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A Typical Example: AMUPADH  
-- Activity Monitoring and UI Plasticity for supporting  

Ageing with mild Dementia at Home  

7/19/2012 
Formal Analysis of Pervasive Computing 

Systems 
3 



Motivation 

A.PvC systems are safety-critical and their correctness 

should be verified, but they are complex: 

– Ad hoc interactions among layers 

– Unpredictable environment inputs 

– Faults in multi-layers  

 e.g. : 

• Reminder conflicts 

• False reasoning rules 

• Sensor fails 
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Motivation 

A.PvC Systems are safety-critical and highly complex 

B.Analyze PvC systems via testing is non-trivial 
–  High cost: deploy the sensors and software system 

–  Difficult: acting like a real user  

–  Not complete: explore partial system behavior only 

–  Hard to debug: no clue for pinpointing source of bugs (manually 
checking every part of the system) 

Our propose: Use formal methods, esp. model 
checking 

– Formalisms for concurrent interaction 

– Automatic verification and exhaustive search 

– Counterexamples for bug tracking 
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Formal Analysis Approach:  

The Process 
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Description: 
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Environment, 
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Model Checker 
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Formal Analysis Approach: 

 Formal Modeling Framework 

• What to model: Critical behaviors & Interactions 

• As for a PvC system: 
–  It’s user centered:  

• Model Environment Inputs: User behaviors & Environment 

constraints 

–  It’s a system of systems:  

• Model each sub-system specifically: 

– Sensor layer 

– Middleware layer  

– Application layer 

• Model the compositional structures: 

– Sequential, Interleave and Parallel 
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Formal Modeling Framework 

• Modeling Environment Inputs: 
– User behaviors:  

• Patient_proc(id) = activity1.id->location_1(id)  

•                            [] activity2.id ->location_2(id); 

• event prefixing & choice constructs 

– Environment constraints:  
• Synchronized behaviors 

• Bed1() = activity1.0 -> Bed1_Occupied(0) 

   [] activity1.1 -> Bed1_Occupied(1); 

• event synchronization and choices 

– Multi-user sharing environment:  
• Env() = (Patient_proc(0) ||| Patient_proc(1))  || Bed1() 

• parameterized processes, interleaving(|||) and Parallel 
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Formal Modeling Framework 

• Modeling Environment Inputs: 
• Modeling System Design: 

– Sensor Layer: sensing and data transmission 
• Sensor() = activity1.id -> port!sensorId.statusId.id->Sensor(); 
• Concurrent Communications:  

– Multi-Party Event Synchronization for sensor interacts with environment 
– Channels “port” for sensor interacts with system  

• Refreshing Rates:  
– TimelySensing() = Sensor() within[10]; 
– Real time constructs such as “within[t]” in Stateful Timed CSP 

• Sensor Failure: 
– FaultySensor() = pcase{  9: Sensor() 
   1: fail->Skip}; FaultySensor(); 
– Probabilistic language constructs such as “pcase” in PCSP or PRTS 

– Middleware Layer: 
• Shared Contexts: global variables 
• Reasoning Process (Rules): guarded processes or conditional 

statements 
– rule1() = if(conditions){chan!msg -> Skip}; 
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Formal Modeling Framework 

• Modeling Environment Inputs: 

• Modeling System design: 
– Sensor Layer: 

– Middleware Layer: 

– Application Layer: channel communication and events 

• Composing A Complete Model:  
–  Composition patterns in hierarchical modeling languages such 

as CSP# 
• Sequential Composition(;): workflows 

• Interleave Composition(|||): processes proceed independently 

• Parallel Composition(||): concurrent behaviors 
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Formal Analysis Approach: Revisit 

• Formal modeling framework 
–Environment inputs:  

 user behaviors & environment constraints 

–Sensor behaviors:  

 sensing behaviors & data transmission 

–Middleware layer:  

 shared contexts & reasoning process 

–Application layer:  

 service adaptation & channel communication 

–Composition patterns: 

 sequential, interleave & parallel 

• Next: Formal specification of critical requirements 
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• Desirable properties: 
– Deadlock freeness (check for dead state) 

• In a dead state, the system will stop reacting. 

– Guaranteed services (Linear Temporal Logic) 

• The system will deliver the service whenever certain situation 
happens. 

• Eg. If a patient is wandering in a room, the leave-room-reminder 
should eventually prompt. 

• [](PatientWandering-> <>LeaveRoomReminder) 

– Security Related Properties (Linear Temporal Logic) 
• Access control of user’s confidential profiles 

• Eg. A food delivery person should not have access to the patient’s medical 
records. 

• [](FoodDeliveryPerson -> not (<> AccessPatientProfile)) 

 

Formal Analysis Approach:   
Formal specification of properties  
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• Testing Purposes (Reachability checking): 
– System Inconsistency 

• System knowledge is not consistent with actual environment. 

• Eg. A PIR sensor detects nobody in the room, but the context variable 
recording user’s location shows one in the room. 

• In CSP#, it is defined as: 

• #define inconsist (PIR_room == Silent && LocationUser == inRoom); 

• #assert system reaches inconsist; 

– Conflicting/ False Service Adaptation  
• Two services resulting conflict consequences adapt in the same time.  

• In multi-people sharing environment, a service adapts to a wrong person. 

• Eg. In AMUPAD, a sit-bed-too-long-reminder is sent to patient 1 who’s not in 
bedroom at the time. 

• In CSP#, #define FalseAlarm (SBTL_reminder[1] && LocationP1 != Bedroom); 

• #assert system reaches FalseAlarm; 

– Anomalies in reasoning rules: duplications, conflicts & unreachble 
rules etc. 

 

Formal specification of properties  
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Case Study: Verification Results 

Bugs? Property Result #State #Transitions Execution 

Time(s) 

-  P1.1 - - - OOM 

 P1.2 True 1433654 2038064 815 

 P1.3 True 10783353 15832370 7045 

 P2.1 True 1599797 2430351 1945 

 P2.2 False 68178 130734 39 

 P2.3 False 2192251 4531005 12414 

 P2.4 False 832144 1663779 729 

 P2.5 False 4314 5150 1.6 

 P2.6 True 1579579 2377381 1913 

 P3 True 572 745 0.3 

 P4.1 True 14675 20615 6.1 

 P4.2 True 2446 3036 1.11 

 P4.3 True 2332744 3001756 1047 
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• Modeling language: Communicating Sequential Program(CSP#) 

• Model checker: PAT 

Reminder 

fails to send 

Inconsistency 

& 

Reminder 

Conflicts 



Tool Introduction— 

Process Analysis Toolkit (PAT) 
• PAT is a framework of model checkers: 

– Each module is a model checker: 
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Tool Introduction— 

 Process Analysis Toolkit (PAT) 
• PAT is available at http://www.patroot.com 

• Used as an educational tool in NUS and York University  

• PAT has 2000+ registered users from 400+ organizations in 52 

countries and regions 
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Conclusion & Future Work 

• Formal analysis of pervasive computing 
system: 
– Formal modeling framework 
– Formal specification of critical requirements 
– Case study of a smart healthcare system for elderly dementia 

people 
– Found bugs! 

• In Future: Handling large state space 
– BDD encodings of system space: can handle much larger space 

than explicit state verification 

– Compositional Verification: Verify system property by verified 
sub-systems 
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Case Study: AMUPADH modeling 

• Modeling language: Communicating Sequential Program(CSP#) 

– Supports modeling of concurrent interactions and hierarchical structures 

– Supports shared variables and programming features 

• Model checker: PAT 



Case Study: Property Specification 

• P1: Deadlock freeness 
– P1.1 #assert SmartNursingHome() deadlockfree; 

– P1.2 #assert SmartBedroom() deadlockfree;  

– P1.3 #assert SmartShowerRoom() deadlockfree;  

• P2: Guaranteed reminder 
– P2.1 – P2.6 6 reminders: 2 in bedroom and 4 in shower room 

• P3: System inconsistency:  
– PIR sensor in shower room case 

• P4: Conflicting/False Alarm 

– P4.1 Conflicting reminders:  

– Shower-Using-Soap-Reminder and Leave-Room-Reminder send at the same time 

resulting patient to be confused. 

– P4.2 False reminder:  

– Sit-Bed-Too-Long-Reminder is sent to patient 1 who’s not in the bedroom. 
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Case Study: Bug Report 

• System inconsistency 

– The bug: shower room is empty in real environment, 
however the location of person 1 remains in Shower Room 

– enterShowerRoom.1 -> turnOnTap -> exitShowerRoom.1 -> 
port.PIRShowerRoom.Silent  

• False alarm 

– The bug: person 1 is not in the bedroom, however sit-too-
long reminder is sent to him 

– enterBedroom.2 ->  sitOnBed.2.1 ->  promptReminder 

• Conflicting reminders 

– Apply soap reminder and wandering in the shower room 
reminder both prompted to the same patient 

– enterShowerRoom.1 -> res.Error.WanderInShowerRoom.1 -> promptReminder.Wander -
>  turnOnTap  -> res.Error.ShowerNoSoap.1 -> promptReminder.Soap  
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Related Works 
• Papers: 

– TCOZ model of a smart meeting room 
• ISoLA’06, Jin Song Dong et al. [DFSS06]  

– Ambient Calculus model for location sensitive smart hospital 
• TECS 2010, Antonio Coronato et al. [CP10]  

– A-FSM and fault patterns for Context-Aware Adaptive 
Applications 
• TSE 2010, Michele Sama et al. [SER+10]  

– Towards Verification of Pervasive Computing Systems 
• FMIS’09, Myrto Arapinis et al. [ACD+09]  

• The modeling languages are not hierarchical 
– no support for compositional structures/layered system 

architectures 

• There is no automatic tool support  
– limited applicability to large PvC systems 
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