Formal Analysis of Pervasive Computing Systems

Yan Liu, Xian Zhang, Jin Song Dong Yang Liu
School of Computing, National University of Singapore Temasek Lab, National University of Singapore
Email: {yanliu, zhangxi5, dongjs@comp.nus.edu.sg Email: tslliuya@nus.edu.sg
Jun Sun Jit Biswas Mounir Mokhtari
Singapore University of Technology and Desilgistitute for Infocomm Research CNRS-IPAL/Institut TELECOM
Email: sunjun@sutd.edu.sg Email: biswas@i2r.a-star.edu.sgmail: Mounir.Mokhtari@it-sudparis.eu

Abstract—Pervasive computing systems are heterogenous In this work, we propose to use formal methods to analyze
and complex as they usually involve human activities, varies pervasive computing systems to overcome these limitations
sensors and actuators as well as middleware for system . ontributions are three-folds as explained below.

controlling. Therefore, analyzing such systems is highly on- .
trivial. In this work, we propose to use formal methods Firstly, we propose a framework to formally model the

for analyzing pervasive computing systems. Firstly, a forml System design and the environment inputs. Important char-
modeling framework is proposed to cover the main character- acteristics of pervasive computing systems such as coentext
istics of pervasive computing systems (e.g., context-avneress, awareness, layered architecture and concurrent communica
concurrent communications, layered architectures). Secwlly, o5 are discussed. Modeling patterns for these featuees a

we identify the safety requirements (e.g., free of deadlockand . . .
conflicts etc.) and propose their specifications as safety dn provided and illustrated with examples. We adopt CSP# [3]

liveness properties. Finally, we demonstrate our ideas usy as the sample modeling language for its rich set of syntax in
a case study of a smart nursing home system. Experimental modeling concurrent system with hierarchies. Dong et &l. [4

results show the effectiveness of our approach in exploring and Coronato et al. [5] proposed to model such systems
system behaviors and revealing system design flaws such as ging TCOZ [6] and Ambient Calculus [7] respectively.
information inconsistency and conflicting reminder servies. .
Although these languages are good at modeling the com-

Keywords-Pervasive Computing, Formal Modeling, System munications and mobility features respectively, the suppo
Verification for modeling hierarchical structures is limited. Most innpo
tantly, there is very little tool support for these langusge
which limits the usage and applicability of their approache

Pervasive computing systems are context-aware and Secondly, we identify critical properties of pervasive
adaptable to the evolving environments [1]. The changes imomputing systems and provide their specification patterns
the environment are monitored and recorded in the systenm corresponding logics. According to the stakeholders
as contexts. If a particular event happens, the system iglesigners, engineers and users of these systems), safety
able to adapt itself to the changes. In the current liteegtur requirements are essential to pervasive computing systems
these systems usually adopt a layered design with sensofgapinis et. al. in [8] proposed some critical requirements
in the hardware layer to acquire environment contextspf a homecare system. For instance, “Sensors are never
inference engines in the middleware layer to manage andffline when a patient is in danger” or “If a patient is in
reason these contexts as well as make adaptation decisiorignger, assistance should arrive within a given time”. In ou
services in the application layer to invoke actuators towork, we classify the important requirements into safety
execute the decisions. Consequently, the heterogeneity pfoperties (nothingoad happens) and liveness properties
technology and massive ad hoc interactions among layefsomethinggood eventually happens). Furthermore, formal
make pervasive computing systems highly complicated [2]specification patterns of these properties are proposed. As
Furthermore, various environment inputs and unpredietablresult, we can verify the critical properties against thetam
user behaviors cause the system behaviors beyond controhodel by using automatic verification techniques like model
especially when multiple users are interacting with thechecking [9]. Hence, design flaws can be detected at the
system simultaneously. Therefore, it is a challenging taslkearly design stage.
to guarantee the correctness and even the safety of suchThirdly, we demonstrate a case study of a smart healthcare
systems. Traditional validation methods such as simuiatio system for mild dementia patients, AMUPADH [10]. A
and testing have their limitations in performing this task,typical workflow of this formal analysis process is shown in
i.e., these methods can only cover partial system behaviofSigure 1. We start the project with collecting requirements
based on the selected scenarios. through multiple visits to the nursing home and interviews

I. INTRODUCTION

counterexamples Patient
Behaviors

(ADLs)

\\\Prompt
Reminders

Activity

1
1
' Modeling
1
! Informatig

Collecting - Framework:
Descriptions EnvMode)

¥ 4 SystemMode,

Stakeholders;

Bad
Behaviors

Model
: Checkers .
Engineers Sensors Activate/
~ : Property i Deactivate
Collecting » | Specification;

Requirements” | Safety

Liveness

Good
Behaviors

Figure 1: Formal Analysis Workflow

Figure 2: An Overview of the Smart Bedroom System

A. System Overview

of nurses/doctors. From discussions with system designers The architecture of the system is shown in Figure 2.
we learn that AMUPADH is a typical pervasive computing The system is deployed in a bedroom with two beds and
system which incorporates sensors and a reasoning engigeshower facility. Different kinds of sensors are deployed
to understand the patients’ intentions and provides reemind in the room to capture environment changes. For instance,
services to help them. Additionally, AMUPADH has a the pressure sensor under a mattress is used to detect
multi-person sharing environment which exhibits addiéibn whether the bed is empty or occupied. Sensors communicate
complexity in terms of concurrent interactions. Then, wewith the controller via wireless network. Thecontroller
model the user behaviors and system design based dn the middleware interprets sensor signals into low-level
our modeling framework using CSP# language. Criticalcontexts from which high-level contexts are inferred by the
properties such as deadlock freeness, guaranteed remindeasoning engineThis reasoning task is performed based
service and conflicting reminders tests are verified usingn a set of predefined rules written in Drobkbased on
PAT model checker [11] (a self-contained framework for First Order Logic). Evaluation of these rules is triggergd b
modeling, simulating and reasoning of concurrent and reala sensor message or periodically by a timer. In the case
time systems). Multiple unexpected bugs such as informatiothat a rule is satisfied, the system will adapt to a new
inconsistency are exposed. state by updating internal variables or invoking reminder
In the rest of the paper, we introduce AMUPADH sys- services. For example, if the activity of patient sleepingao
tem in Section 1. The modeling framework and critical wrong bed is recognized, the system will prompt a reminder
properties of pervasive computing systems are demondtrateequesting him to use his own bed.
in Section Il and IV respectively. Section V illustrates
the case study and reports the unexpected bugs we found, Sensors
Related works are discussed in Section VI. Lastly, Section

VIl concludes the paper with future work. In AMUPADH, four types of sensors are deployed in

the bedroom and shower room to monitor the activity of
dementia patients as shown in Figure 3.

« RFID Reader is for identification and tracking. There
are two readers placed beside the doors to detect who
has entered the rooms respectively and two attached to

II. A MOTIVATING EXAMPLE: AMUPADH - AN
AMBIENT ASSISTEDLIVING SYSTEM FORDEMENTIA
HEALTHCARE

Dementia is a progressive, disabling, chronic disease
common in elderly people. Elders with dementia often
have declining short-term memory and have difficulties in «
remembering necessary activities of daily living (ADLS).
However, they are able to live independently or in assisted «
living facilities with little supervision.

Ambient Assisted Living systems equip the environment
with a spectrum of computation and communication devices e
that seamlessly augment human thoughts and activities.
The system developed in AMUPADH is able to monitor
the patients’ behaviors using activity recognition tecfuas
(sensors and reasoning rules) and offer help to the patients

each bed to identify who is using the bed. Each patient
is wearing an RFID tag placed in a wrist band.
Pressure Sensoiis placed under the mattress of each
bed to detect activities in bed, e.g., sitting or lying.
Shake Sensorcan detect vibration. They are attached
to water pipe and soap dispenser for sensing the usage
of water tap and soap respectively.

Motion Sensor (A.K.A. passive infrared sensor (PIR))
can measure infrared light radiating from objects in its
range. It is used to detect the presence of the patient in
the shower room.

(prompt reminders through actuators such as speakers etc.)'Drools Expert: http://mww.jboss.org/drools/drools-exphtm|

Bedroom Pervasive Computing System Environment

| Y

@ Applications

@ Bed 1 Bed 2 Reminder Services User Behaviors
. Actuators B .

| Bathroom & Toilet Meeting Services g‘:&”fmector
@ @ Alarm Services Sleep on Bed

Make a Phone Call

Have Lunch
Q>/ Middleware BUs Play a Game

Context Manager
Reasoning Engine

Legend: @ RFID Antenna @ Pressure Sensing Adaptation Manager Facilities

. . . - Projector
. . Vibration Sensing BUS Microwave Oven
Motion Sensing Sensors Bed
(Shake) Mobile Phone
Pressure Sensor

i . ; RFID Reader I Chair
Figure 3: Sensor Layout in the Bedroom Vibration Sensor Tablet PC

Accelerometer

Figure 4: Architectures of Pervasive Computing Systems
C. Controller

In the Controller, contexts are managed and inferenced.
It has two components i.e., tiMain Interfaceinterprets the [11. A M ODELING FRAMEWORK FORPERVASIVE
sensor signals and triggers the evaluation of all rules when COMPUTING SYSTEMS
a sensor message arrives; tGentext Checkermrevaluates
all rules every 5 minutes. The rules are written in Drools
and evaluated by the business rule engine, Drools Exper.)
They are specified with a name, a condition formed of hey are usually complex and adopt a layered architecture

predicates and the adaptation actions. For example, tke ruﬁz i?tg\:;/tn felr;tu':rlegsursf 4.er|\?astir\l/les csoerrc1tlcl)1rt]i’r1 Wz gt'esrc;ussslatg?
for detecting sitting bed for too long is specified as follows P P omputing Sy y
by-layer and propose corresponding modeling patterns for

ru:AE “personA sat on Bed A for too long (30mins)" them. Besides, environment inputs perform an important
S;,Znsor(id == "pressureBedA", role in pervasive computing systems. Thus, along with the

gresf_“fes‘ agg)== Sensor. pressure_state. SITTING ~ modeling of system components, we also propose modeling
uration >

Pervasive computing systems are carefully designed for
sers who expect the system to aid in their daily life.

$x : XVPPI nterface() patterns for d_ifferent environment aspects which are lgual
then _ not included in most complex systems models.
$x. SendDat a(" ACTI VI TY. error."+"Si t BedTooLong" +". "
+"personA");
end A. Modeling Environments

The condition of this rule consists of three Pervasive computing systems seamlessly interact with the
context variables: the sensorsl, status and timer. environments and acquire context inputs from the users
This rule can be interpreted as: the messageind objects like TVs and Beds. To some extent, pervasive
ACTIVITY.error.SitBedTooLongersonAwill be delivered computing systems are driven by the environment context
to the reminding system if th8ITTING status of pressure change (we call itscenariohere). For example, a person
sensor on bed A has lasted for more than 30 minutes. Th@ntering a room which is previously empty will trigger the
messages are sent out via a shared bus. The full set of 3ights to be switched on; or when the system detects the
rules used in the system is listed in [12]. time is 9:00pm, a take-medicine-reminder will be sent to the
patient. Thus, it is important to model the scenarios with
the system design. Meanwhile, the scenario model is also
important for generating meaningful counterexamples so as

The reminding system in the application layer acti-to alleviate the burden of analyzing verification results.
vates/deactivates reminders based on the incoming mes- Modeling Activities and Environment ObjectdJser
sages from Controller. For example, if the message behaviors are various and usually unpredictable. For most
is ACTIVITY.error.SitBedTooLongersonA the reminding pervasive computing systems, we can observe that: 1) the
system decodes it and knows patient A (named Jim) hasystem usually targets a certain group of activities and
sleeping problems. Thus it invokes a speaker and prompignores other irrelevant ones; 2) relevant user activities
‘Jim, you have been sitting on bed for a long time, pleaseare determined but the order of them is unpredictable.
go to sleep’ This reminder will be continuously repeated For instance, a person enters the bedroom, then he may
until proper actions have been taken. If the prompts reacheadirectly go to sleep or he could possibly enter the shower
the maximum number, this reminder will be sent to nursesroom for other activities. In practice, targeted actidtiean

D. Reminding System

be provided by system designers. We use a shower roofatientShowerRoomnodel, if the evenexitShowerRoors
scenario to demonstrate the modeling patterns. engaged, the process will pass control to Ba¢ientOutside

In the shower room, a user performs many activities suchprocess. Thus, only activities outside can be selected to
as wandering or turning on the shower tap. These activitiesun while activities in the shower room are disabled. This
can be modeled asventswhich are abstractions of the modeling approach is to reflect the location transitions in
observations. For example, an activity represented ast evethe model and to generate realistic sequences of activities
exitShowerRoonis an observation of the user's behavior Modeling Multiple Users:In multiple-user sharing en-
of leaving the shower room. However, it requires morevironment, the activities that different users can perfanm
advanced language constructs such as non-deterministiccertain location are usually the same. However, in some
choices to model all possible orders of activities. We expla cases, these activities need to be differentiated. For pleam
the idea using a CSP# model of the shower room scenariin AMUPADH, the system tracks different patients using
All the possible activities the patient can do in the room areRFID tags. Thus, the sitting on bed behavior performed
modeled as different choices and they are enclosed into by patientl and patient2 are different from the system’s

process nhameBatientShowerRoom point of view. We model this requirement using the process
Pat i ent Shower Room{) = exi t Shower Room —» Pat i ent Qut si de() parameters and events with mdexes..ln the_ following, we
O turnOnTap — Pati ent Shower Roon() provide the behavior model of the patient using bed where

O turnOif Tap — Pati ent Shower Roont()

O wandering —» Patient Shower Room() identify information is important.

O useSoap — Pati ent Shover Room() ; PatientBed(i) = sitOnBed.i — PatientBed(i)
L . O lieOnBed.i — PatientBed(i)
Here, the operatadn represents the non-deterministic choice. O leaveBed.i — PatientBed(i);

It operates this way that the proceBatientShowerRoom . . : .
p y b Parameter in processPatientBedi) represents the iden-

randomly choose an activity such agnOnTapto execute. ity of th tients. This identit ioble is al ttadh
Then it may transfer control to itself again and choose Y O € patients. 11IS 1dentily variable IS aiso a e

useSoapio execute. It is guaranteed that all possible orderé0 events so as to differentiate the activities performed by

of activities are generated using state space explora'[ioﬂ”cferent patients.

techniques like model checking. B. Modeling System Design

However, there might EXIS.t some unreallst|c. orders qf Pervasive computing systems share the features such
events. For example, there is a sequence which contalrgs

; : . S layered architecture and concurrent communications. A
two consecutive events adirnOnTap Obviously, the patient : : P
. . e ._common architecture of such systems is shown in Figure 4.
cannot perform turning tap on activity again if the tap is

turned on alreadv. In order to eliminate such cases. we neelra the following, we discuss these common features and their
y: ' odeling layer by layer.

to model these constraints such that the patient's behavior ; . .

. . . : . 1) Modeling Sensor LayerThere are a lot of interesting

is synchronized with the status of the object being used. In : . . .
o . . roblems in this layer. First of all, there are different

fact, it is essentially the problem of modeling synchronou

. AT %pmmun|cat|on patterns like synchronous communication or
behaviors. We propose to use event synchronization in CSP. . L

: . ~—asynchronous message passing. These communications form
and give an example of shower tap model in the following

. . : . 2the basic functionality of sensors. Additionally, diffate
Other solutions are possible such as using a global variable . . .
sensors have different frequencies of sending messages. Fo
or synchronous channels. .
example, RFID reader sends a signal to system every 1
Shower Tap() = turnCnTap — turnOffTap — ShowerTap(); second while pressure sensor sends every 10 seconds. This
Env() = Patient Shower Roon{) || Shower Tap(); . . .
issue may cause the system to make wrong adaptations since
The constraint of using tap behaviors is modeled ashe information of the environment may not be completely
if turnOnTap event happens, it will be disabled until refreshed at some time point. Finally, sensors have limited
the turnOffTap activity is performed. The two processes power supply and may fail from time to time. These two
PatientShowerRoorand ShowerTapare composed to be a problems regarding the different sending rates and urestabl
complete model of the environmeiinv. Here, the operator working conditions of sensors create many uncertainties in
|| denotes parallel composition. Its operational semantis sa pervasive computing systems.
that the executions of the composed processes must beNonetheless, problems might also exist in the wireless
synchronized on common events appearing in all of themnetwork such as message loss. We skip this part since
Interested readers can refer to [3] for more details. Héee, t research of model checking wireless networks has been done
turnOnTapevent becomes a common event between the twextensively in the literature [13]. The details about signa
processes. encoding/decoding and message transmission via wireless
Modeling Location Transitions:While modeling the networks are abstracted away for simplicity in our work.
patients behaviors, we divide the activities according Modeling Concurrent Interactions:Sensors interact
to the locations where they can be performed. In thewith the environment by detecting events and report sensed

contexts by transmitting signals to middleware. The behav- Here,pcaseis a syntax for modeling probabilities.and

iors of detecting and transmitting can be abstracted to twd are probability weights here. This process models that the
modeling patterns which are synchronous events and mefFID reader works correctly with probability of 90%.

sage passings respectively. Event synchronization has bee In summary, different issues in the sensor layer can be
introduced in Section IlI-A. As for message passing, theranodeled using different language constructs. Notice theat t
are different modeling patterns in different languagesn&o two modeling languages (i.e., STCSP, PCSP) we adopted
languages support synchronous channels through which there both extensions of CSP# language. As demonstrated
sending and receiving events are synchronized. In othdn above examples, our intention is that it is easy to start
languages, broadcast channels or asynchronous channelgh a simple model and extend it with richer features with
with buffers are supported. In the following, we model the minimum efforts.

shake sensor using a synchronous channel. 2) Modeling Middleware Layer:As shown in Figure 4,
channel port 0: middleware performs the tasks of managing and reasoning
Shake_Sensor () = (_ _ contexts as well as making adaptation decisions. Messages

turnOnTap — port! Shake.UnStationary — Skip . . .
O turnOfTap —» port!Shake. Stationary — SKip received from sensors will trigger an update of the system
); Shake_Sensor (); knowledge/contexts. The status of a sensor is one kind

Here, port is the synchronous channel defined for theOf contexts. Context variables are modeled using shared

shake sensor to communicate with middlewaghake Vvariables in supporting modeling languages. _
UnStationaryandStationaryare integer constants represent- - urthermore, the reasoning engine performs reasoning by
ing the sensor's ID and possible statuses. In the model, thgvaluating predefined rules whose conditions are proposi-
shake sensor sends out the sigdabtationarywhen the tap tions c_)f context variables. A common practice for specidyin

is turned on. Note that CSP# supports multi-process synchrdUl€s is to use guarded processes or if-else statements. The
nization that the everttrnOnTapcan be synchronized in all following example models the rule in Section II-C in CSP#:

three processes. Rul e() = if(sensors[Pressure_Sensor] == SITTING &&
. . . Dur ati on[Pressure_Sensor] > 30)
Modeling Frequency:Sensors are tuned to have dif- res! Act. Sit TooLong. 1 — Skip;

ferent sending rates due to their functionalities and the) - .
purpose of saving energy. However, if the rates are not Finally, an adaptation decision will be made based on the

carefully calculated, the system may work incorrectly. To"€2SOning results and sent to the application layer to égecu
analyze these behaviors, we propose to use timed modelin is again can be mpdeled by message passing patterns. For
languages such as Stateful Timed CSP (STCSP) [14] d e_al_aove example, if thrale which |_nterprgts that someone
Timed Automata (TA) [15]. The modeling pattern of sending 'S sitting on bed for more than 30 time units, a message will

rates using STCSP would be as follows. be sent to the application layer through the chamesl|
3) Modeling Application Layer:Application layers vary
PR e ed » port!FSR S tiing — SKip according to different implementations. However, we may
D lLZ?;EZﬂ - ESH : Egg Iéﬁ,?? - gl;: E only care about the responsive actions which will affect the
O nothing — port!FSR Enpty — Skip end users. Thus we focus on modeling of how the adaptation
); Wait[10]; FSR Sensor(); decisions are executed. For instance, in the AMUPADH
Here, operator» denotes the urgent event in its left hand system, the reminding system is modeled as follows:
side which cannot be interleaved by other timed events. Remnder() = res?status.rid.pid — (dor(rid oid
Waitlt] is the syntax to model the process idling fotime D[[Ssttittfs - ’E‘fo}cﬁ‘?seéii%?mmn”de?}(ﬁ'd,’p’i"d))
units. The above process models the periodic behaviors of ActivateRem) ndsff(“r:‘gegl(L))
the pressure sensor which senses the environment forrcertai updat ereni nder[rid][pid] = true — Skip:

activities and immediately transmits its status. Then lisd

for 10 time units and starts sensing again By decoding the message received from middleware,

Modeling Sensor FailuresSensors have limited accu- the workflow of remlnd_er_ system diverts according to
)}he status command. If it is anAct command, the sys-

racy, so that they may fail to detect certain events. The , inderid i id b I
could also run out of battery and then fail to send thetem_ acuvatelsdrelr(rjnn_delrl to patl_en: pll oy Call_ 'n%
signals. Intuitively, we model this with probabilistic mod Act|ve_1teRem|n eén_ ’(;)') process. Similar logic applies for
eling languages such as Probabilistic CSP (PCSP) [16] Oﬁjeactlvatlng a remincer.

Probabilistic Timed Automata (PTA) [17]. C. Compose a Complete Model

RFI D_Reader () = ; : ;
enterBedroom1 —s port!RFID, PersonA — Skip In pervasive computing systems, different components

O enterBedroom 2 — port! RFID. PersonB — Skip; in different layers cooperate to fulfill the system goals.
Mal Sensor () = pcase{ 9: RFID_Reader () However, how to model this cooperate relations are left to
1: fail — Skip }; Ml Sensor(); be discussed till now. From a careful study, we discover

i i i OS- Outside openBedroomDoor
that there are three kinds of relationships between thes =" b ot Start% e B Dot

components which are sequential, independent and concu sr- shower Room
rent relations. Sequential relation means the executidheof exitBedroo enterBedroom
components is strictly sequential according to the workslow leaveBed enterShowerRoom vandering

onT
of the system. Components that are completely unrelated taitup @ EE:EO?HZS
each other execute independently. As for concurrently relyPown pressSoap

openShowerRoomDoor

lated components, they have synchronized behaviors. These sitOnBed {] exitShowerRoom 10 o werRoomDoor
relations can be well supported in hierarchical languages gfgingee?fr%m%%grr

such as CSP#. Respectively, these three relations can be openShowerRoomDoor

modeled as sequential, interleave and parallel compasitio closeShowerRoomDoor

using operators , ||| and || respectively. Examples here

may reuse some process names in above models. Note Figure 5: Patient Behaviors

that parallel composition has been introduced in modeling
activities in the environment.

Sensors() = Shake_Sensor () ||| FSR Sensor(); : ; : o
M ddl ewar e() = Cont ext Manager () : Reasoni ngEngi ne() service will be scheduled to run that it will invoke an

Adapt at i onManager () ; actuator to automatically turn on the lights. Effectivenes

Here, since each sensor in the environment works indet_hese services is an important measurement of the system for

pendently, the sensor layer mo@nsoré) is composed by the sake of users. To specify this requirement, we propose
the interle’ave operator. On the other hand, in the middlewarpatterns of liveness properties using Linear Temporal ¢.ogi
layer, the three components are executed sequentially &TL)' For example, _

determined in the workflow. Therefore, the middleware C(PatientVndering — ¢ LeaveRoomRem nder)

modelMiddleware) is composed using sequential operator. Here,J and< are operators in LTL which read “always”
and “eventually”. This formula specifies the property mean-
ing “Always whenPatinetWanderingsituation happens, the
After system engineers finished the design of a pervasivgeryicel eaveRoomRemindexill be eventually delivered”.
computing system, they are often asked to provide guaran- The services are usually required to be delivered in
tees for correctness and even safety requirements. They M@$unded time. Obviously, it is certainly undesirable if the
be asked to answer general questions like “Is the system fre@minder is sent too late that even the patient has left the
of conflict adaptations?” or “Will the services deliver when ,5om. To specify the bounded liveness properties, one can
they are supposed to?". These high level requirements €anngse Timed Computational Tree Logic (TCTL) which extends
be validated against the system thoroughly using tradition c1|_ with clock constraints. The other possible solution is
techniques like testing. However, they can be specified ang, pound the target system model witleadlinesemantics
verified using formal methods. For example, using model,, some real time modeling languages such as STCSP.
checking technique, the first question can be verified in the 3) Security: Since pervasive computing systems carry
following steps. First, define the conflict adaption scemari |ots of environment information including the user's con-
as a state; Secondly, use reachability verification algort figential profiles, it is critical to protect privacy. Lealkagf
to exhaustively search the system state space to see if sUgltormation can compromise the safety of the user and his
a state is reachable. In this section, we discuss the driticg, per belongings. For instance, food delivery person shoul
properties and propose their specification patterns. not have access to the patients medical profile. Propedies t
describe security problem can be specified in many kinds of

A. Desirable Properties >
])] logics such as LTL. For example,
Properties regarding the good behaviors of the systems

are desirable.
1) Deadlock freenessDeadlock freeness is one of the Model checking techniques for security problems are
important safety requirements. Deadlock is a situation thaproposed in papers such as [18].
the system reaches a state where no more actions can be _
performed. It can lead to serious consequences such & T€sting Purposes
falling of the patient is not being alerted to a nurse. Deekllo To test the system after being deployed is cumbersome
checking is supported in most model checking tools. considering the reengineering workload. Fortunatelys¢ho
2) Guaranteed ServicesWell designed application ser- unwanted scenarios can be specified in properties and
vices determine fundamental responsive behaviors of pervahecked using reachability verification algorithms.
sive computing systems. For example, in a smart meeting 1) System Inconsistencizailures of sensors and wireless
room, upon detection of some one entered the room, aetworks may cause contexts of the environment in the

IV. PROPERTIES OFPERVASIVE COMPUTING SYSTEMS

O(FoodDel i veryPerson — not (<& AccessPatientProfile))

enterBedroom leaveBed Empty Empty
exitBedroom I partlEmpty Q | port'Empty

N

closeBedroomDoor

\ \
¥

¥
@ . : sitOnBed.ileaveBed
sitOnBed.ileaveBed | Reasoning Reasoning
openBedroomDoor leaveBed sitUp Engine Engine

Occupied
(a) Bedroom Door Behavior (b) Bed Behavior Occupied h 5%@ Eo;t!/Lyianf
Figure 6: Surrounding Environment Oyson(O)] ~ port 05> (! portiiting
(a) Bed RFID Reader (b) Bed Pressure Sensor
system to be out of date. Thus system knowledge can be Figure 7: Sensor Behaviors

inconsistent with actual environments. By defining such
conflicting states, you can test again the system model to

see if such a state is reachable. modeled include doors of bedroom and washroom, beds and

b .2) Confhtctlr;lgl (;:all.se Sgr_wce?To guarhanl't[e_e tTe s_erwc?s washroom taps. The behavior models of the doors and beds
eing eventually delivered is not enough. Itis also imputrta are shown in Figure 6a and 6b respectively.

to check if these services are sent properly. Some proble_ms 2) Sensor Model:Different sensors are used in AMU-

th fusi fth tient and Id agitate th Anoth ossesses multiple unique states when made available to the
€ confusion otthe patient and could agitate them. Anothe ystem. Figure 7 shows the modeling of sensors using the

scenario is that the reminder is sent to the wrong PErSONa 4 RFID readers and bed pressure sensors as mentioned in

Thgte)selzalc:)rogrlte.(r;;slr(]:a;nl gssplee?glzgelc? rf;?r?g"'tgnpr.(r)]ggrgifSection [I-B. Then, we combine all processes of sensors to
PErties in rules.xu Ing engt one proces$ensoraising composition patterns.

popular in pervasive computing systems. The correctness

of rules is essential to the correct behaviors of systems, SeneersO=RI GAON0 - - o ors0)
Problems of these rules include duplicated rules, conflict || (Rfid_Shower Room() || PI R_Shower Roon())
rules and unreachable rules. This is also easy to specify. Il ShakeSensors();

For example, to check whether a rule is unreachable, the 3) Controller and Reasoning Engine Moddnside the
condition of the rule can be defined as a state and properfasoning engine, rule evaluation is triggered by two pro-
can be expressed as testing if the state is reachable. cesses, namely thidaininterfaceand ContextCheckepro-
cesses. In order to model the periodical evaluation by

V. CASE STuDY: FORMAL ANALYSIS oF AMUPADH)
. . ContextCheckemve use a constant integ@ATEto represent
The proposed approach is applied to analyze AMUPADH o interval andDuration variable to record elapsed time.

We adopt CSP# modeling language since it supports most G\fhe atomic syntax used here is to ensure the process

the modelll_ng p.atterns In th? framewor_k. Important progerti inside the block is executed without interference from pthe
are specified in reachability semantic and LTL l‘ormulae.processes

PAT model checker is chosen to parse the model, build up the

. . . Re Engi = Mainlnterf Cont ext Check)
system state space and verify these properties. Experimentyy. oyt oct gi(ez) _ Meininterface() |l ContextChecker()

results are listed and unexpected bugs are reported. atoni c{port?id. status — update{sensors[id]=status;
Duration= cal | (setTimer,id, status, Duration)} —
H FireA | Rul es() }; Mai nl nterface();

A. System Modeling Cont ext Checker () <

In this section, we model the environments and the system atoni c{updat e{Duration = cal [(tick, Duration, RATE) }

. . .. — FireAl | Rul es() }; Cont ext Checker () ;

design using our framework and use Labeled Transition
Systems (LTS) for demonstration. On receiving a message from any sensor, the

1) Environment Model:As shown in Figure 5 and 6. Maininterface updates the sensor status amdiration.
These LTSs can be generated using simulation function of\fter that, theFireAllRules process is invoked to perform
PAT. In Figure 5, there are four possible locations that areasoning. In the model above, we use the syntax
patient can reside. The transition edges between states arall(setTimerid, statusDuration) to call an external static
labeled with patient’s activities. function setTimer (written in C#) to updateDuration

This patient model should be synchronized with objectsaccording to the input of sensad and status This is
within the surrounding environment. The objects that area special feature in PAT, which allows users to separate

[status==ACT] B. System Verification

In this section, requirements concerned by system de-
signers and users (patients/ nurses/ doctors) are formally
DeactR specified and verified.

1) Deadlock freeness (P1pPeadlock freeness property is
directly supported in PAT using the keywod#adlockfree
However, the complet&SmartRoorf) model is too large
to verify, we decompose it into subsystems according to
locations. In fact the two subsystems shares only one cbntex
variable, the patient’s location which can only be deteedin
complicated calculation from the high level model in orderby one RFID tag (not shared). Thus, we argue that this
to have a simple model with efficient verification. The decomposition fulfills the verification purpose.
ContextCheckeis similar to theMaininterfacein updating P1.1 #assert SmartRoon() deadl ockfree:
sensor statuses arduration, but does so in a periodic P1.2 #assert SmartBedroon() dead| ockfree;

. . . P1. 3 #assert Smart Shower Roon() deadl ockfree;
cycle instead of using a listener.

res?status.rid.pi
_—

[status==DEAC

Figure 8: Reminding System Behaviors

The process§ireAllRulessequentially evaluates every rule . 2) Guaranteed Reminders (P2 well designed remind-
ing service is very important for assisting elders with mild

independent of the results from previous cycles of rule ' i X : ;
evaluation and triggers proper actions such as setting a flagémentia. We list two reminder services in the bedroom and
ower room scenarios respectively as follows. Other amil

or sending a message to the reminding system. Messagg

are passed via a synchronous channel namgdVe model properties (P2'3'P2;6) are specified |n.[12]. ,
every rule in a separate process. In the following, we list ~ Guaranteed LyinghrongBed Reminder (P2.1)This
one rule to illustrate the modeling. The procéase 14.1() ~ Property states that when a patient is sleeping in a wrong
models a complicated rule defined for recognizing the wanP€d; the system will always prompt tHeyingWrongBed
dering behavior of the dementia patient. It says if the shak&eminder eventually.

sensor on shower tap is stationary, the PIR sensor detects th #define Lyi ngWongBed (sensors[RfidBed_1] # EMPTY

.) . . && sensors[RfidBed_1 1),
patient’s presence has lasted for 15 time units, the shower 4gefine Reni ndedWOngEed A=

flag is still false and patient 1 is in the shower room, then (Renmi nder St age[Lyi ngW ongbed=2 + 1] % 0);
. . . . #assert SmartBedroon() F
patientl is wandering in the shower room. Consequently, the O (Lyi ngWongBed — o Remi ndedW ongBed) ;

reasoning engine sets the wander flag to true and passes a ») .)
message to inform the reminding system that patientl needg€r® condition LyingWrongBed specifies the scenario

to be reminded to leave the room. that ‘someone else is_ sleeping on patientl’s _bed, gnd
RemindedWrongBedlefines the state the reminder is
FireA | Rules() = Rule0(); prompted. _ _
. _ Guaranteed TapNot Off Reminder (P2.2)This prop-
e VA Aot el it erty states that when the system detects that the shower tap
PLéLatiogl[Pi rggo:iverropnj E 15 %&1] SHOMER . is not off for a long time, the remindefap Not Off will
! ower ag ocati on_Person == SHOVEI ROO\/)
set Fl ag{Wander FI ag = true} — eventua”y be sent.
res! Error.Wanderi ngl nShowerroom 1 — Rule_14_2()} #def i ne TapNot OFf (sensors[ShakeTap] == UNSTATI ONARY

el se {Rule_14_2() }; && Durat i on[ShakeTap] >30) ;

#defi ne O f TapRem nded
(Remi nder St age[TapNot OF f 2] # 0
I . Reni nder St age[TapNot Of f #2+1 0);
4) Reminding System Modeln the system, reminders yassert swart shomer moon() r 1#0
are activated/ deactivated upon receiving correspondig m O (TapNot OFf — & Of f TapReni nded) ;

Sages from the contr_oller. AS_ shown in Figure 8, the ®where conditionTapNotOff specifies the situation that the
minding system receives a triplet from the controller via

L . . “shower tap is turned on for more than 30 time units, and
channelres This triplet consists of a command, behavior 5tranRemindedefines the state the reminder is prompted.
code and patient ID. If the commandACT, the reminder gy coniradict Knowledge (P3)The following property

rid will be activated and prompted to patiemitl, otherwise g secified to check whether there are contradictions in the

the specified reminder will be stopped if it is active. Thesystem For example, if the PIR sensor isSH.ENT status
ACT and DEACT are command constants corresponding to.re should be no one in the shower room. '

Normal andError in rule processes.
#define Contradiction (Pos_Person[1] == SHOAERROOM

Finally we integrate all the sub-system models together &% sensors[PIR == SILENT);
. . - #assert Smart Shower Room() reaches Contradiction;
into a process name8martRoorf) using composition pat-
terns. Interested readers are referred to [12]. 4) Conflicting/False Reminders (P4):

Prgﬁty Re_s'u“ # Sfates # Tran_s't'ons Té)m(;f/f) 4) P4.2: 1t is validated by the scenario of a patient wan-
P1.2 True | 1.43M 2.04M 815 dering in the shower room and triggering ManderingInSR
E%-i Pue ioégm %igm Igig reminder. He then ignores the reminder and turns on the

. rue

P22 False | 0.07M 0.131M 39 shower_tap t_o play with water (A typical behawor of a
P2.3 False | 2.19M 4.53M 12414 dementia patient). The water runs for a long time that the
p2.4 False | 0.832M 1.66M 729 ShowerNao_Soap reminder is triggered, therefore causing
P25 | False | 4314 5150 16 the system to prompt the conflicting reminders
P2.6 | True | 1.58M 2.38M 1913 Yy promp : grer :
P3 True 572 745 0.3 Due to page limits, we skip the detailed feedbacks from
P4.1 True 2446 3036 111 the system designers. In general, they improved their syste
P4.2 True | 0.01M 0.02M 6.1 : ; . e .

by amending the rules with necessary identify information.

Furthermore, in order to precisely detect the patient'aloc
tion, they added PIR sensors in the bedroom and some rules
to assure the consistence among context variables.

Table I: Results of Experiment

False Reminders (P4.1)alse reminders are generated D. Discussion
prompts that should not be sent to patients. In the following
we specify a situation that th®it Bed Toa_ Long reminder
is sent to patientl but in fact he is not in the bedroom.

We gained several observations from this case study. First
and foremost, model checking techniques can provide a
very good guide on system design. From our experiences

#define Fal Z;RERL"ﬁ”gSLr(ngzg'[’gfggg&né B;Dgogw of working with designers of the system, they usually focus
#assert SnartBedRoon() reaches Fal seReninder: on setting up a demonstration based on selected scenarios

without considering other useful situations. In fact, the
development and consideration of all possibilities when
constructing scenarios and rules is an impossible task and
would either take many man-hours to find out through actual
deployment. Besides, it is important to find unexpected bugs

Conflicting Reminders (P4.2):In the following,
ConflictRemindedefines a state where two reminders (i.e.
WanderingInSRreminder andShowerNa Soap reminder)
are simultaneously prompted to one patient.

#define O°”f'(i ot Rem nder agel Shower NoSoap + 2 £ 0 based on the stakeholders requirements before deployment
&& Reni nder St age[Wander i ngl nSR * 2] # 0); of the whole system. Hence the engineers can retrieve nertai
#assert Smart Shower Room reaches ConflictRemi nder; normal or abnormal scenarios they are interested in based

Based on the work of Section A and B, experimentsOn our analysis results.
are carried out to formally verify the properties againg th ~ On the other hand, the experimental results also reflect
system model. The experiments test bed is a PC with Intdlypical state space explosion problem in model checking
Xeon CPU at 2.13GHz and 32GB RAM. The results aretechniques. The number of states in verifying propéry3

shown in Table I, where OOM indicates out of memory. reaches the level 0108, which is the limit of eXpIiCit'State
model checkers like SPIN and PAT. Advanced techniques

C. Discovery of Unexpected Bugs such as partial order reduction and compositional veriticat
Counterexamples are returned as evidences if the systeare desirable to alleviate this problem.
model violates certain properties. They are of great vajue t
system engineers to debug the system. The set of confirmed
bugs are reported as follows which are unexpected by the Pervasive computing systems have achieved many mile-
development team. stones in recent years. However, works on applying formal
1) P2.2 - P2.5:The violation of these properties reveals methods to assure the correctness of such systems are
a critical problem of the system that it fails to monitor limited. In [4], they proposed a TCOZ model for a smart
the patient’s location correctly. A patient exiting the glgd = meeting room system which very well captured the con-
room with tap left on is a typical case. The two reminders,current communications and real-time constraints of ssnso
ShowerNot Off andWanderingInSRuvill repeatedly prompt and actuators. Important properties are manually proved in
even though there is no one in the shower room. the paper. Researchers in [5] used Ambient Calculus to
2) P3: The verification result shows the contradiction model a location sensitive smart guiding system in a hospita
state exists and this exposes the inconsistencies in the syfhe mobility issue is well modeled and reasoned in their
tem. One possible cause is the failure of location monitprin work. However, both of the two languages cannot model
3) P4.1: This property is witnessed to be valid. Through the hierarchies in systems. Moreover, lack of verification
careful investigation, we notice that the rule defined fortools support restricts the applicability of their approas
Sit Bed Toa Long does not have an identity attached to theto large pervasive computing systems. Our work advances
rule’s condition and hence this reminder is sent to the bed’shem by adopting hierarchical modeling languages which
default owner irregardless of the bed’s current user. is also supported by popular model checkers for automatic

V1. RELATED WORK

verification. In [20], the Adaptation Finite-State-Machin

(5]

(A-FSM) is proposed for modeling context-aware adaptive

mobile applications. They also proposed fault patterngdas

on the A-FSM which can be automatically detected using [6]

their algorithms. However, how to model systems in A-FSM

is not clear in their work and their approach cannot handle
liveness properties. Our work provides modeling patterns

for most parts of pervasive computing systems and steps o

building a system model. Besides, a wide range of properties
can be verified using our approach regarding the safety andg;

liveness requirements.

VIl. CONCLUSION

In this work, we propose a formal modeling framework for [9]
pervasive computing systems. Different modeling patterns

are discussed according to the typical features of syste
such as concurrent communications, context-awareness

it

layered architectures. We also provide environment model-
ing patterns which are usually not considered in modeling

complex systems. Furthermore, critical properties of tgafe

and liveness requirements are identified and specified ift]
proper logics such as specifying guaranteed reminder ser-
vices using LTL. To demonstrate our approach, we presert 2]
a case study of applying the modeling framework to a

healthcare system for dementia patients. Critical prageert

are verified using PAT model checker with unexpected bugs
revealed. Experimental results and sources of the bugs afgs)
explained. This work demonstrates the usefulness of formal
methods (particularly model checking techniques) in ana-

lyzing pervasive computing systems. In the future, we will
optimize the verification algorithms and explore advance

techniques to tackle the state space explosion problem.

ACKNOWLEDGMENT

%

The authors would like to thank Lee Vwen Yen Alwyn, [15]

Clifton Phua, Zhu Jiagi and Kelvin Sim from Institute for

Infocomm Research in Singapore for the kindness contribu-

tions and valuable feedback to this work.

REFERENCES

[1] D. Saha and A. Mukherjee, “Pervasive computing: A

paradigm for the 21st centuryComputer vol. 36, pp. 25-31,
2003.

[2] W. K. Edwards and R. E. Grinter, “At home with ubiquitous

computing: Seven challenges,” ibiComp 2001, pp. 256—
272.

[3] J. Sun, Y. Liu, J. S. Dong, and C. Chen, “Integrating speci
fication and programs for system modeling and verification,”

in TASE 2009, pp. 127-135.

(16]

(17]

(18]

(19]

(20]

[4] J. S. Dong, Y. Feng, J. Sun, and J. Sun, “Context Awareness

Systems Design and Reasoning,” IBoLA 2006, pp. 335-
340.

A. Coronato and G. D. Pietro, “Formal specification of
wireless and pervasive healthcare applicatioA$M Trans.
Embed. Comput. Syswol. 10, pp. 12:1-12:18, 2010.

B. Mahony and J. S. Dong, “Blending Object-Z and Timed
CSP: an introduction to TCOZ,” ilCSE '99 1998, pp. 95—
104.

] L. Cardelliand A. D. Gordon, “Mobile ambients,” FoSSaCS

'98, 1998, pp. 140-155.

M. Arapinis, M. Calder, L. Denis, M. Fisher, P. D. Gray,
S. Konur, A. Miller, E. Ritter, M. Ryan, S. Schewe,
C. Unsworth, and R. Yasmin, “Towards the verification of
pervasive systemsECEASSTvol. 22, 2009.

E. M. Clarke, Jr., O. Grumberg, and D. A. Pelddodel
checking MIT Press, 1999.

J. Biswas, M. Mokhtari, J. S. Dong, and P. Yap, “Mild
dementia care at home - integrating activity monitoringgrus
interface plasticity and scenario verification,”l®OST, 2010,
pp. 160-170.

J. Sun, Y. Liu, J. S. Dong, and J. Pang, “Pat: Towardslflexi
verification under fairness,” iI€AV '09, 2009, pp. 709-714.

Y. Liu, X. Zhang, Y. Liu, J. Sun, J. S. Dong, J. Biswas,
and M. Mokhtari, “Technical Report for Formal Analysis
Pervasive Computing Systems,” http://www.comp.nussgiu.
~yanliu/techreport.pdf.

P. C. Olveczky and S. Thorvaldsen, “Formal modeling;- pe
formance estimation, and model checking of wireless sensor
network algorithms in real-time maudérheor. Comput. Sgi.
vol. 410, pp. 254-280, 2009.

J. Sun, Y. Liu, J. S. Dong, Y. Liu, L. Shi, and E. Andre,
“Modeling and verifying hierarchical real-time systemsngs
stateful timed csp,” inThe ACM Transactions on Software
Engineering and Methodology (TOSEM)011, to appear.

R. Alur, “Timed automata,Theor. Comput. Sgivol. 126, pp.
183-235, 1999.

J. Sun, S. Z. Song, and Y. Liu, “Model checking hieraceti
probabilistic systems,” iIlCFEM, 2010, pp. 388—403.

M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0:
Verification of probabilistic real-time systems,” @AV, 2011,
pp. 585-591.

W. Marrero, E. Clarke, and S. Jha, “Model Checking for
Security Protocols,” Carnegie Mellon University, Tech.pRe
1997.

K. Du, D. Zhang, X. Zhou, and M. Hariz, “Handling conflct
of context-aware reminding system in sensorised home,”
Cluster Computingvol. 14, pp. 81-89, March 2011.

M. Sama, S. Elbaum, F. Raimondi, D. S. Rosenblum, and
Z. Wang, “Context-aware adaptive applications: Faultgyatt
and their automated identificationEEE Trans. Softw. Eng.
vol. 36, pp. 644-661, 2010.

