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Abstract. Rapid development in hardware industry has brought the
prevalence of multi-core systems with shared-memory, which enabled the
speedup of various tasks by using parallel algorithms. The Linear Tempo-
ral Logic (LTL) model checking problem is one of the difficult problems to
be parallelized or scaled up to multi-core. In this work, we propose an on-
the-fly parallel model checking algorithm based on the Tarjan’s strongly
connected components (SCC) detection algorithm. The approach can be
applied to general LTL model checking or with different fairness assump-
tions. Further, it is orthogonal to state space reduction techniques like
partial order reduction. We enhance our PAT model checker with the
technique and show its usability via the automated verification of sev-
eral real-life systems. Experimental results show that our approach is
scalable, especially when a system search space contains many SCCs.

1 Introduction

In recent years, the growth of computer CPU speed is slowly being replaced
by the growth of number of CPUs (or CPU-cores) in the industry. To make
full usage of the CPU cores naturally raises interest in applying parallelism in
various problems. In this work, we focus on the parallelism of model checking
fairness enhanced systems, which emits two challenges stated as follows.

Firstly, efficient parallel solution of many problems may result in dramati-
cally different approaches from those to solve the same problems sequentially.
Classical examples are list rankings, connected components, depth-first search
in planar graphs etc. In the area of Linear Temporal Logic (LTL) model check-
ing, the two best known enumerative sequential algorithms based on fair-cycle
detection are the Nested Depth First Search (NDFS) algorithm [10, 18] (e.g.,
implemented in the model checker SPIN [17]) and SCC-based algorithms [32,
31] based on Tarjan’s algorithm for strongly connected components (SCCs) de-
tection [33]. However, both algorithms strongly rely on inherently sequential
depth-first search of post-ordering of vertices (P-complete computation [28]).
Hence it is difficult to adapt them to parallel architectures. Consequently, dif-
ferent techniques and algorithms are needed. Several existing parallel versions of
LTL model checking algorithms are ineffective or hard to scale up. For example,
SCC based parallel algorithms [8, 12, 9, 6, 3] gives quadratic or cubic order of the



search space. Multi-core SPIN [16] is only applicable to two cores for liveness
properties. Note that unlike LTL model checking, deadlock-free or reachability
analysis is a verification problem with efficient parallel solution. The reason is
that the exploration of the state space can be partitioned using breadth-first
search [16]. In this work, we will focus on the liveness properties.

Second, fairness, which is concerned with a fair resolution of non-determinism,
is often important but expensive to be combined with model checking algorithms.
Fairness is an abstraction of the fair scheduler in a multi-threaded programming
environment or the relative speed of the processors in distributed systems. With-
out fairness, verification of liveness properties often produces unrealistic loops
during which one process or event is infinitely ignored by the scheduler or one
processor is infinitely faster than others. It is important to rule out those coun-
terexamples and utilize the computational resource to identify the real bugs.
However, systematically ruling out counterexamples due to lack of fairness is
highly non-trivial. It requires flexible specification of fairness as well as efficient
verification under fairness. Fairness and model checking with fairness have at-
tracted much theoretical interests for decades [14, 24, 21]. Their practical implica-
tions in system/software design and verification have been discussed extensively.
In our previous works [32, 31], we present a unified on-the-fly model checking al-
gorithm which handles a variety of fairness including process-level weak/strong
fairness, event-level weak/strong fairness, strong global fairness, etc. However,
none of these works paid attention to parallel verification.

Contributions In this work, we propose an algorithm with the capacity of
parallel verification of systems with various fairness constraints in the multi-
core architecture with share-memory.

SCC-based LTL model checking algorithms conduct a depth first search start-
ing from the root node, and check whether the SCC in the subtree is fair when-
ever a SCC is identified. Previous parallel algorithms focus on partition of the
graph based on special properties of the nodes inside the SCCs, which requires
multiple traverses of the whole search graph. These approaches are not practical
for large systems, especially when there is a counterexample. Based on our pre-
vious work, we propose an on-the-fly parallel algorithm based on an improved
version of Tarjan’s algorithm. In our approach, a main thread performs the DFS
searching of Tarjan’s algorithm. Whenever a SCC is detected, a new worker
thread is forked to process the found SCC. SCC processing contains both fair
loop detection and fairness constraints satisfaction checking (if there is fairness
assumption in the system), hence a fair amount of workload is divided to the
worker threads to achieve load balancing. When a counterexample is identified in
any worker thread, it will inform the main thread to stop the DFS and all other
live worker threads. This makes our approach on-the-fly, i.e., without generating
the entire search space. We have proved the correctness of our approach in the
multi-core architecture with shared memory.

Effective reduction techniques are the keys to resolve the infamous “state
explosion” problem in model checking, such as partial order reduction (to reduce
the search space by exploring independence of system transitions), symmetric



reduction (to handle large or even unbounded number of similar processes).
We show that all these reductions are compatible with our algorithm, if these
reductions are applicable (see Section 4.3 for details).

Our engineering effort realizes this technique in our home-grown PAT model
checker (available at http://pat.comp.nus.edu.sg). We show its usability via au-
tomated verification of several real-life systems. The experiments show that our
technique offers a scalable verification support for multi-core model checking.

Section Organization The rest of the paper is structured as follows. Section 2
introduces our computational model, together with a family of different fairness
notions. Section 3 presents a sequential fairness model checking algorithm based
on SCC detection. Section 4 describes our proposed parallel algorithm in the
shared-memory platform. Section 5 shows some experimental results to demon-
strate the effectiveness of parallel algorithm. Section 6 discusses related work
and Section 7 concludes.

2 Background

In this work, system models are described in the setting of Labeled Transition
Systems (LTS). All the algorithms proposed in this paper are applicable to the
models that can be interpreted as LTSs implicitly by defining a complete set of
operational semantics. For example, PAT accepts modeling languages like Com-
municating Sequential Processes# (CSP#) [29], Web Service modeling language,
real-time system modeling language. This section gives the LTS semantics and
defines different fairness constraints based on it.

Let e be an event (in process algebra, e.g., CSP), which could be either an
abstract event (e.g., a synchronization barrier if shared by multiple processes)
or a data operation (e.g., a sequential program). Let Σ be the set of all events
in the model.

Definition 1 (LTS). A Labeled Transition System L is a 3-tuple (S , init ,→)
where S is a set of system configurations/states, init ∈ S is the initial system
configuration and →⊆ S × Σ × S is a labeled transition relation.

In this work, we focus on infinite system executions explained as follows.
Finite behaviors are extended to infinite ones by appending infinite idling events
at the rear. Given two states s and s ′ in S , we write s e→ s ′ to denote a transition
from s to s ′ with event e. Given a LTS L = (S , init ,→), an execution E =
〈s0, e0, s1, e1, · · ·〉 is an infinite sequence of alternating states and events, where
s0 = init and for all i ≥ 0 such that si

ei→ si+1. Given a LTL property φ, L
satisfies φ if and only if every execution of L satisfies φ.

Without fairness constraints, a system may behave freely as long as it starts
with an initial state and conforms to the transition relation. A fairness constraint
restricts the set of system behaviors to only those fair ones. Given a LTL property
φ, verification under fairness means verifying whether all fair executions of the
system satisfy φ. In the following, we briefly review a variety of different fairness



constraints. The following notions are used to define fairness. enabledEvt(s) is
the set of enabled events at state s, i.e., e is in enabledEvt(s) if and only if there
exist s ′ ∈ S such that s e→ s ′. If the system is constituted by multiple processes
running in parallel, we write enabledPro(s) to be the set of enabled processes,
which may make a move given the system state s. Given a transition s e→ s ′,
we write engagedPro(s, e, s ′) to be the set of participating processes, which have
made some progress during the transition. Notice that if e is synchronized by
multiple processes, the set contains all the participating processes. We write
engagedEvt(s, e, s ′) to denote {e}. In the following, we use E = 〈s0, e0, s1, e1, · · ·〉
to denote an execution.

Weak fairness [24, 25] There are two different levels of weak fairness, i.e. event-
level weak fairness (EWF) or process-level weak fairness (PWF). E satisfies
event-level weak fairness, if and only if for every action e, if e eventually becomes
enabled forever in E , then ei = e for infinitely many i , i.e., 32 e is enabled ⇒
23 e is engaged . Intuitively, event-level weak fairness states that if an event
becomes enabled forever after some steps, then it must be engaged infinitely
often. E satisfies process-level weak fairness, if and only if for every process p,
if p eventually becomes enabled forever in E , then p ∈ engagedProc(si , ei , si+1)
for infinitely many i , which equals to 32 p is enabled ⇒ 23 p is engaged
in LTL. Intuitively, process-level weak fairness states that if a process becomes
enabled forever after some steps, then it must be engaged infinitely often. From
another point of view, process-level weak fairness guarantees that each process is
only finitely faster than the others. Weak fairness is equivalent to justice condi-
tions [25]. An alternative formulation of weak fairness is that every computation
should contain infinitely many particular states (e.g. states where an event or a
process is disabled or has just engaged).

Strong fairness [23, 11, 27] Strong fairness is particularly useful in the anal-
ysis of systems that use semaphores, synchronous communication, and other
special coordination primitives. Likewise, there are two levels of strong fairness.
E satisfies event-level strong fairness (ESF) if and only if, for every event e,
if e is infinitely often enabled, e = ei for infinitely many i , which equals to
23 e is enabled ⇒ 23 e is engaged in LTL. It states that if an event is
infinitely often enabled, it must be infinitely often engaged. E satisfies process-
level strong fairness (PSF) if and only if, for every process p, if p is infinitely
often enabled, then p ∈ engagedProc(si , ei , si+1) for infinitely many i , which
equals to 23 p is enabled ⇒ 23 p is engaged in LTL. Process-level strong
fairness means that if a process is repeatedly enabled, it must eventually make
some progress. Verification under (event-level/ process-level) strong fairness (or
compassion condition) has been discussed previously [13, 15, 20, 26, 32, 31].

Strong global fairness [11] E satisfies strong global fairness (SGF) if and
only if, for every s, e, s ′ such that s e→ s ′, if s = si for infinite many i , si = s
and ei = e and si+1 = s ′ for infinitely many i . Intuitively, it states that if a
step (from s to s ′ by engaging in event e) can be taken infinitely often, then it



must actually be taken infinitely often. Different from the previous notions of
fairness, strong global fairness concerns about both events and states, instead of
events only. It can be shown by a simple argument that strong global fairness is
stronger than event-level strong fairness. Because it concerns about both events
and states, it is ‘event-level’ and ‘process-level’. Strong global fairness requires
that an infinitely enabled event must be taken infinitely often in all contexts,
whereas event-level strong fairness only requires the enabled event to be taken
in one context. Many population protocols reply on strong global fairness, e.g.,
protocols presented in [1, 11].

3 Sequential Model Checking under Fairness

Given a LTS L and a LTL formula φ, model checking is about searching for an
execution of L which fails φ. In automata-based model checking, the negation
of φ is translated to an equivalent Büchi automaton B, which is then composed
with the LTS representing the system model. Model checking under fairness is to
search for an infinite execution which is accepting to the Büchi automaton and
at the same time satisfies the fairness constraints. Equivalently, it is to search a
loop or a Strongly Connected Components (SCC) in the state graph such that
the infinite execution traversing through every state/edges of the loop or SCC
satisfies the fairness constraints.

SCC-based verification algorithms rely on the SCC detection, most of which
are based on Tarjan’s algorithm for identifying SCCs [33]. Figure 1 presents a
sequential unified algorithm for automata-based model checking of LTL under
fairness [31]. The algorithm works by searching on-the-fly for fair strongly con-
nected subgraphs, which may constitute counterexamples. The basic idea is to
identify one SCC at a time and then check whether it is fair or not. If it is,
the search is over. Otherwise, the SCC may be partitioned into several smaller
strongly connected subgraphs, which are then checked recursively one by one.

We briefly explain how the algorithm works. Interested readers should refer
to [31] for details. Assumes that States is the set of states and Transitions is the
set of transitions1. At the top level is a while-loop, which stops only if all states
have been visited. At line 2, Tarjan’s algorithm is used to identify a SCC [13]. If
the found scc is fair, a counterexample is generated (at line 5) and the algorithm
returns false. Without fairness assumptions, a SCC is fair if and only if it is
accepting to the Büchi automaton (i.e. Büchi fair). The complexity of checking
whether scc is fair or not under fairness assumption is linear in the size of scc. For
instance, under weak fairness, we must first identify the set of processes/events
that are always enabled and compare the set with the set of processes/events
that make progress.

If scc is not fair, a procedure prune is used to prune bad states from scc (at
line 8). Bad states are the reasons why scc is not fair. The intuition behind the
pruning is that there may be a fair strongly connected subgraph in the remaining

1 both of which may be constructed on-the-fly instead of known before-hand.



procedure mc(States,Transitions)

1. while there are un-visited states

2. let scc := tarjan(States,Transitions);

3. mark states in scc as visited;

4. if isFair(scc) = true then – *

5. generate a counterexample; – *

6. return false; – *

7. else – *

8. scc = prune(scc); – *

9. if mc(scc,Transitions) = false then – *

10. return false; – *

11. endif – *

12. endif – *

13. endwhile

14. return true;

Fig. 1. Algorithm for sequential model checking under fairness [31]

states after eliminating the bad states. By simply modifying isFair and prune
method, the algorithm can be used to handle different fairness. For instance,the
following defines the functions for event-level strong fairness [31].

isFair(scc) = true if and only if ∀ s : scc enabledEvt(s) ⊆ engagedEvt(scc)

where engagedEvt(scc) = {a | ∃ s, s ′ : scc s a→ s ′} is the set of events labeling a
transition between two states in scc, i.e. the set of events that can be engaged if
an execution visits only states in scc. Intuitively, scc satisfies event-level strong
fairness if and only if all enabled events are engaged in the SCC.

prune(scc) = {s : scc | enabledEvt(s) ⊆ engagedEvt(scc)}

In this setting, a state is bad if it enables an event which is not engaged in the
SCC. It is clear that if the SCC contains a fair strongly connected subgraph, no
state constituting the subgraph is pruned.

At line 9, a recursive call is made to check whether there is a fair strongly
connected subgraph within the remaining states. The call terminates in two
ways. One is that a fair subgraph is found (at line 6) and the other is that all
states in scc are pruned (at line 14).

Example 1. Assume that the automaton shown in Figure 2 is the product of
a LTS and a Büchi automaton. Further assume that state 2 is an accepting
state, i.e. any traces which visits state 2 infinitely often is accepting the Büchi
automaton. There are two SCCs, namely scc1 which is composed of state 1
only and scc2 which is composed of state 0, 2 and 3. State 0 is a bad state
in scc2 under event-level strong fairness since a ∈ enabledEvt(state 0) whereas
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Fig. 2. ESF Model Checking Example

a 6∈ engagedEvt(scc2). Notice that state 3 is not a bad state. As a result, state
0 is pruned. Next, in the recursive call, the SCC composed of state 2 and 3
are identified. However, state 3 becomes a bad state now because event c is
now enabled but not engaged. State 3 is pruned then. Lastly, state 2 is pruned.
Because scc1 does not contain an accepting state, it fails all isFair test. As a
result, no counterexample is found. 2

After a SCC has been fully examined (i.e., all pruned) at line 12, the algo-
rithm repeats from line 2 to check the next SCC. We remark that the algorithm
is a natural candidate for exploring multi-core parallelism. Firstly, examining
weather a SCC is fair or whether it contains fair strongly connected subgraph is
time consuming, and hence checking multiple SCCs in parallel is likely to gener-
ate significant saving. SCC fairness checking is linear in the number of transitions
connecting states of the SCC. Checking whether a SCC contains a fair strongly
connected subgraph is expensive. In the worst case, only one state is pruned each
time and therefore the complexity is bounded by the number of transitions times
the number of states. Secondly, different SCCs naturally exclude each other and
therefore checking them in parallel will not cause significant computational or
communication overhead.

4 Parallel Model Checking In Shared-Memory Platform

In this section, we present a parallel approach at the challenges of shared-memory
architecture and its specific characteristics. We will detail the algorithm design,
its complexity and correctness.

4.1 Shared-Memory Platform

We work with a model based on threads that share all memory, although they
have separate stacks in their shared address space and a special thread-local
storage to store thread-private data. Our working environment is .NET frame-
work (version 2.0) in Microsoft Windows platform, with its implementation of
threads as lightweight processes. Switching contexts among different threads is
cheaper than switching contexts among full-featured processes with separate
address spaces, so using threads in the system incurs only a minor penalty.



Critical Sections, Locking and Lock Contention In a shared-memory set-
ting, access to memory, that may be used for writing by more than a single
thread, has to be controlled through the use of mutual exclusion, otherwise, race
conditions will occur. This is generally achieved through use of a “mutual ex-
clusion device”, so-called mutex. A thread wishing to enter a critical section has
to lock2 the associated mutex, which may block the calling thread if the mutex
is locked already by some other thread. An effect called resource or lock con-
tention is associated with this behavior. This occurs, when two or more threads
happen to need to enter the same critical section (and therefore lock the same
mutex), at the same time. If critical sections are long or they are entered very
often, contention starts to cause observable performance degradation, as more
and more time is spent waiting for mutexes.

Memory Management and Thread Communication Microsoft .NET com-
mon language runtime requires that all resources be allocated from the managed
heap. Objects are automatically freed when they are no longer needed by the ap-
plication. The communication between threads can be achieved simply by object
reference passing.

4.2 Parallel Fairness Model Checking Algorithm

The SCC-based verification algorithm presented in the previous section is re-
cursive and employs a sequential DFS search, which exhibits some challenges in
parallelism.

scc1 scc2
scc4

scc3

The sequential algorithm in Figure 1 can be illustrated in the figure above.
When a SCC is detected, it will be analyzed and pruned until empty or there
is a counterexample detected (scc4 in above graph). Taking a close look at the
algorithm, we observe that there are four actions applied in each detected SCC:
(1) fairness testing (line 4), (2) bad states pruning (line 8), (3) counterexample
generation (line 5), (4) recursive sub-SCC detection (line 9). The first three ac-
tions are local to the detected SCC. Although the recursive sub-SCC detection
is complicated, we can create a local copy of the Tarjan algorithm to search
for “SCC” in the pruned states. In this way, each SCC can be processed in-
dependent. Therefore, we can put the workload of SCC analysis into separate
2 In .NET framework, keyword lock is used to achieve this effect.



stopped = false;

procedure run(threadPool ,States,Transitions)

1. visited = ∅;

2. while there are states in States but not in visited

3. if stopped then {return; }
4. let scc = tarjan(States,Transitions);

5. visited = visited ∪ scc;

6. if forking conditions then

7. threadPool .forkWorkerThread(scc,Transitions);

8. else

9. process scc locally

10. endif

11. endwhile

12. return;

Fig. 3. Tarjan Thread Implementation

threads to achieve concurrency. Inspired by these observations, we present a
SCC-based parallel model checking algorithm with four parts: Tarjan thread ,
SCC worker thread , SCC worker thread pool and parallel model checker . The
detailed algorithms are illustrated as follows.

Tarjan thread Figure 3 presents the implementation of Tarjan thread , which
identifies all SCCs using Tarjan’s algorithm. Tarjan thread has one public vari-
able stopped and the thread starting procedure run. stopped is a control variable
to stop this thread (line 3) as soon as a worker thread reports a counterexample.
When Tarjan thread starts, the run procedure will perform a DFS to detect all
SCCs in the search space using Tarjan’s algorithm. This process is similar to
mc procedure in Figure 1. When a SCC scc is detected at line 4, if the fork-
ing conditions at line 6 are satisfied, then a new SCC worker thread will be
forked and added in to the worker thread pool (line 7). Otherwise scc will pro-
cessed locally in the Tarjan thread (line 9). This local process is the same as the
SCC worker thread (which will be explained later), which stops this thread if a
counterexample is found. Forking conditions can be that the size of scc is bigger
than some threshold or the thread pool is full. We add this checking to achieve
better efficiency and workload balance. If the size of scc is small (e.g., only few
nodes), the overhead of creating a thread is much bigger than processing it lo-
cally. If the thread pool is full, processing the found scc locally is probably more
efficient than creating a long waiting queue in the thread pool.

SCC worker thread SCC worker thread works on a detected SCC to report
whether the SCC contains a counterexample or not within the given SCC states
and transitions. It basically resembles the code from line 4 to 12 (highlighted
using *) in Figure 1. If the detected SCC is not fair, it will prune the states



threadQueue = empty queue;

jobFinished = false;

procedure forkWorkerThread(States,Transitions)

1. lock(threadQueue);

2. if(!jobFinished)

3. let wt = new workerThread(States,Transitions);

4. register wt .termination to threadTermination procedure

5. threadQueue.enqueue(wt);

6. endif

7. unlock(threadQueue);

procedure threadTermination(thread)

8. lock(threadQueue);

9. if thread produces counterexample ∧ !jobFinished then

10. terminate all other threads

11. terminate tarjan thread

12. jobFinished = true;

13. endif

14. threadPool .remove(thread)

15. unlock(threadQueue);

procedure allThreadsJoin()

16. while(has running threads)

17. busy wait

18. endwhile

Fig. 4. Thread Pool Implementation

according to the given fairness type. Otherwise it will terminate and return
false. If the pruned scc has fewer states, a local copy of the Tarjan’s algorithm
will continue the searching. Upon the termination of SCC worker thread , a
notification will send to the thread pool to notify the result.

SCC worker thread pool The implementation of the SCC worker thread pool
is presented in Figure 4. The thread pool has a working queue threadQueue3 to
store all active worker threads. Private variable jobFinished indicates whether
a counterexample has been found or not. Procedure forkWorkerThread creates
a new worker thread (line 3) and puts it into the working queue (line 5), if
the counterexample is not found (line 2). A lock is used on threadQueue (at
line 1 and 7) to prevent Tarjan thread working too fast to add two or more

3 In our implementation, threadQueue is realized by System.Threading.ThreadPool
object in .NET Framework. The thread scheduling is managed by the thread pool
automatically.



procedure pmc(States,Transitions)

1. initialize worker thread pool threadPool

2. let tarjan = tarjanThread .run(threadPool ,States,Transitions);

3. tarjan.join();

4. threadPool .allThreadsJoin();

5. if counterexample is found then

6. return false;

7. return true;

Fig. 5. Parallel Model Checker Implementation

threads at same time. This is possible because during the process of forking
the first thread, Tarjan thread may find another SCC and want to fork a new
thread. At line 4, we register the termination event of the worker thread to
procedure threadTermination, which means upon the termination of the worker
thread, the thread pool will be notified and procedure threadTermination will
be triggered. When procedure threadTermination is triggered, if the termination
thread has located a counterexample and no one does it before (line 9), thread
pool will terminate4 all other active threads (line 10) and Tarjan thread (by
setting stopped flag to true) (line 11). Flag jobFinished is set to true at line 12,
hence new threads shall not be forked anymore. !jobFinished checking in line 9 is
necessary to prevent terminating same threads twice. In the end, the termination
thread is removed from thread pool in line 12. During this process threadQueue
is locked to prevent data race. Procedure allThreadsJoin does busy-waiting until
all threads terminate.

Parallel model checker Lastly, parallel model checker is shown in Figure 5.
It conducts the verification by creating the Tarjan thread and thread pool. Once
Tarjan thread starts, it will wait for Tarjan thread to join (i.e., successfully
terminate) (line 3). The termination can be that all states are explored, or a
counterexample is found locally, or stopped flag is set to false. Afterwards, it will
wait for thread pool to terminate (line 4). The procedure will return false if any
counterexample is found in tarjan thread or any worker thread.

4.3 Complexity and Soundness

In this section, we discuss the complexity of the parallel model checking algo-
rithm and prove its soundness.

For the sequential version of the algorithm, the time complexity for verifica-
tion under no fairness, event-level or process-level weak fairness or strong global

4 Thread termination can be achieved by thread killing or asking the thread to volun-
tarily give up. The second way is safer and adopted in our approach. One example
is the stopped flag in Tarjan thread .



fairness are similar, i.e., all linear in the number of system transitions. All states
in one SCC are discarded at once in all cases and, therefore, no recursive call is
necessary. Furthermore, the prune function is linear in the number of transitions
of a SCC. In comparison, SPIN’s model checking algorithm under process-level
weak fairness increases the run-time expense of a verification run by a factor
that is linear in the number of running processes. Verification under event-level
or process-level strong fairness is in general expensive. In the worst case (i.e.,
the whole system is strongly connected and only one state is pruned every time),
the prune method may be invoked at most #S times, where #S is the number
of system states. Thus, the time complexity is bounded by #S × #T where
#T is the number of transitions. In practice, however, if the property is false,
a counterexample is usually identified quickly, because our algorithm constructs
and checks SCCs on-the-fly. Even if the property is true, our experience suggests
that the worst case scenario is rare in practice.

For the parallel version of the algorithm, the time and space complexity is
exactly same as the sequential version. This is not surprising because the parallel
algorithm simply splits SCC analysis into worker threads. The parallel algorithm
is designed for a shared memory framework, the SCCs and their transitions are
shared between Tarjan thread and worker threads. There is no communication
overhead. If to migrate this approach into distributed systems, we may consider
to pass SCC only and let the worker threads to build the transitions locally to
avoid the communication overhead. The is because the number of transitions of
a SCC is often much larger than the number of vertices.

If the verification result is true, the number of states and transitions visited
in the parallel and sequential version are same. If there is a counterexample, the
parallel version may visit more states depending on when the counterexample is
identified. If a counterexample is present in the first few SCCs encountered during
the search, then the sequential version may find one quickly, while the parallel
version may have forked multiple threads to search in more SCCs. Hence parallel
version visits more states and transitions. On the other hand, if a counterexample
is present only in the last few SCCs, the parallel version can be faster than
the sequential version if the counterexample is identified quickly in one worker
thread, which then terminates all other SCC checking. This is evidenced by the
experiment results presented in Section 5. Notice that when there are more than
one counterexamples in the system, it is possible that the parallel verification
may produce different counterexample at different runs.

Regarding the soundness, the following theorem establishes correctness of
the sequential algorithm. The proof for different fairness can be found in our
technical report [30].

Theorem 1. Let L be an LTS. Let φ be a property. Let F be a fairness type
(i.e., EWF, PWF, ESF, PSF or SGF). L ²F φ if and only if the algorithm mc
returns true.

The following theorem states the correctness of the parallel algorithm pmc.
We argue the total correctness of the parallel algorithm by showing it is termi-
nating and equivalent to the sequential mc algorithm.



Theorem 2. Let L be an LTS. Let φ be a property. Let F be a fairness type
(i.e., EWF, PWF, ESF, PSF or SGF). L ²F φ if and only if the algorithm pmc
returns true.

Proof: Firstly, we show that the pmc algorithm is terminating. By the assump-
tion, we know that the number of states is finite, so is the number of the SCCs.
In Tarjan thread , the number of visited states and the pruned states are mono-
tonically increasing, hence the Tarjan thread is terminating. Worker threads are
terminating since they are working on the detected SCC and the number of
pruned states are monotonically increasing. Since the number of SCC is finite,
worker thread pool is terminating. Therefore pmc is terminating.

Secondly, we show that pmc returns the same result as mc. The key of this
proof is to prove that each SCC analysis is independent of each other. If this
true, then checking the SCCs in parallel is same as checking them sequentially.
We have listed the four actions performed in the SCCs in Section 4.1, which can
be applied independently.

Lastly, the correctness of data sharing and race condition prevention by using
locks have been discussed in Section 4.2. We skip it here. 2

Following the above theorem, we conclude that the sequential algorithm and
the parallel algorithm are equivalent in terms of correctness. Therefore as long
as the reduction is compatible with sequential algorithm, then it is compatible
with the parallel algorithm. For example, our previous work [32] shows that
partial order reduction is possible by employing fairness annotations on indi-
vidual events, which means this technique can also be used with our parallel
algorithm. We remark that pmc is orthogonal to state reduction techniques like
partial order reduction, symmetry reduction or data abstraction. Intuitively, the
parallel algorithm would perform better since it may utilize more CPU power.
Nonetheless, thread forking/terminating or communication between threads can
be costly. We present detailed analysis using real-world examples as well as hand
craft examples in the next section.

5 Experimental Results

Process Analysis Toolkit (hereafter PAT) is designed for systematic validation of
distributed/concurrent systems using state-of-art model checking techniques. Its
main functionalities include simulation, explicit on-the-fly model checking, and
verification under fairness. The model checker combines complementary model
checking techniques for system verification. In the following, we show its per-
formance on both benchmark systems as well as recently developed population
protocols, which require fairness for correctness. All the models (with config-
urable parameters) are embedded in the PAT package and available online at
our web site http://pat.comp.nus.edu.sg.

Regarding the threads scheduling, there are two approaches. The first ap-
proach is to manually assign a newly created thread to a free CPU-core. If
all CPU-cores are used, the new thread is pushed into the working queue and



Model Size Avg SCC/ SCC EWF ESF SGF
#SCC Ratio Result mc pmc Result mc pmc Result mc pmc

DP 5 67/13 0.36 No 0.08 0.08 Yes 0.22 0.20 Yes 0.19 0.19

DP 6 178/21 0.38 No 0.13 0.13 Yes 0.97 0.84 Yes 0.86 0.78

DP 7 486/31 0.4 No 0.38 0.37 Yes 4.62 3.39 Yes 4.42 3.38

DP 8 1368/43 0.41 No 1.41 1.33 Yes 29.28 19.49 Yes 32.90 22.14

LE C 3 22/3 0.33 Yes 0.11 0.11 Yes 0.11 0.11 Yes 0.10 0.10

LE C 4 24/15 0.47 Yes 0.53 0.47 Yes 0.52 0.47 Yes 0.46 0.45

LE C 5 34/43 0.58 Yes 4.04 3.66 Yes 4.03 3.65 Yes 3.66 3.49

LE C 6 48/103 0.64 Yes 23.12 21.39 Yes 23.05 21.54 Yes 21.91 20.14

LE C 7 66/227 0.68 Yes 128.8 124.4 Yes 129.5 124.3 Yes 133.9 127.2

LE C 8 86/479 0.71 Yes 604.3 600.5 Yes 615.8 606.6 Yes 721.9 684.4

LE R 3 9/268 0.36 No 0.11 0.11 No 0.12 0.12 Yes 1.40 1.27

LE R 4 9/2652 0.4 No 0.11 0.28 No 0.59 0.60 Yes 21.65 15.73

LE R 5 9/25274 0.42 No 0.71 0.72 No 2.22 2.19 Yes 587.0 456.4

TC R 4 16/1 0.01 No 0.06 0.07 No 0.07 0.06 Yes 0.11 0.12

TC R 5 60/1 0.01 No 0.08 0.08 No 0.08 0.08 Yes 0.45 0.48

TC R 6 84/2 0.01 No 0.11 0.11 No 0.11 0.11 Yes 2.20 2.38

TC R 7 210/2 0.01 No 0.14 0.14 No 0.15 0.16 Yes 11.28 12.31

TC R 8 330/3 0.01 No 0.19 0.20 No 0.25 0.23 Yes 69.55 72.98

TC R 9 756/3 0.01 No 0.27 0.31 No 0.36 0.37 Yes 494.4 572.7

Table 1. Experiment results on a PC running Windows XP with 2.83 GHz quad-core
Intel Q9550 CPU and 2 GB memory

wait.The second approach is to make each thread as operating system thread5,
and let the OS CPU scheduler to do the scheduling. We compared the two ap-
proaches, it shows that when the size of the SCCs is big, the two approaches
have same results. When the number of SCCs is big, the second approach is
more efficient. We applied second approach in our experiments.

In our experiments below, Size denotes the number processes in the models.
Besides the execution time of the sequential algorithm (mc) and parallel algo-
rithm (pmc), we present additional measurements which reflect the amount of
workload pmc can put in parallel if the verification result is true6. One is the
average size of nontrivial SCCs (denoted as Avg SCC Size) and the number of
SCC (denoted as #SCC ). A SCC is trivial if and only if it has only one state.
Intuitively, the parallel algorithm gains more saving with larger and more SCCs.
The other is the ratio of the number of states of all (non-trivial) SCCs and the
whole state space (denoted as SCC Ratio). Intuitively, a higher SCC Ratio shall
lead to more saving. The forking condition is that the SCC must have at least
100 states. ‘-’ means out of memory. The unit of time measurement is second.

Table 1 summarizes the verification statistics on classic dinning philosophers
problem (DP), and recently developed population protocols. The population

5 In our implementation, we use System.Threading.ThreadPool object in .NET frame-
work 2.0 to create system threads in Microsoft Windows system.

6 When the property is false, SCC Ratio can be different for different runs.



Model Size Avg SCC/ SCC EWF ESF SGF
#SCC Ratio Result mc pmc Result mc pmc Result mc pmc

PAR1 5 10001/5 0.2 No 1.75 2.11 Yes 22.50 12.03 Yes 11.33 6.97

PAR1 6 10001/6 0.2 No 1.74 2.07 Yes 27.10 14.81 Yes 13.59 8.13

PAR1 7 10001/7 0.2 No 1.71 2.29 Yes 31.22 16.66 Yes 15.89 9.14

PAR1 8 10001/8 0.2 No 1.71 2.16 Yes 36.08 18.04 Yes 18.09 10.60

PAR1 9 10001/9 0.2 No 1.71 2.15 Yes 40.59 20.85 Yes 20.40 11.90

PAR1 10 10001/10 0.2 No 1.73 2.15 Yes 45.29 22.63 Yes 22.81 13.07

PAR2 4 20000/5 0.5 No 5.46 7.12 NA - - Yes 8.87 5.52

PAR2 5 20000/6 0.5 No 6.05 9.53 NA - - Yes 18.32 8.64

PAR2 6 20000/7 0.5 No 6.39 10.51 NA - - Yes 21.37 9.32

PAR2 7 20000/8 0.5 No 6.90 11.41 NA - - Yes 24.50 9.69

PAR2 8 20000/9 0.5 No 7.77 11.65 NA - - Yes 27.86 11.82

PAR2 9 20000/10 0.5 No 8.06 12.76 NA - - Yes 30.89 13.68

PAR3 7 2000/8 1 No 0.29 0.20 Yes 411.5 117.6 Yes 0.41 0.28

PAR3 8 2000/9 1 No 0.21 0.24 Yes 463.1 135.7 Yes 0.45 0.29

PAR3 9 2000/10 1 No 0.25 0.23 Yes 515.7 155.8 Yes 0.49 0.31

Table 2. Experiment results on a PC running Windows XP with 2.83 GHz quad-core
Intel Q9550 CPU and 2 GB memory

protocols include leader election for complete networks (LE C ) [11], for network
rings (LE R) [11] and token circulation for network rings (TC R) [1]. We modify
the DP model so that it is deadlock-free (i.e., by letting one of the philosophers to
pick up the forks in a different order). The property is that a philosopher never
starves to death, i.e., 23eat .0, where eat .0 is the event of 0-th philosopher
eating. The property for the leader election protocols is that eventually always
there is one and only one leader in the network, i.e., 32oneLeader . Correctness
of all these algorithms relies on different notions of fairness.

In Table 1, we can see that when the verification result is false, either pmc
or mc can be faster, which is expected. When the verification result is true, pmc
is faster in most of the cases, except in the case of model checking the TC R
example under strong global fairness. In this particular example, SCC ratio is
very low (0.01), which means that there are many trivial SCCs. Furthermore,
there are only few non-trivial SCCs. As a result, there is little work that can
be separated out for the worker threads to speed up the model checking, and
the communication overhead makes pmc slower. On the other hand, the pmc
slowdown in this case is only several percents of mc, which shows that the
communication overhead in pmc is low.

Table 2 summarizes the verification statistics on some hand craft examples
to show the potential effectiveness of the parallel algorithm. We create three
models (PAR1, PAR2 and PAR3) such that the their state space contains several
SCCs, each of which has big number of states. As a result, worker threads can
be dispatched with substantial workload. Correctness of all these algorithms
requires ESF and SGF.
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Fig. 6. Results on Intel Core2 6600 CPU
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Fig. 7. Results on Intel Q9550 CPU

In Table 2, we can see that pmc is working well in PAR1 example, where
the average SCC size is big and the SCC ratio is not very low. The performance
is even better (60% speedup) when the SCC ratio increases to 0.5 in PAR2
example. The PAR3 example almost produces the ideal case (72% speedup)
such that the four cores are fully loaded. Since there are more SCCs than cores,
further speedup could be achieved if there were more cores. ESF case in PAR2
gives a worst case mentioned in Section 4.3 for strong fairness checking, hence
it ends up with out of memory exception.

The experiment results in Table 1 and 2 confirm that the speedup of parallel
verification relies on the size and the number of non-trivial SCCs. Each SCC has
four analysis actions as described in Section 4.1. If the size of SCCs is big and/or
the number of SCCs is more than the number of cores, each worker thread will
make full use of the available CPU-cores. Overall, pmc performs better than mc
for big average SCC size and high SCC ratio.

To study the scalability of our approach with different number of CPU cores,
we conduct the same experiments (model checking examples in Table 1 and
PARA1 example under strong global fairness)7 on a dual-core CPU (Figure 6)
and a quad-core CPU8 (Figure 7). The coordinate of each point (x , y) in the
graphs represents mc execution time and pmc execution time of a model corre-
spondingly. From the figures we can see that, points in Figure 6 are scattered
between line y = x and y = 2x , while points in Figure 7 are scattered be-
tween line y = 2x and y = 3x . The average speedup of the parallel algorithm is
22.9% for quad-core CPU and 11.2% for dual-core CPU. This suggests that our
approach is scalable for more CPU cores in general.

Besides PAT, there are a number of model checkers which are designed for
similar application domains. It is, however, not easy to compare PAT with

7 PARA2 and PARA3 have high average SCC size and SCC ratio which is rare in real
systems, so we exclude them in the salability testing.

8 Since we calculate the speedup of pmc compared to mc, the absolute speed of the
two CPUs is not important.



them. For instance, the refinement checker FDR does not support shared vari-
ables/arrays, and therefore, FDR’s model is significantly different from PAT’s.
Further, FDR has no support for multi-core. The model checker SPIN supports
verification of LTL properties. The multi-core parallel algorithm in SPIN is de-
signed for model checking based on nested depth-first search. Nested depth-first-
search works well for verification under no fairness. It can be twisted to perform
model checking under fairness in the price of significant computational overhead,
which has been shown in [31]. As a result, it makes little sense here to compare
performance of our parallel algorithm with SPIN’s.

6 Related Works

LTL parallel verification is an active research area due to the prevalence of the
multi-core CPU and distributed systems. There are various approaches in the
literature, as discussed below.

Holzmann proposed an extension of the SPIN model checker for dual-core
machines in [16]. The algorithms keep their linear time complexity and the live-
ness checking algorithm supports full LTL. The algorithm for checking safety
properties scales well to N-core systems. The algorithm for liveness checking,
which is based on the original SPIN’s nested DFS algorithm, can only be ap-
plied in dual-core systems. Furthermore, our approach handles different forms
of fairness, while SPIN handles only process level weak fairness.

Lafuente [22] presented a cycle localization algorithm based on nested DFS,
which is very similar to our ideas. In their approach, the main thread performs
the first DFS to identify an accepting state, and the worker threads perform the
second DFS to detect the fair cycle from the accepting state. Compared to this
solution, our approach has the advantage that each SCC will be checked by one
and only one worker thread.

A multi-core LTL model checking algorithm based on known distributed-
memory algorithms is presented in [2]. This algorithm is linear for properties
expressible as weak Büchi automata. However, the worst case complexity is
quadratic. Our approach has no restriction on the types of LTL, and has linear
time complexity in worst case.

A different approach to shared-memory model checking is presented in [19]
based on CTL* translation to Hesitant Alternating Automata. The proposed
algorithm uses non-emptiness game for deciding validity of the original formula
and is therefore largely unrelated to the algorithms based on fair-cycle detection.

Barnat, Chaloupka and Pol gave a comprehensive survey in the distributed
SCC decomposition algorithms [3]. We briefly list some of important ones in
the following. These algorithms are designed for distributed systems and has
quadratical or cubic order of complexity.

MAP The idea of the Maximal Accepting Predecessor algorithm [7, 8] relies on
the fact that every accepting vertex inside an accepting cycle is its own prede-
cessor. Direct implementation from this idea would give expensive computation



and store all proper accepting predecessors of all (accepting) vertices. To solve
this problem, the MAP algorithm stores only a single representative of all proper
accepting predecessor. The time complexity of the algorithm is O(a2×m), where
a is the number of accepting vertices and m is the number of edges.

OWCTY The One Way Catch Them Young algorithm [12, 9] is to try to re-
peatedly remove vertices from the graph that cannot lie on an accepting cycle.
The two removal rules of this algorithm are explained as follows: (1) a vertex is
removed from the graph if it has no successors in the graph (the vertex cannot
lie on a cycle), and (2) a vertex is removed if it cannot reach an accepting vertex
(a potential cycle the vertex lies on is non-accepting). The algorithm continues
the removal steps until there are more vertices to be removed. In the end, either
there are some vertices remaining in the graph meaning that the original graph
contained an accepting cycle, or all vertices have been removed meaning that the
original graph had no accepting cycles. The time complexity of the algorithm is
O(h × m) where h is the height of the SCC quotient graph. Here the factor m
comes from the computation of elimination rules while the factor h relates to
the number of global iterations the removal rules must be applied.

NEGC The idea behind the Negative Cycle Algorithm [6] is to transform the
LTL model checking problem to the problem of negative cycle detection. Every
edge of the graph outgoing from a non-accepting vertex is labeled with 0 while
every edge outgoing from an accepting vertex is labeled with 1. Clearly, the
graph contains a negative cycle if and only if it has an accepting cycle. The
worst case time complexity of the algorithm is O(n×m), where n is the number
of vertices and m is the number of edges.

OBF This algorithm is based on a recent technique OWCTY-BWD-FWD
(OBF) [4, 5]. It identifies a number of independent subgraphs (called OBF slices)
in O(n+m) time, where n is the number of vertices and m is the number of edges.
The slices are then decomposed using the FB algorithm. This algorithm assumes
the input graph to be rooted, i.e., we have an initial vertex from which all other
vertices are reachable. The time complexity of the algorithm is O(n × (n + m)).

7 Conclusion

In this work, we proposed a parallel LTL-verification on fairness enhanced sys-
tems in multi-core shared-memory architecture. Based on the Tarjan’s algorithm,
our approach separated the SCC analysis into workers threads by careful algo-
rithm design. Our approach is holistic, which does not only take care of LTL
verification but also check the fairness constraints satisfaction in one goal. Fair-
ness enhanced systems may contains big and complicated SCC structures in the
state space. Our approach can split the workload to worker threads to achieve
performance improvement. The solution is on-the-fly and the complexity is linear
to the size of state space. We have implemented this technique in our home grown



model checker PAT. The experimental results on real world systems suggested
our solution is efficient and scalable to multi-cores.

It is a well known fact, that a distributed-memory, parallel algorithm is
straightforwardly transformed into a shared-memory one. But not vise verse.
One of the future work is to migrate our approach into distributed systems with
the aim of minimizing the communication overhead. Furthermore, we will con-
duct more experiments in the future to see both the scalability and limitations
with more CPU cores.
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