
Formal Analysis of Pervasive

Computing Systems
Yan Liu1, Xian Zhang1, Yang Liu1, Jun Sun2, Jin Song Dong1, Jit

Biswas3, Mounir Mokhtari4

1 National University of Singapore 2 Singapore University of Technology and Design

3 Institute for Infocomm Research, Singapore 4 CNRS-IPAL/Institut TELECOM

ICECCS 2012

Outline

•Motivation

• Formal Analysis Approach

– Formal modeling framework

– Formal specification of critical properties

• Case Study

• Related Work

• Conclusion and Future Work

7/19/2012
Formal Analysis of Pervasive Computing

Systems
2

8

Data

Acquisition

Context

Understanding

Reminder

Service

Inference

Engine Raw Data eg.

PIR Sensor event,

Light Switch event

Abnormal Behavior eg:

Wandering in Kitchen,

Showering too long etc.

Customizations Bathroom shower usage

sensor

Living room Chair

occupancy sensor

Bed occupancy sensor

Reminder on TV

Alert on Care-giver’s

mobile

Set-top box / Residential

Gateway

Context eg.

Occupying chair,

Using Kettle,

Entering door etc.

A Typical Example: AMUPADH
-- Activity Monitoring and UI Plasticity for supporting

Ageing with mild Dementia at Home

7/19/2012
Formal Analysis of Pervasive Computing

Systems
3

Motivation

A.PvC systems are safety-critical and their correctness

should be verified, but they are complex:

– Ad hoc interactions among layers

– Unpredictable environment inputs

– Faults in multi-layers

 e.g. :

• Reminder conflicts

• False reasoning rules

• Sensor fails

7/19/2012
Formal Analysis of Pervasive Computing

Systems
4

Motivation

A.PvC Systems are safety-critical and highly complex

B.Analyze PvC systems via testing is non-trivial
– High cost: deploy the sensors and software system

– Difficult: acting like a real user

– Not complete: explore partial system behavior only

– Hard to debug: no clue for pinpointing source of bugs (manually
checking every part of the system)

Our propose: Use formal methods, esp. model
checking

– Formalisms for concurrent interaction

– Automatic verification and exhaustive search

– Counterexamples for bug tracking

7/19/2012
Formal Analysis of Pervasive Computing

Systems
5

Formal Analysis Approach:

The Process

Collect

Information from

Stakeholders

Description:

i. user behaviors

ii. system design

Description:

critical requirements

Formal Specification:

Safety property,

Liveness property etc.

Formal Modeling:

Environment,

System Design

Model Checker

Counterexamples

7/19/2012
Formal Analysis of Pervasive Computing

Systems
6

Formal Analysis Approach:

 Formal Modeling Framework

• What to model: Critical behaviors & Interactions

• As for a PvC system:
– It’s user centered:

• Model Environment Inputs: User behaviors & Environment

constraints

– It’s a system of systems:

• Model each sub-system specifically:

– Sensor layer

– Middleware layer

– Application layer

• Model the compositional structures:

– Sequential, Interleave and Parallel

7/19/2012
Formal Analysis of Pervasive Computing

Systems
7

Formal Modeling Framework

• Modeling Environment Inputs:
– User behaviors:

• Patient_proc(id) = activity1.id->location_1(id)

• [] activity2.id ->location_2(id);

• event prefixing & choice constructs

– Environment constraints:
• Synchronized behaviors

• Bed1() = activity1.0 -> Bed1_Occupied(0)

 [] activity1.1 -> Bed1_Occupied(1);

• event synchronization and choices

– Multi-user sharing environment:
• Env() = (Patient_proc(0) ||| Patient_proc(1)) || Bed1()

• parameterized processes, interleaving(|||) and Parallel

7/19/2012
Formal Analysis of Pervasive Computing

Systems
8

Formal Modeling Framework

• Modeling Environment Inputs:
• Modeling System Design:

– Sensor Layer: sensing and data transmission
• Sensor() = activity1.id -> port!sensorId.statusId.id->Sensor();
• Concurrent Communications:

– Multi-Party Event Synchronization for sensor interacts with environment
– Channels “port” for sensor interacts with system

• Refreshing Rates:
– TimelySensing() = Sensor() within[10];
– Real time constructs such as “within[t]” in Stateful Timed CSP

• Sensor Failure:
– FaultySensor() = pcase{ 9: Sensor()
 1: fail->Skip}; FaultySensor();
– Probabilistic language constructs such as “pcase” in PCSP or PRTS

– Middleware Layer:
• Shared Contexts: global variables
• Reasoning Process (Rules): guarded processes or conditional

statements
– rule1() = if(conditions){chan!msg -> Skip};

7/19/2012
Formal Analysis of Pervasive Computing

Systems
9

Formal Modeling Framework

• Modeling Environment Inputs:

• Modeling System design:
– Sensor Layer:

– Middleware Layer:

– Application Layer: channel communication and events

• Composing A Complete Model:
– Composition patterns in hierarchical modeling languages such

as CSP#
• Sequential Composition(;): workflows

• Interleave Composition(|||): processes proceed independently

• Parallel Composition(||): concurrent behaviors

7/19/2012
Formal Analysis of Pervasive Computing

Systems
10

Formal Analysis Approach: Revisit

• Formal modeling framework
–Environment inputs:

 user behaviors & environment constraints

–Sensor behaviors:

 sensing behaviors & data transmission

–Middleware layer:

 shared contexts & reasoning process

–Application layer:

 service adaptation & channel communication

–Composition patterns:

 sequential, interleave & parallel

• Next: Formal specification of critical requirements

7/19/2012
Formal Analysis of Pervasive Computing

Systems
11

• Desirable properties:
– Deadlock freeness (check for dead state)

• In a dead state, the system will stop reacting.

– Guaranteed services (Linear Temporal Logic)

• The system will deliver the service whenever certain situation
happens.

• Eg. If a patient is wandering in a room, the leave-room-reminder
should eventually prompt.

• [](PatientWandering-> <>LeaveRoomReminder)

– Security Related Properties (Linear Temporal Logic)
• Access control of user’s confidential profiles

• Eg. A food delivery person should not have access to the patient’s medical
records.

• [](FoodDeliveryPerson -> not (<> AccessPatientProfile))

Formal Analysis Approach:
Formal specification of properties

7/19/2012
Formal Analysis of Pervasive Computing

Systems
12

• Testing Purposes (Reachability checking):
– System Inconsistency

• System knowledge is not consistent with actual environment.

• Eg. A PIR sensor detects nobody in the room, but the context variable
recording user’s location shows one in the room.

• In CSP#, it is defined as:

• #define inconsist (PIR_room == Silent && LocationUser == inRoom);

• #assert system reaches inconsist;

– Conflicting/ False Service Adaptation
• Two services resulting conflict consequences adapt in the same time.

• In multi-people sharing environment, a service adapts to a wrong person.

• Eg. In AMUPAD, a sit-bed-too-long-reminder is sent to patient 1 who’s not in
bedroom at the time.

• In CSP#, #define FalseAlarm (SBTL_reminder[1] && LocationP1 != Bedroom);

• #assert system reaches FalseAlarm;

– Anomalies in reasoning rules: duplications, conflicts & unreachble
rules etc.

Formal specification of properties

7/19/2012
Formal Analysis of Pervasive Computing

Systems
13

Case Study: Verification Results

Bugs? Property Result #State #Transitions Execution

Time(s)

- P1.1 - - - OOM

 P1.2 True 1433654 2038064 815

 P1.3 True 10783353 15832370 7045

 P2.1 True 1599797 2430351 1945

 P2.2 False 68178 130734 39

 P2.3 False 2192251 4531005 12414

 P2.4 False 832144 1663779 729

 P2.5 False 4314 5150 1.6

 P2.6 True 1579579 2377381 1913

 P3 True 572 745 0.3

 P4.1 True 14675 20615 6.1

 P4.2 True 2446 3036 1.11

 P4.3 True 2332744 3001756 1047

7/19/2012
Formal Analysis of Pervasive Computing

Systems
14

• Modeling language: Communicating Sequential Program(CSP#)

• Model checker: PAT

Reminder

fails to send

Inconsistency

&

Reminder

Conflicts

Tool Introduction—

Process Analysis Toolkit (PAT)
• PAT is a framework of model checkers:

– Each module is a model checker:

7/19/2012
Formal Analysis of Pervasive Computing

Systems
15

Tool Introduction—

 Process Analysis Toolkit (PAT)
• PAT is available at http://www.patroot.com

• Used as an educational tool in NUS and York University

• PAT has 2000+ registered users from 400+ organizations in 52

countries and regions

7/19/2012
Formal Analysis of Pervasive Computing

Systems
16

http://www.patroot.com/

Conclusion & Future Work

• Formal analysis of pervasive computing
system:
– Formal modeling framework
– Formal specification of critical requirements
– Case study of a smart healthcare system for elderly dementia

people
– Found bugs!

• In Future: Handling large state space
– BDD encodings of system space: can handle much larger space

than explicit state verification

– Compositional Verification: Verify system property by verified
sub-systems

7/19/2012
Formal Analysis of Pervasive Computing

Systems
17

7/19/2012
Formal Analysis of Pervasive Computing

Systems
18

Sensors
Reasoning

Engine

Reminder

System

Patients’

ADL

Monitored by Feedback to

System

7/19/2012
Formal Analysis of Pervasive Computing

Systems
19

Case Study: AMUPADH modeling

• Modeling language: Communicating Sequential Program(CSP#)

– Supports modeling of concurrent interactions and hierarchical structures

– Supports shared variables and programming features

• Model checker: PAT

Case Study: Property Specification

• P1: Deadlock freeness
– P1.1 #assert SmartNursingHome() deadlockfree;

– P1.2 #assert SmartBedroom() deadlockfree;

– P1.3 #assert SmartShowerRoom() deadlockfree;

• P2: Guaranteed reminder
– P2.1 – P2.6 6 reminders: 2 in bedroom and 4 in shower room

• P3: System inconsistency:
– PIR sensor in shower room case

• P4: Conflicting/False Alarm

– P4.1 Conflicting reminders:

– Shower-Using-Soap-Reminder and Leave-Room-Reminder send at the same time

resulting patient to be confused.

– P4.2 False reminder:

– Sit-Bed-Too-Long-Reminder is sent to patient 1 who’s not in the bedroom.

7/19/2012
Formal Analysis of Pervasive Computing

Systems
20

Case Study: Bug Report

• System inconsistency

– The bug: shower room is empty in real environment,
however the location of person 1 remains in Shower Room

– enterShowerRoom.1 -> turnOnTap -> exitShowerRoom.1 ->
port.PIRShowerRoom.Silent

• False alarm

– The bug: person 1 is not in the bedroom, however sit-too-
long reminder is sent to him

– enterBedroom.2 -> sitOnBed.2.1 -> promptReminder

• Conflicting reminders

– Apply soap reminder and wandering in the shower room
reminder both prompted to the same patient

– enterShowerRoom.1 -> res.Error.WanderInShowerRoom.1 -> promptReminder.Wander -
> turnOnTap -> res.Error.ShowerNoSoap.1 -> promptReminder.Soap

7/19/2012
Formal Analysis of Pervasive Computing

Systems
21

Related Works
• Papers:

– TCOZ model of a smart meeting room
• ISoLA’06, Jin Song Dong et al. [DFSS06]

– Ambient Calculus model for location sensitive smart hospital
• TECS 2010, Antonio Coronato et al. [CP10]

– A-FSM and fault patterns for Context-Aware Adaptive
Applications
• TSE 2010, Michele Sama et al. [SER+10]

– Towards Verification of Pervasive Computing Systems
• FMIS’09, Myrto Arapinis et al. [ACD+09]

• The modeling languages are not hierarchical
– no support for compositional structures/layered system

architectures

• There is no automatic tool support
– limited applicability to large PvC systems

7/19/2012
Formal Analysis of Pervasive Computing

Systems
22

References
 [EG01]W. Keith Edwards and Rebecca E. Grinter. At home with ubiquitous computing: Seven

challenges. In Proceedings of the 3rd international conference on Ubiquitous Computing,
UbiComp '01, pages 256-272, London, UK, 2001. Springer-Verlag.

 [Sat01] M. Satyanarayanan. Pervasive computing: Vision and challenges. IEEE Personal
Communications, 8:10-17, 2001.

 [DFSS06] Jin Song Dong, Yuzhang Feng, Jing Sun, and Jun Sun. Context awareness systems
design and reasoning. In Proceedings of the Second International Symposium on Leveraging
Applications of Formal Methods, Verication and Validation, pages 335-340, Washington, DC,
USA, 2006. IEEE Computer Society.

 [CP10] Antonio Coronato and Giuseppe DE Pietro. Formal specication of wireless and
pervasive healthcare applications. ACM Trans. Embed. Comput. Syst., 10:12:1-12:18, August
2010.

 [SER+10] Michele Sama, Sebastian Elbaum, Franco Raimondi, David S. Rosenblum, and
Zhimin Wang. Context-aware adaptive applications: Fault patterns and their automated
identication. IEEE Trans. Softw. Eng., 36:644-661, September 2010.

 [ACD+09] Myrto Arapinis, Muy Calder, Louise Denis, Michael Fisher, Philip D. Gray, Savas
Konur, Alice Miller, Eike Ritter, Mark Ryan, Sven Schewe, Chris Unsworth, and Rehana
Yasmin. Towards the verication of pervasive systems. ECEASST, 22, 2009.

7/19/2012
Formal Analysis of Pervasive Computing

Systems
23

