Improved BDD-based Discrete Analysis of Timed Systems

Truong Khanh Nguyen¹, Jun Sun², Yang Liu¹, Jin Song Dong¹ and Yan Liu¹

¹School of Computing National University of Singapore

²Information System Technology and Design, Singapore University of Technology and Design

FM 2012: 18TH INTERNATIONAL SYMPOSIUM ON FORMAL METHODS

Timed Model Checking

Timed Automata

Zone

Set of valuations defined by a clock constraint

 $\varphi = \textbf{\textit{x}} \sim \textbf{\textit{c}} | \textbf{\textit{x}} - \textbf{\textit{y}} \sim \textbf{\textit{c}} | \varphi \land \varphi \text{ where } \sim \in \{<, \leq, =, >, \geq\}$

(日)

ъ

- Example: (x > 3) ∧ (x − y > 1)
- Representation: DBM

Zone Abstraction: Example

・ 同 ト ・ ヨ ト ・ ヨ ト

T. K. Nguyen and J. Sun and Y. Liu and J. S. Dong and Y. Liu Improved BDD-based Discrete Analysis of Timed Systems

Digitization and the Use of BDD

- 'Real-time Model Checking is really Simple'.
- Digitization and BDD
- BDD is less sensitive with the number of timed automata but very sensitive with large clock values.

where $inc(c) = return(c \le M)?(c+1): c$ and M = b

bound		32	64	128	256	512	1024	2048	3096
time	PAT	0.5	1.4	5	17	68	293	1297	3018
	Rabbit	5.5	44	570	×	×	×	×	×
memory	PAT	16	21	41	49	104	298	494	519

Table : Fischer's protocol with 4 processes

	#proc	8	12	16	24	32	40	50
	PAT	0.4	1.1	4	20	61	195	531
time	Uppaal	1	200	×	×	×	×	×
	Rabbit	1.6	4.4	12	60	180	473	1142
	PAT	17	26	47	136	278	386	757
memory	Uppaal	29	629	×	×	×	×	×

Table : Fischer's protocol with time upper-bound 4

イロト イポト イヨト イヨト

Encoding with Clocks

- Bool variables to encode clocks.
- Encoded similarly to a finite state machine.
- Commplex transition function.
- *a* = 1, *b* = 3: 2 boolean variables, and 3 boolean variables to encode states, and clock values respectively

Encoding with Ticks

- Generate all tick transitions explicitly and remove clock variables
- Benefit:
 - Simple transition function
 - Use less boolean variables

	#proc	4	5	6	7	8
time (a)	without clock variables	0	0	0.1	0.2	0.4
unie (s)	with clock variables	0.6	15	513	×	×
mamary (Mh)	without clock variables	21	22	23	24	26
	with clock variables	32	70	425	×	×

Table : Compare two different approaches of encoding timing constraints

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Encoding a Timed Automaton

- Generate a finite automaton without clock variable from timed automaton
- Encoding similarly as finite state machine.
- The encoding of a time automaton is a tuple
 - $\mathcal{B} = (\overrightarrow{V}, \overrightarrow{v}, \textit{Init}, \textit{Trans}, \textit{Out}, \textit{In}, \textit{Tick})$
 - \overrightarrow{V} : set of unprimed Boolean variables encoding global variables
 - \overrightarrow{v} : set of variables encoding local variables
 - Init: encoding of the initial state
 - Out: encoding of channel out transitions
 - Int: encoding of channel in transitions
 - Tick: encoding of tick-transitions
 - Trans: encoding of other transitions

・ 回 ト ・ ヨ ト ・ ヨ ト

- Systems are composed hierarchically.
- Compositional functions: Parallel, Interleave, Unconditional Choice, Deadline, Timeout ...
- Example of Interleave of two BDD machines

$$\mathcal{B}_i = (\overrightarrow{V}, \overrightarrow{V}_i, \textit{Init}_i, \textit{Trans}_i, \textit{Out}_i, \textit{In}_i, \textit{Tick}_i), i \in \{0, 1\}$$

•
$$\overrightarrow{V} = \overrightarrow{V}_0 \cup \overrightarrow{V}_1;$$

•
$$Init = Init_0 \land Init_1$$
.

• Trans = $\bigvee_{i \in \{0,1\}} [(Trans_i \land \vec{v}_{1-i} = \vec{v}'_{1-i}) \lor (In_i \land Out_{1-i})]$ where $(\vec{v}_{1-i} = \vec{v}'_{1-i})$ denotes that the local variables of \mathcal{B}_{1-i} are unchanged.

ヘロト 人間 ト ヘヨト ヘヨト

•
$$ln = \bigvee_{i \in \{0,1\}} (ln_i \wedge \overrightarrow{v}_{1-i}) = \overrightarrow{v}'_{1-i})$$

•
$$Out = \bigvee_{i \in \{0,1\}} (Out_i \land \overrightarrow{v}_{1-i} = \overrightarrow{v}'_{1-i})$$

•
$$Tick = Tick_0 \land Tick_1$$

Implementation in PAT

- Use CUDD package
- Implemented in PAT framework
- PAT is available at http://www.patroot.com/
- 1M lines of C# code, 21 modules with 100+ build in examples
- Used as an educational tool in e.g. York Univ., Univ. of Auckland, NII (Japan), NUS ...
- 2000+ registered users from 400+ organizations in 52 countries and regions.

イロト イポト イヨト イヨト

Implementation in PAT

T. K. Nguyen and J. Sun and Y. Liu and J. S. Dong and Y. Liu Improved BDD-based Discrete Analysis of Timed Systems

ヘロア 人間 アメヨア 人口 ア

ъ

bound		8/248	12/372	16/497	20/621	26/808	40/1243
time	PAT	5	10	21	35	67	205
	Rabbit	10	32.7	67	90	342	1160
memory	PAT	31	72	126	245	468	518

Table : CSMA/CD with 4 processes

	#proc	8	10	12	14	16	32	64	128
	PAT	0.3	0.3	0.4	0.6	0.8	5	45	593
time	Uppaal	0.4	3.0	22.9	163	×	×	×	×
	Rabbit	1	1	1.3	1.4	1.5	3	16.1	80
momony	PAT	16	17	18	25	28	73	312	661
memory	Uppaal	29	51	292	1894	×	×	×	×

Table : CSMA/CD with time upper-bound 1/4

T. K. Nguyen and J. Sun and Y. Liu and J. S. Dong and Y. Liu Improved BDD-based Discrete Analysis of Timed Systems

イロト イポト イヨト イヨト

More Experiments

bound		20	40	80	160	320	640	1280	2560
time	PAT	0.5	1.3	4	9	29	105	428	1853
ume	Rabbit	2.6	5.3	13.4	54.4	256	1510	×	×
memory	PAT	17	24	31	35	62	122	303	446

Table : Railway control system with 4 stations

	#proc	6	7	8	9	10
	PAT	1.8	6	16	58	169
time	Uppaal	0.2	1.1	7.9	83.1	×
	Rabbit	53	805	×	×	×
memory	PAT	33	64	170	460	715
	Uppaal	26	36	111	835	×

Table : Railway control system with time upper-bound 5

・ 同 ト ・ ヨ ト ・ ヨ ト

M	odel	Fischer						Railway Control				CSMA/CD			
#p	roc	6	8	10	12	14	16	6	7	8	9	4	6	8	9
.7000	PAT	5	39	177	599	1653	4345	14	48	157	887	0.2	3	24	106
+Zeno	UPPAAL	2.3	6711	×	×	×	×	0.4	2.6	24.1	242	0	0.6	662	×
-Zeno	PAT	9	59	269	980	3014	×	21	66	207	1006	0.4	5	55	368

Table : LTL model checking with/without non-Zenoness

T. K. Nguyen and J. Sun and Y. Liu and J. S. Dong and Y. Liu Improved BDD-based Discrete Analysis of Timed Systems

・ 同 ト ・ ヨ ト ・ ヨ ト

- Develop a BDD library for timed verification in PAT.
- Applied to 2 different languages.
- Our approach is efficient by not using clock variables.
- Extend our library for probabilistic verification.

▲帰▶ ▲ 臣▶ ▲ 臣▶