
Systematic Analysis of CSP Models (1)

October 3, 2008

1

Outline

• Operational semantics

– Given a process specifying some system, how does it execute?

• Mechanical system analysis

– Given a process specifying some system, how do we know whether it is

correct or not?

2

How a Given Process Executes?

• Denotational Semantics

– traces(P ‖ Q) = {t : seqA | (t ↾ αP ∈ traces(P) ∧ (t ↾ αQ ∈ traces(Q))}

where A = αP ∪ αQ .

• Operational Semantics

– Given a system state, what are the possible actions the system can perform

and what are the outcomes?

– P
a
→ Q

3

Operational Semantics

• Operational Semantics can be presented using a set of inference rules of the

following form,

Premises

Conclusion

• e.g.,

P
a
→ P ′

P 2 Q
a
→ P ′

4

Operational Semantics: Primitives

• STOP ,

• SKIP,

[skip]

SKIP
X
→ STOP

• Prefixing,

[prefixing]
(a → P)

a
→ P

5

Operational Semantics: Choices

• External choicea,

P
a
→ P ′

[extchoice1]
(P 2 Q)

a
→ P ′

Q
a
→ Q ′

[extchoice2]
(P 2 Q)

a
→ Q ′

• Internal choice, let τ be the silent invisible event,

[intchoice1]
(P ⊓ Q)

τ

→ P

[intchoice2]
(P ⊓ Q)

τ

→ Q

awhere a is a visible event, some other rules are omitted.

6

Operational Semantics: Sequential Composition

In process P ; Q , P takes control first and Q starts only when P has finished. Let

X be a distinguished event denoting termination.

P
a
→ P ′

[seq1]
(P ; Q)

a
→ (P ′; Q)

P
X
→ P ′

[seq2]
(P ; Q)

τ

→ Q

7

Operational Semantics: Interrupt

In process P▽Q , whenever an event is engaged by Q , P is interrupted and the

control transfer to Q .

P
a
→ P ′

[interrupt1]
(P▽Q)

a
→ (P ′▽Q)

Q
a
→ Q ′

[interrupt1]
(P▽Q)

a
→ Q ′

8

Operational Semantics: Example

Let VMS = coin → (choc → VMS 2 bisc → VMS).

step1. VMS
coin
→ (choc → VMS 2 bisc → VMS) – by rule prefixing

step2. (choc → VMS 2 bisc → VMS)
choc
→ VMS – by rule extchoice1

step2. (choc → VMS 2 bisc → VMS)
bisc
→ VMS – by rule extchoice1

9

Labeled Transition System

A Labeled Transition System contains a set of states, an initial state (where the

system starts from) and a (labeled) transition relation.

coin

choc

bisc

1 2

where VMS = coin → (choc → VMS 2 bisc → VMS), state 1 represents the

process VMS and state 2 represents the process (choc → VMS 2 bisc → VMS).

10

Operational Semantics: Interleaving

In process P ||| Q , P and Q behaves independentlya.

P
a
→ P ′

[interleave1]
(P ||| Q)

a
→ (P ′ ||| Q)

Q
a
→ Q ′

[interleave2]
(P ||| Q)

a
→ (P ||| Q ′)

aexcept termination. Assume that a is not X.

11

Operational Semantics: Synchronization

In process P |[X]|Q , no event from X may occur unless jointly by both P and Q .

When events from X do occur, they occur in both P and Q simultaneously.

P
a
→ P ′ and a 6∈ X

[syn1]
(P |[X]|Q)

a
→ (P ′ |[X]|Q)

Q
a
→ Q ′ and a 6∈ X

[syn2]
(P |[X]|Q)

a
→ (P |[X]|Q ′)

P
a
→ P ′ and Q

a
→ Q ′ and a ∈ X

[syn3]
(P |[X]|Q)

a
→ (P ′ |[X]|Q ′)

12

Operational Semantics: Example (cont’ed)

Given the process a → P |[a]| (c → a → Q).

step1 : (a → P |[a]| (c → a → Q))
c
→ (a → P |[a]| (a → Q)) – rule syn2

step2 : (a → P |[a]| (a → Q))
a
→ (P |[a]|Q) – rule syn3

13

Operational Semantics: Example (cont’ed)

• VMC = coin → (choc → VMC 2 bisc → VMC)

• CHOCLOV = choc → CHOCLOV 2 coin → choc → CHOCLOV

• How process VMC |[A]|CHOCLOV where A = {coin, choc, bisc} behaves?

step1 : VMC |[A]|CHOCLOV
coin
→ ?

step2 : (choc → VMC 2 bisc → VMC) |[A]| (choc → CHOCLOV)
choc
→ ?

coin

choc

1 2

14

Operational Semantics: Example (cont’ed)

• VMC = coin → (choc → VMC 2 bisc → VMC)

• CHOCLOV = choc → CHOCLOV 2 coin → choc → CHOCLOV

• VMC |[coin, choc]|CHOCLOV or equivalently VMC ‖ CHOCLOV behaves as

follows,

step1 : VMC ‖ CHOCLOV
coin
→ ???

step2 : (choc → VMC 2 bisc → VMC) ‖ (choc → CHOCLOV)
choc
→ ???

step2 : (choc → VMC 2 bisc → VMC) ‖ (choc → CHOCLOV)
bisc
→ ???

coin

choc

1 2
bisc

3

15

Operational Semantics: Example (cont’ed)

Step 1: specify the dining philosophers,

Alice = Alice.get .fork1 → Alice.get .fork2 → Alice.eat

→ Alice.put .fork1 → Alice.put .fork2 → Alice

Bob = Bob.get .fork2 → Bob.get .fork1 → Bob.eat

→ Bob.put .fork2 → Bob.put .fork1 → Bob

Fork1 = Alice.get .fork1 → Alice.put .fork1 → Fork1 2

Bob.get .fork1 → Bob.put .fork1 → Fork1

Fork2 = Alice.get .fork2 → Alice.put .fork2 → Fork2 2

Bob.get .fork2 → Bob.put .fork2 → Fork2

College = Alice ‖ Bob ‖ Fork1 ‖ Fork2

16

Operational Semantics: Example (cont’ed)

Step 2: get the alphabets of each process,

αAlice = {Alice.get .fork1,Alice.get .fork2,Alice.eat ,Alice.put .fork1,Alice.put .fork2}
αBob = {Bob.get .fork1,Bob.get .fork2,Bob.eat ,Bob.put .fork1,Bob.put .fork2}
αFork1 = {Alice.get .fork1,Alice.put .fork1,Bob.get .fork1,Bob.put .fork1}
αFork2 = {Alice.get .fork2,Alice.put .fork2,Bob.get .fork2,Bob.put .fork2}

17

Operational Semantics: Example (cont’ed)

Step 3: apply the operational semantics rules (one at a time) to build the Labeled

Transition System, e.g, initially,

• Alice can perform Alice.get .fork1;

• Bob can perform Bob.get .fork2;

• Fork1 can perform Alice.get .fork1 or Bob.get .fork1;

• Fork2 can perform Alice.get .fork2 or Bob.get .fork2;

• By rule syn3, College can perform either Alice.get .fork1 or Bob.get .fork2, and

then a state of the form.

· · · ‖ · · · ‖ · · · ‖ · · ·

18

Operational Semantics: Example (cont’ed)

1

2 3

4

5

6 7

8

910

Alice.get.fork1

Alice.get.fork2

Alice.eat

Alice.put.fork2Alice.put.fork1

Bob.get.fork2

Bob.get.fork1

Bob.eat

Bob.put.fork2
Bob.put.fork1

Bob.get.fork2 Alice.get.fork1

19

Operational Semantics: Example (cont’ed)

Step 4: analyze the Labeled Transition System,

• is the system deadlock-free?

• will Alice or Bob starve to death?

• · · ·

Tool Needed!

20

Process Analysis Toolkit

• Pat is a tool developed by our group for simulating and verifying systems.

• You specify the system, Pat simulates system behaviors.

• You specify the system, you ask the question, Pat answers (yes, or no with a

counterexample).

• Pat is available at http://www.comp.nus.edu.sg/˜liuyang/pat

• Next lecture: how to use Pat (or model checking in general) for system

analysis (e.g., solving puzzles automatically).

21

