
Analyzing Multi-agent Systems with Probabilistic Model Checking Approach

Songzheng Song∗, Jianye Hao†, Yang Liu‡, Jun Sun§, Ho-Fung Leung†, and Jin Song Dong¶
∗NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore

songsongzheng@nus.edu.sg
†Department of Computer Science and Engineering, The Chinese University of Hong Kong

{jyhao, lhf}@cse.cuhk.edu.hk
‡Temasek Lab, National University of Singapore, tslliuya@nus.edu.sg

§ISTD, Singapore University of Technology and Design, sunjun@sutd.edu.sg
¶School of Computing, National University of Singapore, dongjs.comp@nus.edu.sg

Abstract—Multi-agent systems, which are composed of au-
tonomous agents, have been successfully employed as a model-
ing paradigm in many scenarios. However, it is challenging to
guarantee the correctness of their behaviors due to the complex
nature of the autonomous agents, especially when they have
stochastic characteristics. In this work, we propose to apply
probabilistic model checking to analyze multi-agent systems. A
modeling language called PMA is defined to specify such kind
of systems, and LTL property and logic of knowledge combined
with probabilistic requirements are supported to analyze sys-
tem behaviors. Initial evaluation indicates the effectiveness of
our current progress; meanwhile some challenges and possible
solutions are discussed as our ongoing work.

Keywords-Multi-agent systems; Probabilistic model checking

I. INTRODUCTION

Multi-agent systems (MAS) have been successfully em-
ployed as a modeling paradigm in a number of scenarios
because of their abilities in solving problems that are difficult
or impossible for an individual agent to tackle. However,
the existence of multiple autonomous agents in MAS makes
it challenging to precisely analyze the system behaviors.
Moreover, agents or the environment may have random
or unreliable behaviors because of unpredictable physical
conditions, which makes system analysis more difficult due
to the corresponding probabilistic characteristics in MAS.

There exist mainly two approaches to quantitatively ana-
lyze the dynamics of an MAS. One is based on extensive
simulation [11] while the other is based on construction
of mathematical models [12]. However, the former has the
drawback of inaccurate results, and the latter requires much
intelligence and in some cases it is impossible to build the
accurate models because of the system complexity.

In this work, we propose a novel approach to analyze
MAS with probabilistic model checking. Compared with
the above methods, probabilistic model checking has its
unique strengths such as accurate verification results and au-
tomatic execution. We have defined an expressive modeling
language called PMA (Probabilistic Multi-Agent) to specify
MAS. In the current stage we assume in each round every
agent only communicates with the environment instead of

communicating with each other directly. Based on Markov
decision processes (MDP), our approach supports a variety
of properties such as reachability checking, LTL checking,
reward checking and knowledge reasoning. In addition, we
have implemented PMA as a part of our PAT model checking
framework [8], and effectiveness of our current progress is
demonstrated using one representative example.

Related work: PRISM [3] is a widely used probabilistic
model checker, and some work [1] related to MAS has
been done based on it. However, PRISM is not specifically
designed for MAS so that some desired properties are
not supported. MCMAS [5] is a symbolic model checker
focusing on MAS. It supports two kinds of temporal logic
and knowledge reasoning [7], and has been used in a variety
of scenarios. However, it does not take probability into
consideration, which limits its application in unreliable envi-
ronments. Another well-known model checker is MCK [2],
which is designed for analyzing the logic of knowledge in
MAS. In their latest extension [4], subjective probability
relative to agent knowledge is studied based on Discrete-
time Markov Chain (DTMC). Compared with MCK, PMA
focuses on a more general semantic model MDP, and sup-
ports more properties combined with probability, such as
LTL checking and reward checking.

II. BACKGROUND

In this section, we recall some basic concepts and defini-
tions that are used throughout the rest of the paper.

A. MDP

MDP is popular in modeling stochastic systems which
exhibit concurrency because of its ability to handle non-
deterministic and probabilistic choices. Given a countable
set of states S, a distribution is defined as a function µ :
S→ [0, 1] such that Σs∈S µ(s) = 1. Distr(S) is the set of all
possible distributions over S. The formal definition of MDP
with action reward extension is as follows.

Definition 1: An MDP with action reward is a tuple
D = (S, init,Act,Tr, rew) where S is a set of states; init ∈ S
is the initial state; Act denotes the set of possible actions;



Tr : S × Act × Distr(S) is a transition relation, which
satisfies that from one state, each enabled action has only
one corresponding distribution; rew is a function that assigns
to each action α ∈ Act a reward rew(α) ∈ N where N is the
set of natural numbers.

A state in D may have multiple actions enabled, which
means there could be multiple distributions from one
state. Therefore a schedular is used to resolve these non-
deterministic choices. A DTMC can be defined as Dδ given
an MDP D and a scheduler δ; every state in Dδ has
just one action and distribution enabled. A rooted run in
Dδ is an alternating sequence of states and actions π =
〈s0, α0, s1, α1...〉 such that s0 is the initial state. Suppose
(si, αi, µi) ∈ Tr, then the probability of exhibiting π in Dδ

is µ0(s1) ∗ µ1(s2) ∗ · · ·; and the cumulative rewards of this
run is defined by Rew(π) = rew(α0) + rew(α1) + · · ·.

B. Knowledge

Reasoning about knowledge [7] is fundamental in MAS.
Although analyzing the overall behaviors of the system is
very important, in some cases such as security protocol [6] it
is natural and meaningful to consider each agent’s epistemic
property, or its knowledge. An agent knows a fact ϕ if the
agent could deduce ϕ from the information available to it.

Typically, an MAS has multiple agents, such as players
in a game or programs in a software, and an environment.
Assume an MAS has n agents, then its global state s has the
format (se, s1, · · · , sn) in which se represents the state of the
environment and si represents the agent i’s local state. If an
agent i has the same local state in global states s and s′, then
we call s and s′ indistinguishable in the view of agent i. The
definition of knowledge used in this paper is as follows.

Definition 2: Agent i knows a fact ϕ in global state s,
which is represented by s |= Kiϕ, iff for each global state
s′, s′ |= ϕ as long as s and s′ are indistinguishable in the
view of i.

III. OUR APPROACH

In this section, we describe our approach of modeling and
verifying probabilistic multi-agent systems in details.

A. Modeling Language

Modeling languages play a fundamental role in the system
analysis and design. An expressive and compact language
guarantees the efficiency and accuracy of modeling. PMA
models have two levels: agent level, which defines the
behavior of each agent and the dynamics of the environment,
and system level, which regulates the composition relation
between the components in agent level.

1) Agent Level: Each agent in PMA is modeled as
a 3-tuple (Var, σi,P) based on our previous work about
probabilistic model checking [10], where Var is a finite set
of finite-domain local variables of this agent; σi is the initial

1. #define Head 1;
2. #define Tail -1;
3. Environment{
4. var finish = 0;
5. behavior = if(A.coin==Head){Finished{finish=true}
6. -> behavior} else {behavior};
7. }
8. Agent A{
9. var coin = 0;
9. behavior = [Environment.finish!=true]TossCoin ->
10. pcase{
11. [0.5] : {coin=Head} -> behavior
12. [0.5] : {coin=Tail} -> behavior
13. }[][Environment.finish==true]Skip;
14. }
15.System = A and Environment;

Figure 1. Toss a coin

evaluation of Var and P is a process used to define the behav-
iors of this agent, which supports choices, interleaving and
parallel. We skip the language syntax because of the space
limitation; interested readers could refer to [10].

2) System Level: On system level we have System =
A0 and A1 and · · · and An and Environment, which indicates
the participating agents and the environment. At each round,
each agent A1 to An could pick one action independently
according to their own protocols. When they finish their
actions, Environment could update its information according
to the joint action of all agents.

A simple example is shown in Figure 1 in order to
illustrate how to model with PMA. Line 1 and 2 define 2
constants Head and Tail. Environment is defined in line 3-
7, which has a variable finish. Line 8-13 are the definition
of an agent A, and coin is declared as a local variable in
A, which affects the behaviors of Environment. Meanwhile,
A’s behaviors are also affected by finish. At each round, as
long as finish is not true, A could execute TossCoin to toss
a coin, otherwise it will terminate. Intuitively the outcome
of tossing should follow the uniform distribution, which is
captured by the keyword for probabilistic choices: pcase.
After A’s execution, Environment could choose its action
according to A’s action choice.

B. Operational Semantics

The semantic model of PMA is an MDP because of its
mixture of nondeterministic and probabilistic choices. Each
global state in MDP is of the form (se, s1, · · · , sn) which is
introduced in Section II-B. Because in our current setting we
assume each agent is independent from others, at each round,
every agent updates its local state according to its behavior’s
operational semantics, which is also defined in [10]. After
every agent updates its local state, Environment will execute
an action accordingly and transfer to another global state.
Suppose at the agent level we have si

ai→ µi ∧µi(s′i) > 0,
then for the global state we have (se, s1, · · · , sn)

a→ µ, where
a = (a1, · · · , an, ae) is the joint action of each agent and the



environment, meanwhile µ((s′e, s
′
1, · · · , s′n)) = µ1(s′1)×· · ·×

µn(s′n)× µe(s′e).

C. Verification

Our approach supports multiple kinds of properties, each
of which focuses on a specific aspect of MAS. On one hand,
we use reachability checking, LTL checking and reward
checking to analyze the overall behavior of the system.
On the other hand logic of knowledge is supported to
check agents’ epistemic properties. For property specifica-
tion, Pr(system |= ϕ) is used to specify the probability
that a property ϕ is satisfied by the system, where ϕ
could be propositions, LTL formulas and epistemic formulas;
another property is R(system |= γ) calculating the average
cumulative rewards of reaching some target states. Notice
that typically an MDP has many, or even infinite, sched-
ulers and corresponding DTMCs, so here we calculate the
maximum/minimum probability/rewards.

Due to the space limitation, we focus on the knowledge
reasoning algorithm used in PMA. Currently we have fin-
ished a simple combination of linear temporal operator and
Kiϕ where i is the index of an agent and ϕ is a proposition.
For example Pr(system |= 3Kiϕ) represents the probability
of reaching a state where agent i knows ϕ from the initial
state of the system. In order to apply the probabilistic
model checking, given a PMA system and a property, we
should build the corresponding MDP and at the same time
find out the target states. This progress is depicted in
Algorithm 1. Starting from the initial state of PMA model,
we will generate the whole MDP step by step according
to our operational semantics. Note that we will group the
states having the same local state of agent i together. Ts
and NTs are defined as two sets of these group states. For
∀T ∈ Ts ⇒ (∀ t, r ∈ T, ti = ri) ∧ (∀ s ∈ T, s |= ϕ). For
∀NT ∈ NTs ⇒ (∀ t, r ∈ NT, ti = ri) ∧ (∃ s ∈ NT, s 2 ϕ).
Another point we want to emphasize is act enabled in s.
Here act is a joint action instead of an individual action in
M.

After building the MDP and finding out the target states,
this knowledge reasoning problem is converted to probabilis-
tic reachability checking, which could be solved as a linear
program.

IV. PRELIMINARY EVALUATION

We have implemented PMA into our model checking
framework PAT. In this section, we show the effectiveness
of our approach using the dispersion game [11] from game
theory domain. Dispersion game is the generalization of
anti-coordination game to an arbitrary number of players
and actions, which has received wide attention in many
applications. We focus on one novel strategy designed for
dispersion games: extended simple strategy (ESS) in this
evaluation. In each round, every player in the system will

Algorithm 1: BuildMDP for Pr(system |= 3Kiϕ)

Input: PMA M and property Pr(M |= 3Kiϕ);
Output: MDP D with target states;
sinit := initial state of M;
let Ts, NTs, Act, Tr := φ;
let visited, working := {sinit};
while working 6= φ do

let s ∈ working;
working := working \ {s};
forall the action act enabled in s do

let µ := s→ act;
add act to Act and (s, act, µ) to Tr;
forall the µ(r) > 0 and r 6∈ visited do

add r to visited and working;
if ri = nti for nt ∈ NT and NT ∈ NTs then

add r to NT;
else if ri = ti for t ∈ T and T ∈ Ts then

if r |= ϕ then
add r to T;

else
Ts = Ts \ {T};
add r to T;
add T to NTs;

else if r |= ϕ then
add {r} to Ts;

else
add {r} to NTs;

States in elements of Ts are labeled as target states;
Result: D := (visited, sinit,Act,Tr);
//For simplicity, rew is ignored.

pick one action according to specific probabilistic distri-
bution. In dispersion game, the desired outcome is called
Maximal Dispersion Outcome (MDO), and we are interested
in analyzing properties related to MDO under ESS strategy.
Techniques in [9] are used to reduce the state space of this
model and in our experiments we assume initially all agents
choose the same action. Note that the semantic model of
this example is a DTMC, but PMA could support MDP.

A. Convergence to MDO
We first consider whether the agents adopting ESS are

guaranteed to converge to an MDO. We express this property
using Pr(System |= 32MDO), which means finally the
system will stay in an MDO forever. The results are shown
in Table I, where n is the number of players and k means
the number of actions. We could see that in some cases, the
outcome will converge to MDO while in others it cannot.

B. Departure from MDO
Because in some cases ESS cannot converge to an MDO,

it is interesting to check the probability that the system



Table I
PROBABILITY OF CONVERGENCE TO AN MDO OF ESS

System n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
k=2 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
k=3 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0
k=4 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0

Table II
PROBABILITY OF DEPARTURE AFTER REACHING AN MDO

System n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
k=2 0.063 0.0 0.070 0.0 0.075 0.0 0.069 0.0
k=3 0.0 0.072 0.12 0.0 0.091 0.14 0.0 0.092
k=4 0.0 0.0 0.12 0.15 0.16 0.0 0.14 0.16

deviates from MDO after reaching it. We use a reachability
checking to analyze this property, which is expressed as
Pr(system |= 3Depart). Here Depart is a proposition
which represents departure from MDO. The verification re-
sults are displayed in Table II, which are consistent with the
results in Table I since convergence probability 1 indicates
the probability of departing from MDO is 0.

C. Average Rounds to MDO

Another interesting property is that how many rounds does
the ESS system take to reach an MDO, which could be ver-
ified using reward checking R(system |= 3Depart). Intu-
itively, if we set the action in the Environment of ESS having
reward 1, then after each round, the cumulative rewards is
increased by 1. Using the iterative method we mentioned in
Section III-C, we could get the average rounds, or rewards,
from initial state to MDO. The results are shown in Table III.

V. RESEARCH CHALLENGES

The development of PMA reveals two research challenges.
First, our approach requires that each agent should com-
municate with the Environment instead of communicating
with each other directly. This requirement could cover a lot
of cases, but there also exist many cases in which agents
affect each other directly. These scenarios will increase
the complexity of system analysis since different orders of
the actions between agents will generate different global
states. We are now trying to define more suitable operational
semantics for tackling the actions interleaving in MAS.

Second, till now we just support Kiϕ, where ϕ is propo-
sition. There are other kinds of knowledge such as EGϕ
(everyone in group G knows ϕ) and CGϕ (ϕ is common
knowledge in G). Combining these knowledge operators
with temporal logic and probability is quite challenging.
Besides, subjective probability in knowledge reasoning such
as Ki(Pr(ϕ) > b), where b is a probability threshold, also
deserves our exploration.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel approach to analyze
MAS. Compared to the existing approaches, ours supports a

Table III
AVERAGE ROUNDS TO MDO

System n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
k=2 1.33 2.44 1.55 2.69 1.70 2.87 1.81 3.00
k=3 2.63 1.48 2.11 3.20 1.81 2.45 3.52 2.04
k=4 2.15 3.08 1.58 2.15 2.90 3.73 2.04 2.59

more expressive language, with which we could efficiently
build accurate and compact models which have stochastic
characteristics; quantitative calculations for different kinds
of properties guarantee that many aspects of the system
could be accurately analyzed. Preliminary evaluation demon-
strates the ability of PMA in modeling and verification.

In the future, we will focus on two issues that we men-
tioned in Section V: (1) investigating multi-agent systems
whose agents have dependency between each other, and
(2) further exploring the combination of probability and
logic of knowledge, which are useful in different multi-agent
interaction scenarios.

REFERENCES

[1] T. Chen, M. Kwiatkowska, D. Parker, and A. Simaitis.
Verifying team formation protocols with probabilistic model
checking. In CLIMA XII, pages 190–297, 2011.

[2] P. Gammie and Ron van der Meyden. Mck: Model checking
the logic of knowledge. In CAV, pages 479–483, 2004.

[3] A. Hinton, M. Z. Kwiatkowska, G. Norman, and D. Parker.
PRISM: A Tool for Automatic Verification of Probabilistic
Systems. In TACAS, pages 441–444, 2006.

[4] X. Huang, C. Luo, and R. Meyden. Symbolic model checking
of probabilistic knowledge. In TARK, pages 177–186, 2011.

[5] A. Lomuscio and F. Raimondi. Mcmas: A model checker for
multi-agent systems. In TACAS, pages 450–454, 2006.

[6] R. Meyden and Kaile Su. Symbolic model checking the
knowledge of the dining cryptographers. In CSFW, pages
280–291, 2004.

[7] Y. Moses R. Fagin, J. Y. Halpern and M. Y. Vardi. Reasoning
about Knowledge. The MIT Press, 1995.

[8] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible
Verification under Fairness. In CAV, pages 709–714, 2009.

[9] J. Sun, Y. Liu, A. Roychoudhury, S Liu, and J. S. Dong. Fair
model checking with process counter abstraction. In FM,
pages 123–139, 2009.

[10] J. Sun, S. Z. Song, and Y. Liu. Model Checking Hierarchical
Probabilistic Systems. In ICFEM, pages 388–403, 2010.

[11] Y. Shoham T. Grenager, R. Powers. Dispersion games:
general definitions and some specific learning results. In
AAAI, pages 398–403, 2002.

[12] J. M. Vidal and E. H. Durfee. Predicting the expected be-
havior of agents that learn about agents: The clri framework.
AAMAS, 6:77–107, 2003.


