Systematic Analysis of CSP Models (1)

October 3, 2008

Outline

e Operational semantics

— Given a process specifying some system, how does it execute?

e Mechanical system analysis

— Given a process specifying some system, how do we know whether it is

correct or not?

How a Given Process Executes?

e Denotational Semantics
— traces(P || Q) = {t :seqA | (t | aP € traces(P) N\ (t | aQ € traces(Q))}
where A = aP U «aQ).
e Operational Semantics

— Given a system state, what are the possible actions the system can perform
and what are the outcomes?

- P 3 Q

Operational Semantics

e Operational Semantics can be presented using a set of inference rules of the

following form,

Premises

Conclusion

°® e.g.,

Operational Semantics: Primitives

e STOP,
e SKIP,
| skip]
SKIP i STOP
e Prefixing,
| prefizing |

(¢ —P) % P

Operational Semantics: Choices

e External choice?,

P = P Q = Q
[extchoicel | | extchoice? |
(POQ) = P (POQ) =5 Q

e Internal choice, let 7 be the silent invisible event,

| intchoicel | | intchoice2 |

(PMQ) - P (PMQ) = Q

awhere a is a visible event, some other rules are omitted.

Operational Semantics: Sequential Composition

In process P; (), P takes control first and () starts only when P has finished. Let

v’ be a distinguished event denoting termination.

. v
[seq] P=r

(P; Q) = (P; Q) (P; Q) = O

[seq2 |

Operational Semantics: Interrupt

In process PV (), whenever an event is engaged by (), P is interrupted and the
control transfer to Q).

P = P Q = Q
[interrupt]] [interrupt]]

(PVQ) = (P'VQ) (PVQ) = Q'

Operational Semantics: Example

Let VMS = coin — (choc — VMS O bisc — VMS).

stepl. VMS 2 (choc — VMS O bisc — VMS)
step2. (choc — VMS O bisc — VMS) e yMS
step2. (choc — VMS O bisc — VMS) " YMS

— by rule prefixing
— by rule extchoicel

— by rule extchoicel

Labeled Transition System

A Labeled Transition System contains a set of states, an initial state (where the

system starts from) and a (labeled) transition relation.

choc

(1 coin
bisc
where VMS = coin — (choc — VMS O bisc — VMS), state 1 represents the
process VMS and state 2 represents the process (choc — VMS O bisc — VMS).

10

Operational Semantics: Interleaving

In process P ||| @, P and @ behaves independently?®.

P = P

| interleavel |
(PIIIQ) = (Pl Q)
© -9 | interleave?2 |

(PIIIQ) = (Pl Q)

aexcept termination. Assume that a is not .

11

Operational Semantics: Synchronization

In process P |[X]| @, no event from X may occur unless jointly by both P and Q.
When events from X do occur, they occur in both P and () simultaneously.

P 3% PandadX
(PI[X]IQ) = (P'[X]Q)

[synl]

Q > Q and a¢d X
(PI[X]Q) = (PI[X] Q)

[syn2 |

P % Pand Q3 Q and a € X
(PI[X]Q) = (PI[X] Q)

[syn3 |

12

Operational Semantics: Example (cont’ed)

stepl : (a — P||
step2: (a — P||

c—a— Q) = (a—Plla]l(a— Q) - rule syn2

JI (
(e — Q) = (Pla]l Q) — rule syn3

]

Given the process a — P |[a]|(c — a — Q).
|
|

a
a

13

Operational Semantics: Example (cont’ed)

e VMC = coin — (choc — VMC O bisc — VMC)
o CHOCLOV = choc — CHOCLOYV O coin — choc — CHOCLOV
e How process VMC'|[A]| CHOCLOV where A = {coin, choc, bisc} behaves?

stepl : VMC|[A]| CHOCLOV X" 7
step2 : (choc — VMC O bisc — VMC)|[A]| (choc — CHOCLOYV) hec g

choc

14

Operational Semantics: Example (cont’ed)

e VMC = coin — (choc — VMC O bisc — VMC)

e CHOCLOV = choc — CHOCLOYV O coin — choc — CHOCLOV

e VMC || coin, choc|| CHOCLOV or equivalently VMC' || CHOCLOV behaves as

follows,

stepl :
step2 :
step2 :

VMC | CHOCLOV %' 777
(choc — VMC O bisc — VMC) || (choc — CHOCLOV) 8¢ 277
(choc — VMC O bisc — VMC) || (choc — CHOCLOYV) e 997

choc

‘/coin\ bisc
—()— () (3)

15

Operational Semantics: Example (cont’ed)

Step 1: specify the dining philosophers,

Alice = Alice.get.forkl — Alice.get.fork2 — Alice.eat
— Alice.put.forkl — Alice.put.fork2 — Alice

Bob = Bob.get.fork2 — Bob.get.forkl — Bob.eat
— Bob.put.fork2 — Bob.put.forkl — Bob

Forkl = Alice.get.forkl — Alice.put.forkl — Forkl O
Bob.get.forkl — Bob.put.forkl — Forkl

Fork2 = Alice.get.fork2 — Alice.put.fork2 — Fork2 O
Bob.get.fork2 — Bob.put.fork2 — Fork2

College = Alice || Bob || Forkl || Fork2

16

Operational Semantics: Example (cont’ed)

Step 2: get the alphabets of each process,

aAlice = {Alice.get.fork1, Alice.get.fork2, Alice.eat, Alice.put.forkl, Alice.put.fork2}
aBob = {Bob.get.forkl, Bob.get.fork2, Bob.eat, Bob.put.forkl, Bob.put.fork2}
aForkl = {Alice.get.fork1, Alice.put.fork1, Bob.get.fork1, Bob.put.fork1}

aFork2 = {Alice.get.fork2, Alice.put.fork2, Bob.get.fork2, Bob.put.fork2}

17

Operational Semantics: Example (cont’ed)

Step 3: apply the operational semantics rules (one at a time) to build the Labeled

Transition System, e.g, initially,
e Alice can perform Alice.get.forkl;
e Bob can perform Bob.get.fork2;
e Forkl can perform Alice.get.forkl or Bob.get.forkl;
e Fork2 can perform Alice.get.fork2 or Bob.get.fork2;

e By rule syn3, College can perform either Alice.get.forkl or Bob.get.fork2, and

then a state of the form.

18

Operational Semantics: Example (cont’ed)

lice.put.forkl QAIlce put.fork2 ~~ Bop.put. fork1<)BOb put. fork
Alice.geiforkl \Bob.get.fork2
Alice.ca @\ /Ob ol
Allce get. fork2 Bob.get.forkl

Bob.get.fork2 Alice.get.forkl

@

19

Operational Semantics: Example (cont’ed)

Step 4: analyze the Labeled Transition System,
e is the system deadlock-free?

e will Alice or Bob starve to death?

Tool Needed!

20

Process Analysis Toolkit

e PAT is a tool developed by our group for simulating and verifying systems.
e You specify the system, PAT simulates system behaviors.

e You specify the system, you ask the question, PAT answers (yes, or no with a

counterexample).
e PAT is available at http://www.comp.nus.edu.sg/ liuyang/pat

e Next lecture: how to use PAT (or model checking in general) for system

analysis (e.g., solving puzzles automatically).

21

