
Towards a Model Checker for NesC and Wireless Sensor
Networks ?

Manchun Zheng1, Jun Sun2, Yang Liu1, Jin Song Dong1, and Yu Gu2

1 School of Computing, National University of Singapore
{zmanchun,liuyang,dongjs}@comp.nus.edu.sg

2 Singapore University of Technology and Design
{sunjun,jasongu}@sutd.edu.sg

Abstract. Wireless sensor networks (WSNs) are expected to run unattendedly
for critical tasks. To guarantee the correctness of WSNs is important, but highly
nontrivial due to the distributed nature. In this work, we present an automatic ap-
proach to directly verify WSNs built with TinyOS applications implemented in
the NesC language. To achieve this target, we firstly define a set of formal op-
erational semantics for most of the NesC language structures for the first time.
This allows us to capture the behaviors of sensors by labelled transition systems
(LTSs), which are the underlying semantic models of NesC programs. Secondly,
WSNs are modeled as the composition of sensors with a network topology. Veri-
fications of individual sensors and the whole WSN become possible by exploring
the corresponding LTSs using model checking. With substantial engineering ef-
forts, we implemented this approach in the tool NesC@PAT to support verifica-
tions of deadlock-freeness, state reachability and temporal properties for WSNs.
NesC@PAT has been applied to analyze and verify WSNs, with unknown bugs
being detected. To the best of our knowledge, NesC@PAT is the first model
checker which takes NesC language as the modeling language and completely
preserves the interrupt-driven feature of the TinyOS execution model.

1 Introduction

Wireless sensor networks (WSNs) are widely used in critical areas like military surveil-
lance, environmental monitoring, seismic detection [2] and so forth. Such systems are
expected to run unattendedly for a long time in environments that are usually unsta-
ble. Thus it is important for them to be highly reliable and correct. TinyOS [16] and
NesC [7] have been widely used as the programming platform for developing WSNs,
which adopt a low-level programming style [13]. Such a design provides fine-grained
controls over the underlying devices and resources, but meanwhile makes it difficult
to understand, analyze or verify implementations. The challenges of modeling and for-
mally verifying WSNs with NesC programs are listed as follows.

– The syntax and semantics of NesC are complex [7] compared to those of formal
modeling languages. To the best of our knowledge, there has not been any formal
semantics for the NesC language. Thus establishing formal models from NesC pro-
grams is non-trivial.

? This research is supported in part by Research Grant IDD11100102 of Singapore University of
Technology and Design, IDC and MOE2009-T2-1-072 (Advanced Model Checking Systems).

2 Manchun Zheng, Jun Sun, Yang Liu, Jin Song Dong, and Yu Gu

– TinyOS provides hardware operations on motes (i.e. sensors) which can be invoked
by NesC programs including messaging, sensing and so on [16,6]. Therefore, mod-
eling NesC programs (executing on TinyOS) requires modeling the behaviors of
hardware at the same time.

– TinyOS adopts an interrupt-driven execution model, which introduces local concur-
rency (i.e. intra-sensor concurrency) between tasks and interrupts, which increases
the complexity of model checking NesC programs.

Related Work A number of approaches and tools have been published on analyzing,
simulating, debugging and verifying WSN applications or WSNs. W. Archer et al. pre-
sented their work on interface contracts for TinyOS components in [3], which exposed
bugs and hidden assumptions caused by improper interface usages, and added plen-
tiful safety conditions to TinyOS applications. Nguyet and Soffa proposed to explore
the internal structure of WSN applications using control flow graphs, but without any
error detection [23]. V. Menrad et al. proposed to use Statecharts to achieve readable
yet more precise formulations of interface contracts [22]. These approaches contribute
to the correctness of usages of interfaces, but are incapable of verifying any specific
property like safety or liveness.

The tool FSMGen [13] presented by N. Kothari et al. infers compact, user-readable
Finite State Machines from TinyOS applications and uses symbolic execution and pred-
icate abstraction for static analysis. This tool captures highly abstract behaviors of NesC
programs and has revealed some errors. However, low-level interrupt driven code is not
applicable since the tool is based on a coarse approximation of the TinyOS execution
model. Some essential features like loops are not supported and the tool provides no
supports for analyzing the concurrent behaviors of a WSN (rather than a single sensor).

Bucur and Kwiatkowska proposed Tos2CProver [4] for debugging and verifying
TinyOS applications at compile-time, checking memory-related errors and other low-
level errors upon registers and peripherals. Checking run-time properties like the un-
reachability of error states is not supported in Tos2CProver. Again, this approach only
checks errors for single-node programs and lacks the ability to find network-level errors.

Hanna et al. proposed SLEDE [8,9] to verify security protocol implementations in
the NesC language by extracting PROMELA [11] models from NesC implementations.
This approach is translation-based, and abstracts away certain NesC features like the
concurrency between tasks and interrupts, thus failing to find concurrency-related bugs
that are significant. Moreover, SLEDE is dedicated to security protocols, and not appli-
cable for verifying non-security properties like liveness.

T-Check [18] is built upon the TinyOS simulator TOSSIM [15] and uses explicit
model checking techniques to verify safety and liveness properties. T-Check revealed
several bugs of components/applications in the TinyOS distribution, however, it has
limited capability in detecting concurrent errors due to the limitation of TOSSIM, e.g.,
in TOSSIM, events execute atomically and are never preempted by interrupts. More-
over, the assertions of T-Check are specified in propositional logic, which is incapable
of specifying important temporal properties like the infinitely often release of a buffer
or the alternate occurrences of two events.

While the existing approaches have contributed a lot to analyzing and finding bugs
of TinyOS applications or WSNs, few of them simulate or model the interrupt-driven

Towards a Model Checker for NesC and Wireless Sensor Networks 3

execution model of TinyOS. Further, only a few are dealing with WSNs, which are
obviously more complex than individual sensors. In this paper, we propose a system-
atic and self-contained approach to verify WSNs built with TinyOS applications (i.e.
NesC programs). Our work includes a component model library for hardware, and
the formalized definitions of NesC programs and the TinyOS execution model. Based
on these, the labelled transition systems (LTSs) of individual sensors are constructed
directly from NesC programs. With a network topology that specifies how the sen-
sors are connected, the LTS of a WSN is then composed (on-the-fly) from the LTSs
of individual sensors. Model checking algorithms are developed to support verifica-
tions of deadlock-freeness, state reachability and temporal properties specified as lin-
ear temporal logic (LTL) [21] formulas. Both the state space of a WSN and that of
an individual sensor can be explored for verifications. With substantial engineering
efforts, our approach has been implemented as the NesC module in PAT [19,25,20],
named NesC@PAT (available at http://www.comp.nus.edu.sg/∼pat/research). In this
paper, we use NesC@PAT to verify the Trickle [17] algorithm of WSNs. A bug of the
algorithm is found and has been confirmed by implementing a WSN using real sensors
(e.g., Iris motes). This shows that our approach can assist developers for behavioral
analysis, error detection, and property verification of WSNs.

Contribution We highlight our contributions in the following aspects.
– Our approach works directly on NesC programs, without building (abstract) models

before applying verification techniques. Manual construction of models is avoided,
which makes our approach useful in practice.

– We formally define the operational semantics of NesC and TinyOS as well as
WSNs. New semantic structures are introduced for modeling the TinyOS execu-
tion model and hardware-related behaviors like timing, messaging, etc.

– The interrupt-driven feature of the TinyOS execution model is preserved in the
sensor models generated in our approach. This allows concurrency errors between
tasks and interrupts to be detected.

– Our approach supports verifications of deadlock-freeness, state reachability and
temporal properties. This provides flexibility for verifying different properties to
guarantee the correctness of sensor networks. Moreover, the expressive power of
LTL has allowed to define significant temporal properties (e.g., the infinite often
occurrences of a event).

The rest of the paper is organized as follows. Section 2 introduces NesC and TinyOS,
and discusses the complexity and difficulty caused by specific features of NesC and
TinyOS. The formal definitions of sensors and the operational semantics of TinyOS
applications are presented in Section 3. Section 4 defines WSNs formally and intro-
duces how the LTS of a WSN is obtained. Section 5 presents the architecture of our
tool NesC@PAT and experimental results of verifying the Trickle algorithm. Finally,
Section 6 concludes the paper with future works.

2 Preliminaries

This section briefly introduces the NesC programming language and the TinyOS operat-
ing system. Section 2.1 illustrates the specific features of NesC which make it complex

http://www.comp.nus.edu.sg/~pat/research

4 Manchun Zheng, Jun Sun, Yang Liu, Jin Song Dong, and Yu Gu

Configu-
ration

Usr Prv

User
Configuration

Interface =
Component

Provider
Configuration

Interface =
Component

… …

1. A component
can be a confi-
guration or
module;
2. Components
can be
hierarchical.

Call a
command

Event
Implementation

Module

Command
Implementation

Signal an
event

Module

Fig. 1: Call graph of NesC programs

1. int main() · · · {
2. atomic {
3. platform bootstrap();
4. call Scheduler.init();
5. call PlatformInit.init();
6. · · ·}
7. nesc enable interrupt();
8. signal Boot.booted();
9. call Scheduler.taskLoop();
10. return -1;
11. }

Fig. 2: TinyOS Boot Sequence

to directly verify NesC programs. Section 2.2 introduces TinyOS with an explanation
of its execution model and its hardware abstraction architecture.

2.1 The NesC Language

The programming language NesC (Nested C) [7] is proposed for developing WSNs.
NesC is a dialect of C, which embodies the structural concepts and the execution model
of TinyOS applications. NesC has two basic modular concepts: interface and compo-
nent. An interface declares a number of commands and events. A command denotes the
request for an operation, and an event indicates the completion of that operation. Thus,
NesC achieves a non-blocking programming convention, implementing operations as
split-phase. In other words, the request of a operation and its completion are separated.

An interface can be either provided or used by a component. In NesC, there are two
types of component, i.e. configuration and module. A configuration indicates how com-
ponents are wired to one another via interfaces. A module implements the commands
declared by its provided interfaces and the events declared by its used interfaces. Com-
mands and events are two types of functions, and task is the third. A component may
call a command or signal an event of an interface. Table 1 exemplifies the common-used
constructs of the NesC language, and the corresponding operational semantics will be
discussed in Section 3.

A call graph describes the wiring relation between components. Fig. 1 illustrates a
general call graph of NesC programs. Inside a configuration, a second-level configu-
ration can be wired to a third component, where the second-level configuration itself
contains a wiring relation between a set of components. Thus, the call graph of a NesC
program might be a hierarchical ’tree’ of components, where intermediate nodes are
configurations and leaves are modules.

NesC is an extension of the C language. It does not support advanced C features like
dynamic memory allocation, function pointer, multi-thread and so on, which makes it
an ‘easier’ target for formal verification. Nonetheless, it supports almost the same set
of operators, data types, statements and structures as C does and, in addition, NesC-
specific features such as calling a command, signaling an event, posting a task and so
forth. Verifying NesC programs is thus highly non-trivial, as illustrated in the following.

Towards a Model Checker for NesC and Wireless Sensor Networks 5

NesC Construct Example Remark

Command
command error t AMControl.start()
{· · ·} There are commands, events and tasks

besides ordinary functions. The only
difference among them is the way of
invocation. A task is a parameterless
function without any return value.

Event
event message t* Receive.receive
(message t* msg, · · ·, uint8 t len)
{· · · return msg; }

Task
task void setLeds()
{· · ·}

Call call Timer.startPeriodic(250); Call, signal and post are function calls,
invoking commands, events and tasks,
respectively.

Signal signal Timer.fired();
Post a task post setLeds();

Atomic
atomic{x = x + 1;
call AMSend.send(dst, pkt);}

Interrupts are disabled within an
atomic block.

Table 1: Common-used NesC Constructs

– Function calls like calling a command or signaling an event could be complex if
the module invoking the command/event and that implementing it are wired via a
hierarchical call graph.

– NesC allows local variables declared in functions or even in blocks of functions,
just like C does. A traditional way to analyze local variables is to use stacks. Deal-
ing with local variables significantly increases the complexity of verification.

– NesC is a typed programming language, and all data types of C including array and
struct are supported. There are also type operations (e.g. type casting) supported by
NesC. Therefore, modeling NesC should take into account typed aspects.

– There are other expressive features of NesC, which are inherited from C, however
make it complex. Examples of such features include pointers, parameters being
types, definition of types, pre-compilation, etc.

Fortunately, NesC is static [7], i.e. there is no dynamic memory allocation or func-
tion pointer. Thus the variable access and the call graph can be completely captured at
compile time. In our work, we treat pointers as normal variables, the value of which is a
reference to a certain variable. We develop a parser to produce the call graph of a NesC
program with the function (command, event, task or normal function) bodies defined
by each component. A nested search algorithm is designed to traverse the call graph for
fetching the corresponding function body once a function is invoked.

Local variables are modeled statically in our approach, with a renaming method to
avoid naming conflicts. Nested function calls are supported with the assumption that
there are no circles within the calling stacks. This is because that we rename local
variables according to the positions of their declarations. Thus distinguishing the local
variables between two invocations of the same function can be tricky and costly. How-
ever, the restriction is modest. The reason is that the most common invocation circle
of NesC programs lies in the split-phase operations, i.e. when a command finishes it
signals an event and in that event when it is completed it calls back the command again.
However, [14] recommends NesC programmers to avoid such a way of programming.
Even in this situation we can still get rid of naming conflicts of local variables because
a new invocation of a function is always assured to be at the end of the previous one.

6 Manchun Zheng, Jun Sun, Yang Liu, Jin Song Dong, and Yu Gu

Typed information is captured and we distinguish variables declared as different
types and analyze functions with parameters being types. Our work also supports defin-
ing new types by struct and typedef . Moreover, pre-compilation is supported, as well
as capturing information from .h files. More details of tackling NesC language features
can be found in our technical report in [1].

2.2 TinyOS and Its Execution Model

TinyOS [6,16] is the run-time environment of NesC programs. The behavior of a NesC
program is thus highly related to the interrupt-driven execution model of TinyOS [14].
Tasks are deferred computations, which are scheduled in FIFO order. Tasks always run
till completion, i.e. only after a task is completed, can a new task start its execution. In
contrast, interrupts are preemptive and always preempt tasks. In our work, this interrupt-
driven feature is captured using an interrupt operator (4), as discussed in Section 3.

The operating system TinyOS is implemented in NesC, with a component library
for hardware operations like sensing, messaging, timing, etc. The TinyOS component
library adopts a three-layer Hardware Abstraction Architecture (HAA), including Hard-
ware Presentation Layer (HPL), Hardware Adaptation Layer (HAL) and Hardware In-
terface Layer (HIL) [16,6]. The design of HAA gradually adapts the capabilities of the
underlying hardware platforms to platform-independent interfaces between the oper-
ating system and the application code. Specific semantic structures are introduced for
modeling hardware devices, which will be discussed in Section 3.

Since TinyOS 2.0, each NesC application should contain a component MainC (pre-
defined by TinyOS), which implements the boot sequence of a sensor [14]. Fig. 2
sketches the function that implements the boot sequence. At first, the scheduler, hard-
ware platform and related software components are initialized (line 3-5). Then inter-
rupts are enabled (line 7) and the event booted of interface Boot (Boot.booted) is sig-
naled (line 8), after which the scheduler recurrently runs tasks that have been posted
(line 9). The execution of line 2 to 7 is usually short and always decided by TinyOS
thus our approach assumes that this part is always correct and begins modeling the
behaviors of a sensor at the execution of event Boot.booted.

3 Formalizing Sensors with NesC Programs

This section presents the formalization of sensors running TinyOS applications. In par-
ticular, we present the operational semantics of the NesC programming constructs, and
introduce dedicated semantic structures for capturing the TinyOS execution model and
hardware behaviors and then the LTS semantics of sensors.

The behaviors of a sensor are determined by the scheduler of tasks and the concur-
rent execution between tasks and device interrupts.

Definition 1 (Sensor Model). A sensor model S is a tuple S = (A,T,R, init,P) where
A is a finite set of variables; T is a queue which stores posted tasks in FIFO order; R is
a buffer that keeps incoming messages sent by other sensors; init is the initial valuation
of the variable set A; and P is a program, composed by the running NesC program M
that can be interrupted by various devices H, i.e., P = M 4 H.

Towards a Model Checker for NesC and Wireless Sensor Networks 7

H models (and often abstracts) the behaviors of hardware devices such as Timer, Re-
ceiver and Reader (i.e. the sensing device). Because tasks are deferred computations,
when posted they are pushed into the task queue T for scheduling in FIFO order. We
remark that T and R are empty initially for any sensor model S. The interrupt opera-
tor (4) is introduced to capture the interrupt-driven feature of the TinyOS execution
model, which will be explained later in this section.

The variables in A are categorized into two groups. One is composed of variables
declared in the NesC program, which are further divided into two categories according
to their scopes, i.e. component variables and local variables. Component variables are
defined in a component’s scope, whereas local variables are defined within a function’s
or a block’s scope. In this work, all variables including local variables are loaded to the
variable set A at initialization. To avoid naming conflicts, the name of each variable is
first prefixed with the component name. A local variable is further renamed with the
line number of its declaration position. The other is a set of device status variables that
capture the states of hardware devices. For example, MessageC.Status is introduced to
model the status of the messaging device. A status variable is added into A after the
compilation if the corresponding device is accessed in the NesC program.

Example 1. Trickle [17] is a code propagation algorithm which is intended to reduce
network traffic. Trickle controls message sending rate so that each sensor hears a small
but enough number of packets to stay up-to-date. In the following, the notion code
denotes large-size data (e.g. a route table) each sensor maintains, while code summary
denotes small-size data that summarizes the code (e.g. the latest updating time of the
route table). Each sensor periodically broadcasts its code summary, and

– stays quiet if it receives an identical code summary;
– broadcasts its code if it receives an older summary;
– broadcasts its code summary if it receives an newer summary.

We have implemented this algorithm in a NesC program TrickleAppC (available in [1]),
with the modification that a sensor only broadcasts the summary initially (instead of
periodically) and if it receives any newer summary. The struct MetaMsg is defined to
encode a packet with a summary, and ProMsg is defined to encode a packet with a
summary and the corresponding code. Initially, each node broadcasts its summary (a
MetaMsg packet) to the network . If an incoming MetaMsg packet has a newer sum-
mary, the sensor will broadcast its summary; if the received summary is outdated, the
sensor will broadcast its summary and code (a ProMsg packet). An incoming ProMsg
packet with a newer summary will update the sensor’s summary and code accordingly.

Assume that a sensor executes TrickleAppC. By Definition 1, the corresponding
sensor model is S = (A,T,R, init,P). In TrickleAppC, component TrickleC is re-
ferred as App, so App is used for renaming its variables. The variable set after renam-
ing is A = { MessageC.Status, App.summary, App.code, App.34.pkt, · · ·}, where
variables with two-field names (e.g. App.summary) are component variables, except
for MessageC.Status (a device status variable) and those with three-field names (e.g.
App.34.pkt) are local variables. init is the initial valuation where MessageC.Status =
OFF, App.summary = 0, App.code = 0, App.34.pkt = null, · · ·. In TrickleAppC, only
the messaging device MessageC is accessed, therefore, initially the program P is event

8 Manchun Zheng, Jun Sun, Yang Liu, Jin Song Dong, and Yu Gu

event void AMControl.startDone(error t rs){
if (rs! = SUCCESS){
//The previous request fails

call AMControl.start();
} else { sendSummanry(); }

}
Fig. 3: Event AMControl.startDone

0

3

21

start

m sg
send/ m sg

send

sD one

send

rcv

m sg

send/m sg

4
send

rcv

sDone

Fig. 4: The MessageC Model

Boot.booted interrupted by the messaging device, i.e., P = Mb 4 MessageC. Event
Boot.booted is implemented by TrickleC, and the following is its function body.

event void Boot.booted(){
call AMControl.start(); //Start the messaging device

}

Calling AMControl.start will execute the corresponding command implemented by
ActiveMessageC. Component ActiveMessageC is defined in the TinyOS component
library for activating the messaging device. When AMControl.start is completed, the
event AMControl.startDone (implemented by TrickleC) will be signaled. If AMControl.
start returns SUCCESS, the function sendSummary is called for sending the summary.
Otherwise, the command AMControl.start is re-called, as shown in Fig. 3. We use a
model MessageC to describe the behaviors of the messaging device of a sensor. If
AMControl.start is performed successfully, the program P of S will become P = M′b 4
MessageC′, and the value of MessageC.Status will be modified. �

The models of the hardware devices are developed systematically. According to the
TinyOS component library, we develop a component model library for most common-
used components like AMSenderC, AMReceiverC, TimerC, etc1. We currently model
hardware at HAA’s top layer, i.e. Hardware Interface Layer, ignoring differences be-
tween the underlying platforms. For example, components ActiveMessageC, AMSenderC
and AMReceiverC from the TinyOS component library are designed for different oper-
ations on the messaging device, such as activation, message transmission and message
reception. Although there may be multiple AMSenderC’s or AMReceiverC’s in a NesC
program, they all share the same messaging device. In Fig. 4, action start is a com-
mand from ActiveMessageC, action send is a request for sending a message from an
AMSendderC, and action msg is the arrival of an incoming message. Action sDone and
action rcv are interrupts triggered by MessageC, which signal the sendDone event of
AMSenderC and the receive event of AMReceiverC, respectively.

Definition 2 (Sensor Configuration). Let S = (A,T,R, init,P) be a sensor model. A
sensor configuration C of S is a tuple (V,Q,B,P) where V is the valuation of variables
A; Q is a sequence of tasks, being the content of T; B is a sequence of messages, being
the content of R; P is the executing program.

For a sensor model S = (A,T,R, init,P), its initial configuration Cinit = (init,∅,
∅,P), in respect that initially task queue T and message buffer R are empty. A transition

1 The current component library is not yet complete but sufficient for many NesC programs.

Towards a Model Checker for NesC and Wireless Sensor Networks 9

is written as (V,Q,B,P) e→ (V ′,Q′,B′,P′) (or C e→ C′ for short). Next, we define the
behavior of a sensor as an LTS.

Definition 3 (Sensor Transition System). Let S = (A,T,R, init,P) be a sensor model.
The transition system of S is defined as a tuple T = (C, init,→), where C is the set of
all reachable sensor configurations and→ is the transition relation.

The transition relation is formally defined through a set of firing rules associated
with each and every NesC programming construct. The firing rules for post and call
are presented in Fig. 5 for illustration purpose. The complete set of firing rules can be
found in [1]. The following symbols are adopted to define the firing rules.

– ∩ is sequence concatenation.
– X simply denotes the termination of the execution of a statement.
– τ is an event label denoting a silent transition.
– Impl(f ,Larg) returns the the body of function ({F}) f with arguments Larg.
– FstFnc(Larg) returns the first element in Larg which contains function calls.
– Larg[a′/a] replaces argument a with a′ in the argument list Larg.
– I is a status variable in A, denoting whether interrupts are allowed. Interrupts are

only disabled within an atomic block thus I is set off only during an atomic block.

Rules post1 and post2 describe the semantics of the statement post tsk(). The task
tsk will be pushed to the task queue Q if there are no identical tasks pending in Q (rule
post1), otherwise the task is simply dropped (rule post2). Rules call1 and call2 capture
the semantics of a command call call intf .cmd(Larg), where Larg is the list of arguments.
If the arguments contain no function calls, the execution of a command call will transit
directly to the execution of the corresponding function body (rule call1). Otherwise, the
function calls in the arguments will be executed first (rule call2), also step by step.

Apart from the firing rules for NesC structures, we adopt several operators and se-
mantic structures from process algebra community [10] to capture the execution model
of TinyOS and hardware behaviors. Some of these firing rules are presented in Fig. 6,
and the complete set can be found in [1]. The interrupt operator (4) is used to formalize
the concurrent execution between tasks and interrupts, and interrupts always preempt
tasks, denoted by rules itr1. Further, when a task (M) completes its completion, a new
task will be fetched from Q for execution (rule itr3). Interrupts are always enabled in
rules itr3 and itr4 because no atomic blocks are executing. A sensor will remain idle
when no interrupts are triggered by devices (i.e. H is idle) and no tasks are deferred
(rule itr4), and it can be activated by an interrupt like the arrival of a new message.

A hardware interrupt is modeled as an atomic action which pushes a task to the top
of the task queue, and thus the task has a higher priority than others. This task will
signal the corresponding event for handling the interrupt. This is exactly the way that
TinyOS deals with hardware interrupts. For example, when an interrupt is triggered by
an incoming message, a task (trcv) will be added at the head of Q for signaling a receive
event (rule rcv). Semantic structures Send and Rcv are defined to model the behaviors
of sending and receiving a message respectively. Send is defined as (s, dst,msg), where
s is the identifier of the sensor which sends a message, dst is the list of receivers and
msg is the message itself.

10 Manchun Zheng, Jun Sun, Yang Liu, Jin Song Dong, and Yu Gu

e = s.post.t, t 6∈ Q, Q′ = Q ∩ 〈t〉
[post1]

(V, Q, B, post tsk()) e→ (V, Q′, B, X)

e = s.post.t, t ∈ Q
[post2]

(V, Q, B, post tsk()) e→ (V, Q, B, X)

FstFnc(Larg) = ε, F = Impl(intf .cmd, Larg)
[call1]

(V, Q, B, call intf .cmd(Larg))
e→ (V, Q, B, {F})

FstFnc(Larg) = a, a 6= ε, (V, Q, B, a) e→ (V ′, Q′, B′, a′)
[call2]

(V, Q, B, call intf .cmd(Larg))
e→ (V ′, Q′, B′, call intf .cmd(Larg[a′/a]))

Fig. 5: Firing Rules for NesC Structures

Notice that devices such as Timer, Receiver, Reader (Sensor) and so on ‘execute’
concurrently, because they can trigger interrupts independently. This is captured using
an interleave operator |||, which resembles the interleave operator in CSP [10].

4 Formalizing Wireless Sensor Networks

In this section, we formalize WSNs as LTSs. A sensor network N is composed of a set
of sensors and a network topology2. From a logical point of view, a network topology is
simply a directed graph where nodes are sensors and links are directed communications
between sensors. In reality, a sensor always broadcasts messages and only the ones
within its radio range would be able to receive the messages. We introduce radio range
model to describe network topology, i.e. whether a sensor is able to send messages to
some other sensor. Let N = {0, 1, · · · , i, · · · , n} be the set of the unique identifier of
each sensor in a WSNN . The radio range model is defined as the relationR : N↔ N,
such that (i, j) ∈ R if and only if sensor j is within sensor i’s radio range. We define a
WSN model as the parallel of the sensors with its topology, as shown in Definition 4.

Definition 4 (WSN Model). The model of a wireless sensor networkN is defined as a
tuple(R, {S0, · · · ,Sn}) whereR is the radio model (i.e. network topology), {S0, · · · ,Sn}
is a finite ordered set of sensor models, and Si (0 6 i 6 n) is the model of sensor i.

Sensors in a network can communicate through messaging, and semantic structures
Send and Rcv are defined to model message transmission among sensors. WSNs are
highly concurrent as all sensors run in parallel, i.e. the network behaviors are obtained
by non-deterministically choosing one sensor to execute at each step.

2 We assume that the network topology for a given WSN is fixed in this work.

Towards a Model Checker for NesC and Wireless Sensor Networks 11

V(I) = on, (V, Q, B, H)
e→ (V ′, Q′, B′, H′)

[itr1]
(V, Q, B, M 4 H)

e→ (V ′, Q′, B′, M 4 H′)

H is idle or V(I) = off , (V, Q, B, M)
e→ (V ′, Q′, B′, M′)

[itr2]
(V, Q, B, M 4 H)

e→ (V ′, Q′, B′, M′ 4 H)

H is idle, M = Impl(t,∅)
[itr3]

(V, 〈t〉∩ Q′, B, X 4 H)
e→ (V, Q′, B, M 4 H)

H is idle
[itr4]

(V, ∅, B, X 4 H)
s.idle→ (V, ∅, B, X 4 H)

B = 〈msg〉∩ B′, trcv 6∈ Q, Q′ = 〈trcv〉 ∩Q
[rcv]

(V, Q, B, Rcv)
s.rcv msg→ (V, Q′, B′, Rcv)

tsendDone 6∈ Q, Q′ = 〈tsendDone〉 ∩Q
[send]

(V, Q, B, Send(s,msg))
s.send.msg→ (V, Q′, B, X)

Fig. 6: Firing Rules for Concurrent Execution and Hardware Behaviors

Definition 5 (WSN Configuration). Let N = (R, {S0, · · · ,Sn}) be a WSN model. A
configuration of N is defined as the finite ordered set of sensor configurations: C =
{C0, · · · ,Cn} where Ci (0 6 i 6 n) is the configuration of Si.

Definition 5 formally defines a global system state of a WSN. Next, the semantics of
sensor networks can be defined in LTSs, as follows.

Definition 6 (WSN Transition System). Let N = (R, {S0, · · · ,Sn}) be a sensor
network model. The WSN transition system corresponding to N is a 3-tuple T =
(Γ, init, ↪→) where Γ is the set of all reachable WSN configurations, init = {Cinit

0 , · · · ,Cinit
n }

(Cinit
i is the initial configuration of Si) being the initial configuration of N , and ↪→ is

the transition relation.

Example 2. Fig. 7 presents a WSN with three nodes (i.e., S0, S1 and S2), each of which
is implemented with application TrickleAppC (Tk for short) of Example 1. The radio
range of each senor is described by a circle around it, and the network topology model
can be abstracted asR = {(0, 1), (1, 2), (2, 0)}.

12 Manchun Zheng, Jun Sun, Yang Liu, Jin Song Dong, and Yu Gu

Ci
e→ C′i , e 6= si.send.dst.msg, e 6= si.idle

[network1]

{C0, · · · ,Ci, · · · ,Cn}
e
↪→ {C0, · · · ,C′i , · · · ,Cn}

Ci
e→ C′i , e = si.send.msg, ∀ j ∈ [0, i) ∪ (i, n] • C′j = InMsg(Radio(i),msg,Cj)

[network2]

{C0, · · · ,Ci, · · · ,Cn}
e
↪→ {C′0, · · · ,C′i , · · · ,C′n}

Fig. 8: Firing Rules for Sensor Networks

0/Tk

1/Tk

2/Tk

Fig. 7: A WSN Example

A transition of a WSN is of the form C e
↪→

C′, where C = {C0, · · · ,Ci, · · · ,Cn} and C′ =
{C′0, · · · ,C′i , · · · ,C′n}. The transition relation is ob-
tained through a set of firing rules, which are shown
in Fig. 8. Rule network1 describes the concurrent
execution betweens sensors, i.e. the network non-
deterministically chooses a sensor to perform a tran-
sition. Rule network2 is dedicated for communi-
cation. Function Radio(i) returns the set of sen-
sors that are within sensor i’s radio range. Function
InMsg(msg,Cj) enqueues the message msg to sensor
j, i.e. C′j = InMsg(dst,msg,Cj) ⇔ (j ∈ dst ⇒ C′j =
Cj[Bj

∩ 〈msg〉 /Bj]) ∧ (j 6∈ dst ⇒ C′j = Cj). Thus a
sensor sending a message will not only change its local state but also change those of
the sensors in the destination list, by enqueuing the message to their message buffers.

5 Implementation and Evaluation

Our approach has been implemented in the model checking framework PAT as the NesC
module, which is named NesC@PAT. Fig. 9 illustrates the architecture of NesC@PAT.
There are five main components, i.e. an editor, a parser, a model generator, a simulator
and a model checker. The editor allows users to input different NesC programs for
sensors and to draw the network topology, as well as to define assertions (i.e. verification
goals). The parser compiles all inputs from the editor. The model generator generates
sensor models based on the NesC programs and the built-in hardware model collection
(i.e. the component model library). Furthermore, it generates WSN models. Both the
sensor models and the network models are then passed to the simulator and the model
checker for visualized simulation and automated verification respectively.

NesC@PAT supports both sensor-level and network-level verifications, against prop-
erties including deadlock-freeness, state reachability, and liveness properties expressed
in linear temporal logic (LTL) [21]. Deadlock-freeness and state reachability are checked
by exhaustively exploring the state space using Depth-first search or Breadth-first search
algorithms. We adopt the approach presented in [25] to verify LTL properties. First, the
negation of an LTL formula is converting into an equivalent Büchi automaton; and then

Towards a Model Checker for NesC and Wireless Sensor Networks 13

NesC Parser

Graphic
Simulator

Assertion
Collection

Assertion Parser

Network
Model

Parser

Model Genertor

On-the-fly
Model

CheckerCounterexample

Model Checker

Simulator

Sensor
Model

Collection

Hardware
Model

Collection

Sensor X NesC Program Network Topology Assertions Editor

Network Parser

Fig. 9: Architecture of NesC@PAT

0/01/1

0/0

0/0 1/1 0/0

0/0

1/1

0/0

0/00/01/1

0/0 1/1

0/0

0/00/01/1

Fig. 10: Network Topology: Star, Ring, Single-track Ring

accepting strong connected components (SCC) in the synchronous product of the au-
tomaton and the model are examined in order to find a counterexample. Notice that the
SCC-based algorithm allows us to model check with fairness [27], which often plays an
important role in proving liveness properties of WSNs.

NesC@PAT was used to analyze WSNs deployed with the Trickle algorithm pre-
sented in Example 1. We studied WSNs with different topologies including star, ring
and single-tracked ring (short for SRing). The settings of WSNs are presented in Fig. 10,
where 1/1 stands for new code/new summary and 0/0 stands for old code/old summary
and a directed graph is used to illustrate the logical view for each network. Two safety
properties (i.e. Deadlock free and Reach FalseUpdat − ed) and two liveness properties
(i.e. ♦AllUpdated and�♦AllUpdated) are verified. Property Reach FalseUpdated is a
state reachability checking, which is valid if and only if the state FalseUpdated where
a node updates its code with an older one can be reached. Property ♦AllUpdated is
an LTL formula which is valid if and only if the state AllUpdated where all nodes are
updated with the new code can be reached eventually, while �♦AllUpdated requires
state AllUpdated to be reached infinitely often.

A server with Intel Xeon 4-Core CPU*2 and 32 GB memory was used to run the
verifications, and the results are summarized in Table 2. The results show that the al-
gorithm satisfies the safety properties, i.e. neither a deadlock state nor a FalseUpdated
state is reachable. As for the liveness property, both ring and star networks work well,
which means that every node is eventually updated with the new code. However, the

14 Manchun Zheng, Jun Sun, Yang Liu, Jin Song Dong, and Yu Gu

(a) Initial Setting (b) Star/Ring network (c) SRing network

Fig. 11: Real Executions on Iris Motes

single-tracked-ring (SRing) network fails to satisfy either liveness property. The coun-
terexample produced by NesC@PAT shows that only one sensor can be updated with
the new code. By simulating the counterexample in NesC@PAT, we can find the reason
of this bug. On one hand, the initially updated node A receives old summary from node
C thus broadcasting its code but only node B can hear it. On the other hand, after node
B is updated it fails to send its code to node C because node B never hears an older
summary from node C. We also increased the number of sensors for SRing networks,
and the results remained the same.

We ran the Trickle program on Iris motes to study whether this bug could be evi-
denced in real executions. The TrickleAppC was modified by adding operations on leds
to display the changes of code (available in [1]):

1. Initially sensor A has the new code (1/1) and has its red led on, while sensor B and
C have the old code (0/0) and have their yellow leds on, as shown in Fig. 11a.

2. A sensor will turns on its red led when it is updated with the new code.
3. Different topologies are achieved by specifying different AM id for each sensor’s

AMSenderC and AMReceiverC, details of which are in [1].

The revised TrickleAppC was executed on real sensors with star, ring and single-tracked
ring topologies. Fig. 11b shows that the star/ring network is able to update all nodes,
and Fig. 11c shows that the single-tracked ring network fails to update one node, which
confirms that the bug found by NesC@PAT could be evidenced in reality.

Discussion The results in Table 2 show that a WSN of Trickle algorithm with three
nodes has a state space of 106 ∼ 107, and the state space grows exponentially with
the network topology and the number of nodes. One direction of our future work is
to introduce reduction techniques such like partial order reduction [24] and symmetry
reduction [5] to improve the scalability of our approach. Hardware-related behaviors
are abstracted and manually modeled based on real sensors, i.e. Iris motes. This manual
abstraction of hardware is simple to implement, but lacks the ability to find errors due
to hardware failures, as the hardware is assumed to be always working.

6 Conclusion

In this work, we present an initial step towards automatic verifications of WSNs at
implementation level. Semantic models, i.e. event-based LTS, of WSNs are generated

Towards a Model Checker for NesC and Wireless Sensor Networks 15

Network Property Size Result #State #Transition Time(s) Memory(KB)

Star

Deadlock free

3

X 300,332 859,115 49 42,936
Reach FalseUpdated × 300,332 859,115 47 23,165
♦AllUpdated X 791,419 2,270,243 148 25,133
�♦AllUpdated X 1,620,273 6,885,511 654 13,281,100

Ring
Deadlock free

3
X 1,093,077 3,152,574 171 80,108

Reach FalseUpdated × 1,093,077 3,152,574 161 27,871
♦AllUpdated X 2,127,930 6,157,922 389 78,435

SRing

Deadlock free
3 X 30,872 85,143 5 19,968
4 X 672,136 2,476,655 170 72,209

Reach FalseUpdated
3 × 30,872 85,143 5 23,641
4 × 672,136 2,476,655 156 62,778

♦AllUpdated
3 × 42 73 <1 19,290
4 × 52 113 <1 19,771

�♦AllUpdated

3 × 146 147 <1 51,938
4 × 226 227 <1 51,421
8 × 746 747 <1 59,900
20 × 4,126 4,127 2 148,155

Table 2: Experimental Results

directly and automatically from NesC programs, avoiding manual construction of mod-
els. To the best of our knowledge, our approach is the first complete and systematical
approach to verify networked NesC programs. Moreover, our approach is the first to
model the interrupt-driven execution model of TinyOS. This is important since it al-
lows concurrency errors at sensor level to be detected. Model checking algorithms have
been implemented for verifying various properties.

Our work currently adopts a non-threaded execution model of TinyOS. Recently,
new models have been proposed, e.g., TOSThread [12] has been proposed to allow
user threads in TinyOS. Our future work thus includes designing approach for model-
ing TOSThread. Moreover, the current component model library of NesC@PAT only
models a subset of the TinyOS component library. Another future direction is to gen-
erate comprehensive timing models using techniques [26,20] and to take failures into
account by probabilistic modeling techniques [28]. We also plan to apply reduction
techniques [29] for optimizing the usage of time and memory at verification phase.

References

1. NesC@PAT. http://www.comp.nus.edu.sg/∼pat/NesC/ .
2. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: a

survey. Computer Networks, 38:132–138, 2001.
3. W. Archer, P. Levis, and J. Regehr. Interface contracts for TinyOS. In IPSN, pages 158–165,

2007.
4. D. Bucur and M. Z. Kwiatkowska. Software verification for TinyOS. In IPSN, pages 400–

401, 2010.
5. E. A. Emerson, S. Jha, and D. Peled. Combining Partial Order and Symmetry Reductions.

In TACAS, pages 19–34, 1997.

http://www.comp.nus.edu.sg/~pat/NesC/

16 Manchun Zheng, Jun Sun, Yang Liu, Jin Song Dong, and Yu Gu

6. D. Gay, P. Levis, and D. E. Culler. Software design patterns for TinyOS. ACM Trans.
Embedded Comput. Syst., 6(2), 2007.

7. D. Gay, P. Levis, R. v. Behren, M. Welsh, E. Brewer, and D. Culler. The nesC Language: A
Holistic Approach to Networked Embedded Systems. In PLDI, pages 1–11, 2003.

8. Y. Hanna and H. Rajan. Slede: Framework for automatic verification of sensor network
security protocol implementations. In ICSE Companion, pages 427–428, 2009.

9. Y. Hanna, H. Rajan, and W. Zhang. Slede: a domain-specific verification framework for
sensor network security protocol implementations. In WISEC, pages 109–118, 2008.

10. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
11. G. J. Holzmann. Design and Validation of Protocols: A Tutorial. Computer Networks and

ISDN Systems, 25(9):981–1017, 1993.
12. K. Klues, C.-J. M. Liang, J. Paek, R. Musaloiu-Elefteri, P. Levis, A. Terzis, and R. Govindan.

TOSThreads: thread-safe and non-invasive preemption in TinyOS. In SenSys, pages 127–
140, 2009.

13. N. Kothari, T. D. Millstein, and R. Govindan. Deriving State Machines from TinyOS Pro-
grams Using Symbolic Execution. In IPSN, pages 271–282, 2008.

14. P. Levis and D. Gay. TinyOS Programming. Cambridge University Press, 1 edition, 2009.
15. P. Levis, N. Lee, M. Welsh, and D. E. Culler. TOSSIM: Accurate and Scalable Simulation

of Entire TinyOS Applications. In SenSys, pages 126–137, 2003.
16. P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer,

and D. Culler. TinyOS: An operating system for sensor networks. In Ambient Intelligence.
Springer Verlag, 2004.

17. P. Levis, N. Patel, D. E. Culler, and S. Shenker. Trickle: A Self-Regulating Algorithm for
Code Propagation and Maintenance in Wireless Sensor Networks. In NSDI, pages 15–28,
2004.

18. P. Li and J. Regehr. T-check: bug finding for sensor networks. In IPSN, pages 174–185,
2010.

19. Y. Liu, J. Sun, and J. S. Dong. An Analyzer for Extended Compositional Process Algebras.
In ICSE Companion, pages 919–920. ACM, 2008.

20. Y. Liu, J. Sun, and J. S. Dong. Developing Model Checkers Using PAT. In ATVA, pages
371–377, 2010.

21. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Sys-
tems:Specification. Springer-Verlag, 1992.

22. V. Menrad, M. Garcia, and S. Schupp. Improving TinyOS Developer Productivity with State
Charts. In SOMSED, 2009.

23. N. T. M. Nguyen and M. L. Soffa. Program representations for testing wireless sensor net-
work applications. In DOSTA, pages 20–26, 2007.

24. D. Peled. Combining Partial Order Reductions with On-the-fly Model-Checking. Formal
Methods in System Design, 8(1):39–64, 1996.

25. J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible Verification under Fairness.
In CAV, pages 709–714, 2009.

26. J. Sun, Y. Liu, J. S. Dong, and X. Zhang. Verifying Stateful Timed CSP Using Implicit
Clocks and Zone Abstraction. In ICFEM, pages 581–600, 2009.

27. J. Sun, Y. Liu, A. Roychoudhury, S. Liu, and J. S. Dong. Fair model checking with process
counter abstraction. In FM, pages 123–139, 2009.

28. J. Sun, S. Song, and Y. Liu. Model Checking Hierarchical Probabilistic Systems. In ICFEM,
pages 388–403, 2010.

29. S. J. Zhang, J. Sun, J. Pang, Y. Liu, and J. S. Dong. On Combining State Space Reductions
with Global Fairness Assumptions. In FM, pages 432–447, 2011.

	Towards a Model Checker for NesC and Wireless Sensor Networks
	Manchun Zheng, Jun Sun, Yang Liu, Jin Song Dong, and Yu Gu

