performs some service such as key
generation, translation and certification. For illustration, we
reconsider the Needham-Schroeder protocol as described in
section L.

Modeling the sender and receiver

A trustworthy agent can take one of two roles, namely
initiator (the sender of message 1, designated A above), or
responder (the sender of message 2, designated B). It can be
supposed that all agents can take either of these roles, and
it may be the case that we allow an agent to be able to run
several different instances of the protocol at once. However,
for simple illustration, we only build agents for single run
of the initiator and responder roles.

Each of the three messages in Needham-Schroeder
protocol above are sent by one process and received

Thttp://www.patroot.com

by another. The view that each process has the running
protocol is the sequences of sent and received messages are
following:

A’s view (as initiator):

o Message 1: A sends to B: {A, Ny},

o Message 2: A gets from B: {Ny, N}y,
o Message 3: A sends to B: {Ng}u,

B’s view (as responder):

o Message 1: B gets from A: {A, Ny} p,
o Message 2: B sends to A: {Ny, N},
o Message 3: B gets from A: {Ng}p,

First of all, we consider the semantic of initiator A.
At the beginning, A sends the message {A, N4} encrypted
with public key B. After that, A gets a message from
the responder which is encrypted by public key A. After
decrypting this message using A’s private key, if A get the
same value N, which sent to responder before, A continues
sending the message {Np},, to responder to complete the
protocol. If A cannot get the value N4 from responder’s
message, he only needs to stop the running.

We will represent the initiator who communicates with
the responder with identity “receiver” by the RTS process
Initiator(receiver). We use a channel, named environment, to
capture the environment in which the messages are sent and
receive. The process can be defined by:

Initiator(receiver) =

that pass around. The only limitations to what the intruder
can do are that his source of knowledge (aside from things
he knows initially or invents for himself) is what he observes
the communication, and that he is constrained by the rules
of encryption. In other words, he cannot read the mind of
another agent to know some secret, and can only decrypt an
encrypted message if he has the appropriate key.

We want to model the intruder as a process that can
perform any attack that we would expect a real-world
intruder to be able to perform. Thus the intruder should be
able to:

« Overhead and intercept any messages being passed in
the system, and he can

o Decrypt messages that are encrypted with his public
key so as to learn new knowledge, or

o Introduce new messages into the systems, using his
knowledge he knows, or

« Replay any message he has seen (possibly changing
plain-text parts), even if he does not understand the
contents of the encrypted part.

We assume that the intruder is a user of the computer
network, so can take part in normal runs of the protocol,
and other agents may initiate runs of the protocol with him.
We will define the most general intruder who can act as
above. We consider an intruder with identity I, with public
key K; who initially knows a nonce N;. We also keep track
the knowledge of intruder during the transaction by using
some variable: kNa (kNb) is knowledge of intruder with N4

messagel_From_A_To_receiver — (Np). The RTS process represents the intruder in Needham-

environment'key.receiver.Na.A — Schroeder protocol is:

environment?key.A.Na.nx —

message3_From_A_To_receiver —

environment!key.receiver.nx —

Skip;
The responder can be defined similarly:

Responder(sender) = environment?key.B.nx.sender —

message2_From_B_To_sender —

message2.B.sender —

environment!key.sender.nx.Nb —

environment?key.B.Nb —
Resp_commit.sender.B —
Skip;

The behaviors of intruder

If the sender and receiver are in a world where their
message are transmitted reliably and where there is no other
entity generating messages to put into the communication
medium, then it seems most unlikely that anything could
go wrong. However, this world, of course, is never true.
The way in which this risky world of communication is
modeled is by adding an intruder process into the network,
who is given special powers to tamper with the messages

Intruder() = environment?key.x.Na.A —

{if (x==1)

decript the message and learn knowledge

{kNa = true; }
else if (x==B)
/ /forward the message
environment!key.B.Na.A
}
— Intruder()
O
... [/similar for message 2 and 3
O
[kNa == true]/ /fakemessagel
environmentlkey.B.Na.A — Intruder()
O
... //similar for message 2 and 3
O
// Act as an agent
messagel _From_I_To_B —
environmentkey.B.Ni.I — Intruder();
... | [other behaviors

Network together

We now have the idea of how reliable the sender, receiver
and intruder operate. In this part, we will see how these
are put together into a network that can be used to test
the resilience of the protocol. The approach taken is to
provide a CSP description of a generalization of the Dolev-
Yao model [3] as in Figure 1. Here it is assumed that the
communications medium is entirely under the control of
the enemy, which can block, readdress, duplicate, and fake
messages.

Agent A Agent B

Agent D

Figure 1. Dolev-Yao model
The result system is given by: System =||agensy
[Initiator(Agentx) || Responder(Agentx)] || Intruder()

VI. EXPRESSING PROTOCOL GOALS

Cryptographic protocols are used to ensure some security
properties. Hence validation of cryptographic protocols is a
deeply investigated domain. The objective of this research
field is to prove formally that a given protocol verifies a
given property. Let us first present which properties can be
of interest for a protocol.

A. Secrecy

The secrecy property concerns a message used by the
protocol. This message is typically a nonce or a secret key
that should not become public at the end of the protocol.

As in section III, we can check the secrecy of some secret
information by checking the leak of the information captured
by some variable at the end of the run. For example, in
the above Needham-Schroeder model, we want to keep the
secrecy of the nonce of A and B which is captured by the
variable kNa and kNb (initially are false, meaning that the
intruder doesn’t know NA and NB) and define the behavior
of the intruder as in above. We can check this secrecy by
adding the assertion in PAT:

#define

fassert

secrecy (kNa == true || kNb == true);
Protocol |= 0O (secrecy);

The symbol O means that “always”. The result of the
assertion is not valid. That is, there exists an execution path
where this secrecy property is not satisfied. PAT found a
counter example:

messagel_From_A_To_I — environmentlkey.l.Na.A
— environment?’key.A.Na.Ni

The counter example shows that: the Intruder can act as
an agent and start the session with Alice and get the Ny
during the run.

B. Authentication

Entity authentication is concerned with verification of
an entity’s claimed identity. An authentication protocol
provides an agent B with a mechanism to achieve this: an
exchange of messages that establishes that the other party
A has also been involved in the protocol run. This provides
authentication of A to B: an assurance is provided to B that
some communication has occurred with A.

Authentication of initiator by responder
We introduce signal Resp_commit_A_B into the description
of B’s run of the protocol to mark the point at which authen-
tication of initiator A to responder B is taken to have been
achieved. The value “true” of Resp_commit_ A B in B’s
protocol means simply that: "Responder B has completed
a protocol run apparently with Initiator A”.

The signal Init_running_A_B in A’s run of the proto-
col are introduced to mark the point that should have
been reached by the time the responder B performs the
Resp_commit_A_B. The value true” of Init_running_ A_B
meaning in A’s protocol run means simply that: “Initiator A
is following a protocol run apparently with responder B”.

If an Init_runningA_B signal always have occurred by
the time the Resp_commit_A_B signal is performed, then
authentication is achieved. This is authentication of initiator
by responder and is illustrated in Figure 2.

Adding these events into the RTS description of
Needham-Schroeder protocol, we can check the authenti-
cation of initiator by responder by following assertion:

#assert Protocol() |=
O(Resp_commit_A_B — Init_running_A_B);

The result of the assertion is that the formula is not valid.
This means that there exists an execution path where this
LTL formula is not satisfied. As expected, PAT discovers
that the protocol does not satisfy the above property. It found
a counter example which we can explain as:

i Init_running_A_B

{ANA}pkB

{NA, NB}pkA

{NB}pkB

Resp_commit_A B ﬁ

Figure 2. Authentication of initiator by responder

Message al : A — I {A, N4} py,
Message b1 : I(A) — B {A, Ny}t piy
Message b2 : B — I(A) {Na,Ng}pr,
Message a2 : [— A {Na,Ng}pi,
Message a3 : A — 1 {Ns}px,
Message b3 : I(A) — B {N5}Prs

Note that in this attack, intruder I is actually a recognized
user, that is he is known to the other users and has a
certificated public key. Alice starts a protocol run with the
intruder I, thinking that he is a trust user. However, the
intruder does not respond to Alice as the expected way.
He used Alice’s nonce to initiate another run with Bob
but inserting Alice’s name instead of his own. The notation
I(A) denotes I generating the message, but pretending that
it comes from A. Bob responds with his nonce Np but he
will encrypt it with Alice’s public key as he thinks that he
is contacting with Alice. This is exactly Alice is expecting
from Intruder and she proceeds the next step: she decrypts
it and send a message back to I containing Np encrypted
by I's public key. I now can decrypt this message and get
Np. Intruder I then construct the final message of the run he
initiated with Bob: encrypt Ny under Bob’s public key.

At the end of this, we have two interleaved runs of the
protocol with Intruder sitting in the middle. Alice thinks that
she and Intruder share knowledge of N4 and Np. Bob thinks
that he is running the protocol with Alice. Thus, the Intruder
has created the mismatch in Alice and Bob’s perception.
The above section gives an idea about the variety and
subtlety of the attacks to which protocols may be vulnerable.

Authentication of responder by initiator
This property can be check similarly as authentication of

initiator by responder. The only difference is that we add
the signal Init_commit_A_B at the beginning description of
A’s and the signal Resp_running_A_B at the end of B’s run
of the protocol. For shortly, we do not go into the details.

C. Non-repudiation

Non-repudiation ensures that the author of a message
cannot later claim not to be the author. There is a proof
that the sender sent the message. This is an indispensable
property for the electronic commerce protocols, the seller
needing to prove to the bank that the client has really paid.
Non-repudiation can be checked easily using LTL assertion.
An example about non-repudiation can be found at the Fair
Non-repudiation protocol test case in [25].

D. Anonymity

Anonymity ensures that the identity of an agent is pro-
tected with respect to the message that he sent. For example,
in a voting protocol the vote must not be linked back to the
voter who cast it. In this case, the messages themselves do
not have to be secret, only their association with a particular
agent. This property can be consider as the inversion of non-
repudiation.

E. Integrity

Integrity is usually meant that data cannot be corrupted,
or at least that any such corruption will always be detected.
In this sense, integrity can be considered as the corollary of
the authentication property. This follows from the face that
in the authentication, we required that the contents of the
output message match that of the input message. If it were
possible for a corrupted message to be accepted then this
would lead to a violation of the authentication property and
we would think the protocol to be flawed. This property can
be checked in the same manner of secrecy property. We can
refer to the Protocol for cetified email test case in [25] for
further details.

VII. SEVE GRAMMAR AND PAT TRANSLATION

The RTS method has proved remarkably successful, and
has been applied to find attacks upon a number of protocols
[6] [8]. However, the task of producing the RTS description
of the system is very time-consuming, and only possible for
people well practiced in RTS-and even the experts will often
make mistakes that prove hard to spot.

We create a language named SEVE and make a translation
SEVEtrans to automate this process. The user specifies
the protocol using a more abstract notation, similar to the
notation appearing in the academic literature, and SEVEtrans
compiles this into RTS code, suitable for checking using
PAT. The most interesting thing in the translation is that
the user do not need to specify the behavior of the intruder,
which is very complicated. By observing the general intruder
behavior as described in section V, the translator will

automatically generate all the possible attack of the intruder.
This paper does not aim to give a tutorial in the use of SEVE,
merely to give the reader an overview of what it does. Those
interested in learning more are referred to the manual [25].

In this section we illustrate the input format by describing
an input file suitable for analyzing the three message version
of the Needham-Schroeder Public Key Protocol as described
in section I.

The protocol description consists of five parts: a message
list, defining the sequence of messages that constitutes a
normal protocol run; a declaration of the types of the
variables appearing in the message list; a declaration of
the initial knowledge of the agents ; a declaration of the
number and name of actual agents and intruder taking part
in the protocol; and a specification of what the protocol is
supposed to achieve.

For the Needham-Schroeder Public Key Protocol, the
exchange of messages may be represented as follows:

#Protocol description
a — b: {a,na}lkb;

b — a: {na,nb}ka;

a — b: {nb}kb;

The protocol description part is as close as to the actual
description of the protocol, so we do not need to explain
more. The declaration of types and initial knowledge parts
are also self-explained:

#Variables
Agents: a, b;
Nonces: na, nb;

#Initial
a knows na, ka;
b knows nb, kb;

In the real system, we can declare the number and name
of the actual agents, servers and intruders playing in this
protocol:

#System
Initiator: Alice;
Responder: Bob;

#Intruder
Intruder: Jeeve;
Intruder knowledge: {ni};

The last thing we concern is the verification part, which
we support many kinds of verification properties: secrecy,
agent authentication, data authentication, integrity, non
repudiation and so on.

#Verification

Data secrecy: {na of Alice}, {nb of Bob};

Agent authentication:

Bob is authenticated with Alice using data nb;
Alice is authenticated with Bob using data na;

Now we can use the SEVEtrans to translate this de-
scription into RTS model, and use PAT tool to check the
protocol. At this point, we can see how simply we define a
security protocol. In the SEVE language, we support many
kind of cryptographic mechanisms such as symmetric and
asymmetric keys, public and private keys, signature and hash
keys. We also allow infinite number of agents attending
protocol. Moreover, besides the common security properties
as described above, we support manual user assertion such
as checking one message will eventually or always come, a
message will come before or after another message come,
and so on. If using the key word “timestamp” and other
RTS language feature such as ”Wait”, “Timeout”, “Interrupt”
in the declaration, the user can check the timed security
protocols. The full description of SEVE language and other
examples are available at [25].

VIII. CONCLUSION

In this paper we have given an overview of the RTS
and PAT tool, for producing RTS descriptions of security
protocols. We also give an overview of the SEVE language
and SEVEtrans tool. The translation has revolutionized our
approach to analyzing protocols. Previously, when we pro-
duced the RTS by hand, it would take about a day to code
up a protocol; now it takes only a few minutes. In particular,
making small changes to the protocol or the system to be
checked typically requires only a couple of lines of the input
file to be changed; when editing the RTS code by hand, the
changes necessary were spread throughout the file, and it
was hard to know whether you had remembered them all.

Also, it was easy to make mistakes when producing the
RTS by hand, and these mistakes were hard to spot. When
using SEVEtrans, errors are less common, most get caught
by the compiler, and those errors that do get through are
easier to spot because the file is so much shorter. The ap-
proach described in this paper has been applied to a number
of other protocols, including the the Yahalom Protocol [9],
A Fair Non-Repudiation Protocol [26], Computer-assisted
verification of a protocol for certified email [12]. Some of
these case studies are available via the [25]. The techniques
seem to scale well to medium sized protocols, albeit with
a reduction in the size of the system that can be studied;
we have not yet looked at any large commercial protocols,
although it would certainly be interesting to do so. In the
future, we will enhance the tool to support more features
of security properties and make the counter example more
visualization to the user.

(1]

(2]

(3]

(4]

(53]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

(16]

REFERENCES

G. Bella and L. C. Paulson. Kerberos Version IV: Inductive
Analysis of the Secrecy Goals. In European Symposium on
Research in Computer Security, volume 1485, pages 361—
375-107, 1999.

B. Blanchet. Automatic verification of correspondences for
security protocols. volume 19, pages 363-434. Journal of
Computer Security, 2009.

D. D and A. Yao. On the Security of Public Key Protocols. In
IEEE Transactions on Information Theory, volume 29, pages
198-208, 1983.

C. Hoare. Communicating Sequential Processes. International
Series in Computer Science. Prentice-Hall, 1985.

U. S. John C. Mitchell, Mark Mitchell. Automated analysis of
cryptographic protocols using Murphi. In IEEE Symposium
on Security and Privacy, pages 141-151, 1997.

G. Lowe. Breaking and fixing the Needham-Schroeder public-
key protocol using FDR. In Proceedings of TACAS, pages
147-166, 1996.

G. Lowe. Casper : A Compiler for the Analysis of Security
Protocols. In Journal of Computer Security, volume 6, pages
53-84, 1998.

J. Lowe and A. W. Roscoe. Using CSP to detect errors
in the TMN protocol. In Technical Report, Department of
Mathematics and Computer Science, University of Leicester,
1996.

B. M., A. M., and N. R. A logic for authentication. volume 1
of ACM Trans. Comput.Syst., pages 18-36, 1999.

B. Mahony and J. Dong. Blending Object-Z and Timed CSP:
An introduction to TCOZ. In In Proceedings of the 20th
International Conference on Software Engineering (ICSE’98),
pages 95-104, 1998.

B. Mahony and J. Dong. Timed Communicating Object Z.
In IEEE Transactions on Software Engineering, volume 26,
pages 150-177, 2000.

B. B. Martn Abadi. Computer-assisted verification of a proto-
col for certified email. In Static Analysis, 10th International
Symposium, pages 316-335, 2005.

R. M. Needham and M. D. Schroeder. Using Encryption for
Authentication in Large Networks of Computers. Communi-
cations of the ACM, 21:993-999, 1978.

L. C. Paulson. The Inductive Approach to Verifying Crypto-
graphic Protocols. In Journal of Computer Security, volume 6,
pages 85-128, 1998.

C. S. Escobar and J.Meseguer. A rewriting-based inference
system for the NRL protocol analyzer and its meta-logical
properties. Theoretical Computer Science, 367:162-202,
2006.

B. Schneider. Applied Cryptography : Protocols, Algorithms,
and Source Code in C. 1994.

[17]

(18]

[19]

(20]

[21]

[22]

(23]

(24]

[25]

(26]

S. Schneider. Security Properties and CSP. IEEE Symposium
on Security and Privacy, pages 174-187, 1996.

S. Schneider. Verifying Authentication Protocols in CSP.
In IEEE Transactions on Software Engineering, volume 24,
pages 741-758, 1998.

S. Schneider and R. Delicata. Verifying Security Protocols:
An Application of CSP. In 25 Years Communicating Sequen-
tial Processes, pages 246-263, 2004.

H. R. Shahriari and Jalili. Using CSP to Model and Analyze
Transmission. In Networking and Communication Confer-
ence, pages 42-47, 2004.

J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible
Verification under Fairness. In 27th International Conference
on Computer Aided Verification (CAV 2009), 2009.

J. Sun, Y. Liu, J. S. Dong, and H. Wang. Specifying and
Verifying Event-based Fairness Enhanced Systems. In 10th
International Conference on Formal Engineering Methods
(ICFEM 2008), 2008.

J. Sun, Y. Liu, J. S. Dong, and X. Zhang. Verifying Stateful
Timed CSP Using Implicit Clocks and Zone Abstraction. In
Proceedings of the 11th IEEEInternational Conference on
Formal Engineering Methods (ICFEM 2009), volume 5885
of Lecture Notes in Computer Science, pages 581-600, 2009.

P. Syverson and P. V. Oorschot. On unifying some crypto-
graphic protocol logics. IEEE Symposium on Security and
Privacy, 23:14-28, 1994.

L. A. Tuan. The RTS model of security protocols.
http://www.comp.nus.edu.sg/ pat/security-rts.zip, 2009.

J. Zhou and D. Gollmann. A Fair Non-Repudiation Protocol.
In Proc. of the 15th. IEEE Symposium on Security and
Privacy, pages 55-61, 1996.

