
Automatic Compositional Verification of Timed
Systems (Tool Paper)

Shang-Wei LIN, Yang LIU, Jun SUN, Jin Song DONG, and
Étienne André

Temasek Laboratories
National University of Singapore

August 29, 2012

1 / 23

Motivation

State Space Explosion Problem w.r.t. Model Checking

Assume-Guarantee Reasoning (AGR)

M1 ‖ A |= ϕ
M2 |= A

M1 ‖ M2 |= ϕ

How to construct the assumption A automatically?
I Untimed systems

I J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. Learning
assumptions for compositional verification. In TACAS, volume 2619 of
LNCS, pp. 331–346, 2003.

I How about timed systems?

2 / 23

Outline

Event-Recording Automata (ERA)

The TL∗ Algorithm

Learning-Based Automatic Compositional Verification

Experiment Results

Conclusion and Future Work

3 / 23

Outline

Event-Recording Automata (ERA)

The TL∗ Algorithm

Learning-Based Automatic Compositional Verification

Experiment Results

Conclusion and Future Work

4 / 23

Event-Recording Automata (ERA)

The following ERA A1 accepts the timed language UA1
T of the form

(a, t1)(a, t2)(a, t3) · · · where t2i − t2i−1 = 3 and t2i+1 − t2i = 1 for
all i ≥ 1

I (a, 1)(a, 4)

I (a, 1)(a, 4)(a, 5)(a, 8)(a, 9)

l1 l2
a[xa = 1]

a[xa = 3]

A1

5 / 23

Outline

Event-Recording Automata (ERA)

The TL∗ Algorithm

Learning-Based Automatic Compositional Verification

Experiment Results

Conclusion and Future Work

6 / 23

The TL∗ Algorithm

The TL∗ algorithm is a timed extension of the L∗ algorithm.

The TL∗ algorithm is a formal method to learn a minimal
event-recording automaton (ERA) that accepts an unknown timed
language UT over an alphabet Σ

I We use U to denote the untimed language of UT

7 / 23

The TL∗ Algorithm (cont.)

The TL∗ algorithm has to interact with a Minimal Adequate
Teacher

I untimed membership query Qm

I Is an untimed word in the unknown untimed language U?

I untimed candidate query Qc

I Does a DFA accept the unknown untimed language U?

I timed membership query QT
m

I Is a guarded word in the unknown timed language UT ?

I timed candidate query QT
c

I Does an ERA accept the unknown timed language UT ?

8 / 23

The TL∗ Algorithm (cont.)

The TL∗ algorithm consists of two phases
I Untimed Learning Phase

I The L∗ algorithm is used to learn a DFA M accepting the
untimed language U

I Timed Refinement Phase
I The DFA M is refined into an event-recording automaton

(ERA) by adding time constraints or locations

9 / 23

An Example

Suppose UA1
T is the timed language to be learned.

Untimed Learning Phase

λ
λ 1 (s0)
a 1

(a) T1

1

a

(b) M1

λ
λ 1 (s0)

(a, true) 1

(c) T2

L(M1) = UA1 = a∗

10 / 23

An Example (cont.)

QT
c (M1) = 0 with a negative counterexample (a, xa < 1)

Timed Refinement 1

λ
λ 1 (s0)

(a, xa < 1) 0
(a, xa ≥ 1) 0

(a) T3

λ
λ 1 (s0)

(a, xa < 1) 0 (s1)
(a, xa ≥ 1) 0

(a, xa < 1)(a, xa < 1) 0
(a, xa < 1)(a, xa ≥ 1) 0

(b) T4

1 0
a

a

(c) M2

11 / 23

An Example (cont.)

QT
c (M2) = 0 with a positive counterexample (a, xa = 1)

Timed Refinement 2

λ
λ 1 (s0)

(a, xa < 1) 0 (s1)
(a, xa = 1) 1
(a, xa > 1) 0

(a, xa < 1)(a, xa < 1) 0
(a, xa < 1)(a, xa = 1) 0
(a, xa < 1)(a, xa > 1) 0

(a) T5

1 0

a[xa = 1]

a[xa 6= 1]

a

(b) M3

12 / 23

An Example (cont.)
QT

c (M3) = 0 with a negative counterexample (a, xa = 1)(a, xa = 1)

A suffix (a, xa = 1) shows that λ and (a, xa = 1) should not be in
the same class

Timed Refinement 3
λ (a, xa = 1)

λ 1 1 (s0)
(a, xa < 1) 0 0 (s1)
(a, xa = 1) 1 0
(a, xa > 1) 0 0

(a, xa < 1)(a, xa < 1) 0 0
(a, xa < 1)(a, xa = 1) 0 0
(a, xa < 1)(a, xa > 1) 0 0

(a) T6

λ (a, xa = 1)
λ 1 1 (s0)

(a, xa < 1) 0 0 (s1)
(a, xa = 1) 1 0 (s2)
(a, xa > 1) 0 0

(a, xa < 1)(a, xa < 1) 0 0
(a, xa < 1)(a, xa = 1) 0 0
(a, xa < 1)(a, xa > 1) 0 0
(a, xa = 1)(a, xa < 1) 0 0
(a, xa = 1)(a, xa = 1) 0 0
(a, xa = 1)(a, xa > 1) 0 0

(b) T7

11 10 00
a[xa = 1] a

a[xa 6= 1]
a

(c) M4

13 / 23

An Example (cont.)

QT
c (M4) = 0 with a positive counterexample (a, xa = 1)(a, xa = 3)

Timed Refinement 4

λ (a, xa = 1)
λ 1 1 (s0)

(a, xa < 1) 0 0 (s1)
(a, xa = 1) 1 0 (s2)

(a, 1 < xa < 3) 0 0
(a, xa = 3) 0 0
(a, xa > 3) 0 0

(a, xa < 1)(a, xa < 1) 0 0
(a, xa < 1)(a, xa = 1) 0 0

(a, xa < 1)(a, 1 < xa < 3) 0 0
(a, xa < 1)(a, xa = 3) 0 0
(a, xa < 1)(a, xa > 3) 0 0
(a, xa = 1)(a, xa < 1) 0 0
(a, xa = 1)(a, xa = 1) 0 0

(a, xa = 1)(a, 1 < xa < 3) 0 0
(a, xa = 1)(a, xa = 3) 1 1
(a, xa = 1)(a, xa > 3) 0 0

(a) T8

11 10 00
a[xa = 1] a[xa 6= 3]

a[xa = 3]

a[xa 6= 1]

a

(b) M5

14 / 23

An Example (cont.)

QT
c (M5) = 1, i.e., L(M5) = UA1

T

The learning process of TL∗ is finished

15 / 23

Outline

Event-Recording Automata (ERA)

The TL∗ Algorithm

Learning-Based Automatic Compositional Verification

Experiment Results

Conclusion and Future Work

16 / 23

Overall Flow

(M1)
ut ‖ A |= (ϕ)ut?

A

π ∈ L((M2)
ut)?

(M2)
ut |= A?

π ∈ L((M1)
ut ‖ (Mϕ)ut)?

(M1)
ut ‖ (M2)

ut 6|= (ϕ)ut

No, π

L∗

M1 ‖ A |= ϕ?

M2 |= A?

TL∗

π ∈ L(M1 ‖Mϕ)?

Yes

Yes

Yes

A

No No

NoNo
No, π

M1 ‖M2 |= ϕ

(M1)
ut ‖ (M2)

ut 6|= (ϕ)ut No
π

M1 ‖M2 6|= ϕM1 ‖M2 6|= ϕ
No
π

Yes

YesYes

Yes

Timed Refinement

negative counterexample πpositive counterexample π

refine Arefine A

refine Arefine A

negative counterexample πpositive counterexample π

Yes

Untimed Compositional Verification

Timed Compositional Verification

π ∈ L(M2)?

17 / 23

Architecture of Process Analysis Toolkit (PAT)

2

PAT Architecture Design

18 / 23

The ERA Module

Parser

Editor

ERA
Graphic
Drawing
Tool

Internal
Representation

Simulator

Simulator Graphic
Viewer

Counterexample

Compositional
Verifier

Monolithic
Verifier

Verifiers

19 / 23

Outline

Event-Recording Automata (ERA)

The TL∗ Algorithm

Learning-Based Automatic Compositional Verification

Experiment Results

Conclusion and Future Work

20 / 23

Experiment Results

Table 1. Verification Results

Monolithic Compositional UPPAAL
System n |CΣ | |P �|=| |L|max |δ|max Time Mem |L|max |δ|max Time Mem Time

|P | (secs) (MB) (secs) (MB) (secs)
CSS 3 6 0/6 11 20 0.03 0.16 19 50 0.06 0.77 0.05
GSS 3 3 2/3 29 46 0.03 0.13 56 107 0.03 0.69 0.06

FMS-1 5 3 1/3 193 514 0.03 1.18 60 138 0.03 0.89 0.08
FMS-2 10 6 3/6 76, 305 396, 789 40.71 114.08 1, 492 4, 952 0.66 6.60 2.05
FMS-3 11 6 5/7 201, 601 1, 300, 566 70.02 295.89 3, 150 16, 135 1.14 12.07 9.87
FMS-4 14 8 3/9 − − − ROM 26, 320 127, 656 51.02 41.41 ROM

AIP 10 4 5/10 104, 651 704, 110 78.05 149.68 2, 992 12, 971 1.90 7.39 N/A

n: # of components; |CΣ |: # of event-recording clocks; |P |: # of properties; |P �|=|: # of violated properties; |L|max:
of visited locations during verification; |δ|max: # of visited transitions during verification; ROM: run out of memory

Discussion. AGR has been applied to model checking to alleviate the state space
explosion problem [3]. However, the construction of the assumptions for AGR usually
requires nontrivial creativity and experience, which limits the impact of AGR. Cobleigh
et al. [4] proposed a framework that generates the assumptions of components automati-
cally using the L∗ algorithm [2]. This work was a breakthrough of automating composi-
tional verification for untimed systems. Grinchtein et al. [5] proposed three algorithms
for learning ERAs; however, the time complexity of the algorithms depend exponen-
tially on the largest constant appearing in the time constraints. In [8], we proposed a
more efficient polynomial time algorithm, TL∗, for learning ERAs. Starting from 2010,
ERA module in PAT has come to a stable stage with solid testing. We successfully
applied it to verify real-time systems ranging from classical concurrent algorithms to
real world problems. In the future, we plan to use different techniques to generate the
assumptions and to extend the framework using other proof rules of AGR.

References
1. R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: A determinizable class of timed

automata. Theoretical Computer Science, 211(1-2):253–273, 1999.
2. D. Angluin. Learning regular sets from queries and counterexamples. Information and

Computation, 75(2):87–106, 1987.
3. E. M. Clarke, D. E. Long, and M. K. L. Compositional model checking. In LICS, pages

353–362, 1989.
4. J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. Learning assumptions for compo-

sitional verification. In TACAS, volume 2619 of LNCS, pages 331–346, 2003.
5. O. Grinchtein, B. Jonsson, and M. Leucker. Learning of event-recording automata. Theorec-

tical Computer Science, 411(47):4029–4054, 2010.
6. S. W. Lin. https://sites.google.com/site/shangweilin/era-pat.
7. S. W. Lin. https://sites.google.com/site/shangweilin/technical-reports.
8. S. W. Lin, E. André, J. S. Dong, J. Sun, and Y. Liu. An efficient algorithm for learning

event-recording automata. In ATVA, volume 6996 of LNCS, pages 463–472, 2011.
9. K. S. Namjoshi and R. J. Trefler. On the completeness of compositional reasoning. In CAV,

volume 1855 of LNCS, pages 139–153, 2000.
10. J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards flexible verification under fairness. In

CAV, volume 5643 of LNCS, pages 709–714, 2009.
11. UPPAAL. http://www.uppaal.org/.

21 / 23

Outline

Event-Recording Automata (ERA)

The TL∗ Algorithm

Learning-Based Automatic Compositional Verification

Experiment Results

Conclusion and Future Work

22 / 23

Conclusion and Future Work

We propose
I a learning algorithm, TL∗, for ERAs
I a learning-based compositional verification for timed systems

modeled by ERAs

In the future, we plan to
I use different techniques to generate the assumptions
I use different proof rules for AGR

23 / 23

	Event-Recording Automata (ERA)
	The TL* Algorithm
	Learning-Based Automatic Compositional Verification
	Experiment Results
	Conclusion and Future Work

