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Abstract. Process Analysis Toolkit (PAT) is a toolset designed for specifying and
verifying event-based compositional systems. In particular, it supports a variety
of fairness assumptions. We explain in detail in this document the input language
of PAT and its operational semantics.

1 Introduction

PAT is designed for systematic analysis of event-based compositional systems. The in-
put language of PAT is mainly influenced by the classic Communicating Sequential
Processes (CSP [Hoa85]). Nonetheless, we extend CSP with various useful language
features to suit our goal. Examples include shared variables, asynchronous message
passing channels and event annotations which capture a variety of fairness constraints.
The language constructs may be categorized into the following groups.

– The first group is the core subset of CSP operators, including event-prefixing, inter-
nal/external choices, alphabetized lock-step synchronization, conditional branch-
ing, interrupt, recursion, etc.

– The second group includes those language constructs which can be regarded as
‘syntactic sugar’ (to CSP), including global shared variables, and asynchronous
channels. It has long been known that CSP is capable of modeling shared variables
or asynchronous channels as processes. However, the dedicated language constructs
offer great usability and may make the verification more efficient.

– The third group is a set of event annotations for capturing event-based fairness
constraints. It is known that process algebras like CSP or CCS specifies safety only.
The event annotation offers a flexible way of modeling fairness using an event-
based compositional language.

– The lastly group is the language for stating assertions, which later may be automat-
ically verified using the built-in verifiers.

In the following, we will explain the language constructs one by one using illustra-
tive examples. Each construct will be explained using a simple example, followed by in-
formal explanation and formal operational semantics (for process constructs). Through-
out the article, the dining philosophers example and the bridge crossing puzzle will be
used as running examples.

Example 1 (Dining Philosophers).



[from Wikipedia] In 1971, Edsger Dijkstra set an examination question on a
synchronization problem where five computers competed for access to five
shared tape drive peripherals. Soon afterwards the problem was retold by Tony
Hoare as the dining philosophers’ problem.

Five philosophers sit at a circular table with a large bowl of spaghetti in the center. A
fork is placed in between each philosopher, and as such, each philosopher has one fork
to his or her left and one fork to his or her right. As spaghetti is difficult to serve and
eat with a single fork, it is assumed that a philosopher must eat with two forks. The
philosopher can only use the fork on his or her immediate left or right. It is further as-
sumed that the philosophers are stubborn enough such that they only put down the forks
after eating, and every philosopher picks up his left fork first and afterwards the right
fork. There are a number of known problems with the dining philosophers. Firstly, the
system may deadlock, i.e., all processes get stuck and cannot make a move. Secondly,
the system may execute un-fairly. For instance, one philosopher may greedily grabs the
forks and eats forever, leaving no chance at all for his neighbors. 2

Example 2 (Bridge Crossing Puzzle). In the classic puzzle, there are four people arriv-
ing at an old bridge at night. All four people start out on the southern side of the bridge,
namely the king, queen, a young lady and a knight. The goal is for everyone to arrive
at the castle north of the bridge before the time runs out. The bridge can hold at most
two people at a time and they must be carrying the torch when crossing the bridge. The
king needs 5 minutes to cross, the queen 10 minutes, the lady 2 minutes and the night 1
minutes. The question is if the goal may be achieved given a specific time bound. 2

2 Global Definitions

In PAT, a number of global definitions are used to assist elegant specification and verifi-
cation, namely, global constants, variables, predicates (for assertions, refer to Section 5)
and channels.

2.1 Global Constant

A global constant is defined using the following syntax,

#define NoOfPhils 5;

#define is a key word used for multiple purposes. Here it defines a global constant
named NoOfPhils , which has the value 5. The constant defines the size of the dining
philosopher problem. The semi-colon marks the end of the ‘sentence’. A global constant
is cleared at compilation time (e.g., by replacing NoOfPhils by 5 everywhere, refer
to [SLD08]).

2.2 Global Variables

A global variable is defined using the following syntax,

knight = 0;



where knight is the variable name. This variable tells whether the knight has reach the
northern side of the bridge, i.e., 0 means no and 1 means yes. Semi-colon is used to
mark the end of the ‘sentence’ as above. We remark that because only limited types are
supported in PAT currently, no type information is required for a variable definition. An
array may be defined as follows,

board = [3, 5, 6, 0, 2, 7, 8, 4, 1];

where board is the array name and its initial value is specified as the sequence, e.g.,
board [0] = 3. The following defines an array of size 3.

leader [3];

All elements in the array are initialized to be 0.

2.3 Asynchronous Message Channels

A channel is defined using the following syntax,

channel c 5;

where channel is a key word for defining channels only, c is the channel name and 5 is
the buffer size of the channel. Notice that the buffer size must be a positive natural num-
ber. In SPIN, channels with buffer size 0 behaves as synchronization barriers. In PAT,
synchronous communication is supported by CSP-style alphabetized parallel composi-
tion (refer to Section 3.14). A channel is implemented in PAT as a queue of the given
size. In the following, we shall write c.items to denote the items currently holding in
channel c.

2.4 Aliasing for Conditions

A Boolean condition may be given a specific name (for referencing in the assertions,
refer to Section 5) using the following syntax,

#define goal (knight == 1&&lady == 1&&king == 1&&queen == 1);

where #define is a key word (as used for defining global constants, refer to Sec-
tion 2.1), and goal is the name given for the Boolean expression

(knight == 1&&lady == 1&&king == 1&&queen == 1)

which basically means that all four people have reached the northern side of the bridge.

3 Process Definitions

A process is defined as an equation in the following syntax

P(x1, · · · , xn) = Exp;



where P is the process name, x1, · · · , xn is an optional list of process parameters and
Exp is a process expression. In this section, the constructs for process expressions will
be explained one-by-one. For each construct, a simple example is firstly presented to
illustrate the syntax. Its formal semantics is then presented as a set of firing rules. A
firing rule is of the following form,

enabling condition
[ rule name ]

resultant transition

The firing rules effectively define a labeled transition system semantics for a process
expression.

Definition 1. A Labeled Transition System (LTS) is a 4-tuple (S , s0,→, Σ) where S is
a set of states, s0 ∈ S is the initial state, →: S × Σ × S and Σ is the alphabet, i.e., a
set of events.

Given a process, its semantics is identified by an LTS (S , s0,→, Σ. S is a set of states
of the form (p, v , c) where p is the current process expression, v is the current valuation
of the global variables and c identifies the status of the channels. Notice that these three
components uniquely identify the system state. s0 is of the form (p0, v0, c0), i.e., the
initial process, the initial valuation and the state where all the channels are empty. →
will be defined by the firing rules in a compositional manner. Σ (as we shall explain in
detail, refer to Section 3.14) is the alphabet of the process, which may manually defined
or it will be set to the default value.

3.1 Deadlock
The deadlock process is written as follows,

Stop

The process does nothing at all and thus there are no firing rules associated with Stop.
The default alphabet of Stop is ∅.

3.2 Termination
The process which terminates immediately1 is written as follows,

Skip

Given V as the current valuation of the global variables and C as the status of the
channels, the following firing rule is associated with the process Skip.

[ skip ]

(Skip,V ,C ) X→ (Stop,V ,C )

X is a special event which denotes termination . The valuation of the variables and
the status of the channels remain the same after the transition. Note that there were
some known problem with X with regards to parallel composition. Refer to our remedy
presented in Section 3.14 and 3.13).

1 PAT is only for un-timed systems at the moment and this ‘immediately’ shall not be interpreted
as ‘no time elaspes’.



3.3 Simple Event Prefixing

A simple event is a name for representing an observation. Given a process P , the fol-
lowing describes a process which performs e first and then behaves as specified by P ,

e → P

where e is an event.
[ evtPref ]

(e → P ,V ,C ) e→ (P ,V ,C )

The occurrence of a simple event does not modify the valuation of the global variables
as well as the status of the channels. The following describes a simple vending machine
which takes in a coin and dispatches a coffee every time.

VM () = insertcoin → coffee → VM ();

where event insertcoin models the event of inserting a coin into the machine and event
coffee models the event of getting coffee out of the machine. The following is one
application of the above transition rule,

(insertcoin → coffee → VM (),V ,C ) insertcoin→ (coffee → VM (),V ,C )

The same event may be shared by multiple processes running in parallel. The event
then serves as a synchronization barrier (refer to Section 3.14). An event may be in a
compound form, e.g., event insert .50 represents the event of inserting a coin of value
50 cents. Or an event may contain a local variable, as in the following example,

Phil(i) = get .i .(i + 1)%N → Rest();

where i is a parameter of the process. Notice that the variables which constitute the
event name will be replaced by its value whenever the process definition is instantiated
(refer to [SLD08]).

Event e may be associated with a sequence of assignments, which update possibly
multiple global variables at one time (refer to Section 3.4). Furthermore, events may be
marked with special annotations to liveness/fairness (refer to Section 4).

Remarks Only process parameters may constitute the event name (not global vari-
ables). We make this assumption so that we may calculating the alphabet of a process
meaningfully (refer to [SLD08]).

3.4 Assignments

The valuation of the global variables may be modified by assignments. A sequence of
assignments may be attached to an event by one atomic operation, as in the following
example,

go knight lady{knight = 1; lady = 1; time = time + 2; } → North()



where go knight lady denotes the event of the knight and the lady crossing the bridge
together (to the northern side, refer to Example 2). The variable knight (lady) is 1 if
and only if the knight (lady) has crossed the bridge. The variable time is used to record
the total time taken.

The assignments are evaluated in a sequence and therefore the order of the assign-
ments does matter. The semantics of assignment is capture by the following rule,

[ assign ]
(e{assign exp} → P ,V ,C ) e→ (P ,V ′,C )

where assign exp is an assignment expression and V ′ is V with variable valuations
updated accordingly to assignments2.

Remarks In PAT, assignments are only allowed to update global variables but not lo-
cal variables (e.g., parameters of the process definition). This is because local variables
may constitute event names and therefore allowing dynamic modification of local vari-
ables may change the alphabet of a process dynamically, which is undesirable (refer
to [SLD08]).

Remarks In general, a sequential program (which may involve while-loop, if-the-else,
etc.) may be attached to an event. Because an event attached may update multiple global
variables at once, synchronizing such events may result in race conditions. Therefore,
events attached with assignments/programs are never synchronized.

3.5 Channel Input/Output

Channel input/output is written in a similar way to simple event prefixing.

c!exp → P – channel output
c?x → P – channel input

where c is a channel, exp is an expression which evaluates to a value and x is a (local)
variable which takes the input value. The channel must be declared.

¬ full(c)
[ output ]

(c!v → P ,V ,C ) c!v→ (P ,V ,C ⊕ (c.items a v))

¬ empty(c), c.top = v , c′ = c a v
[ input ]

(c?x → P ,V ,C ) c?v→ (P ,V ⊕ (x 7→ v),C \ c ∪ c′)

2 We skip the semantics of the sequential composition of assignments.



3.6 External Choice

In PAT, we distinguish between external choice and internal choice. External choice
is made by the environment, e.g., the observation of a visible event or the valuation of
the global variables. Internal choice is used to model non-determinism explicitly (refer
to Section 3.7). An external choice is written as follows,

Fork(x ) = get .x .x → put .x .x → Fork(x ) []
get .(x − 1)%N .x → put .(x − 1)%N .x → Fork(x );

where event get .x .y (put .x .y) is the event of x -philosopher picks up (put down) the
y-fork. This process models the behavior of the fork in the dining philosopher example
(refer to Example 1). The sub-process get .x .x → put .x .x → Fork(x ) says that the
fork may be picked up by x -philosopher and later be put down by him/her. The sub-
process get .(x − 1)%N .x → put .(x − 1)%N .x → Fork(x ) says that the fork may
be picked up by the other philosopher and later be put down by him/her. The choice
operator [] states that either philosopher may pick up the fork and once he/she does so,
the other philosopher cannot do that any more. In other words, the choice is resolved by
whichever (visible) event that occurs first.

The semantics of the external choice operators is captured by the following firing
rules,

(P ,V ,C ) e→ (P ′,V ′,C ′), e 6= τ
[ ext1 ]

(P [] Q ,V ,C ) e→ (P ′,V ′,C ′)

(P ,V ,C ) τ→ (P ′,V ′,C ′)
[ ext2 ]

(P [] Q ,V ,C ) e→ (P ′ [] Q ,V ′,C ′)

(Q ,V ,C ) e→ (P ′,V ′,C ′), e 6= τ
[ ext3 ]

(P [] Q ,V ,C ) e→ (Q ′,V ′,C ′)

(Q ,V ,C ) τ→ (Q ′,V ′,C ′)
[ ext4 ]

(P [] Q ,V ,C ) e→ (P [] Q ′,V ′,C ′)

where τ denotes an internal (invisible) event. Rule ext1 and ext2 state that if a compo-
nent may engage in a visible event e, then the choice is resolved if e is engaged. Rule
ext2 and ext4 state that an invisible transition by either component does not resolve the
choice. The following are the two possible transitions of Fork(x ),

Fork(x )
get.x .x→ put .x .x → Fork(x )

Fork(x )
get.(x−1)%N .x→ put .(x − 1)%N .x → Fork(x )



3.7 Internal Choice

Internal choice introduces non-determinism explicitly. The following models a vending
machine which produces one of two drinks non-deterministically,

nondetVM () = coin → (tea → nondetVM () <> coffee → nondetVM ());

The semantics of the internal choice is captured by the following firing rules.

[ int1 ]
(P <> Q ,V ,C ) τ→ (P ,V ,C )

[ int2 ]
(P <> Q ,V ,C ) τ→ (Q ,V ,C )

Both firing rules are un-conditional and therefore the system may take any transition.
Non-determinism is largely undesirable at design or implementation stage, whereas

it is useful at modeling stage for hiding relevant information. For instance, it can be
used to model the behaviors of a block-box procedure, where the exact details of the
implementation is not available.

3.8 Conditional Choice

A choice may depend on a Boolean expression which in term depends on the valua-
tions of the variables. In PAT, a number of different operators can be used to model
conditional choices. Let P and Q be two process expressions.

coffee → VM () << amount > 80 >> tea → VM ()

where amount is the amount which has been inserted into the vending machine. De-
pending on the amount, one of the two drinks will be dispatched. In particular, if
amount is larger than 80, a coffee will be produced, otherwise a tea will be. The oper-
ator << b >> where b is a Boolean expression has the same semantics of if-then-else
in programming languages like JAVA or C. The following capture its semantics,

V ² b, (P ,V ,C ) e→ (P ′,V ′,C ′)
[ cond1 ]

(P << b >> Q ,V ,C ) e→ (P ′,V ′,C ′)

V 6² b, (Q ,V ,C ) e→ (Q ′,V ′,C ′)
[ cond2 ]

(P << b >> Q ,V ,C ) e→ (Q ′,V ′,C ′)

PAT allows conditional choices to be written in the form of a guarded command, as in
the following example.

[amount > 80]coffee → VM () []
[amount <= 80&&amount > 50]tea → VM ()



Intuitively, the above states that if more than 80 cents have been inserted into the vend-
ing machine, a coffee is dispatched; if the amount inserted is between 50 and 80, a tea is
dispatched then. Process [b]P is semantically equivalent to process P << b >> Stop.

V ² b, (P ,V ,C ) e→ (P ′,V ′,C ′)
[ cond3 ]

([b]P ,V ,C ) e→ (P ′,V ′,C ′)

The more general way of writing conditional choices is demonstrated in the following
example,

Reading(i) = if
i == 0 : Controller()
i == M : stopread → Reading(i − 1)
i > 0&&i < M : startread → Reading(i + 1) []

stopread → Reading(i − 1)
endif ;

Process if (b1 : P1) (b2 : P2) · · · (bk : Pk ) endif ; can be equivalently rewritten in
the following form,

P1 << b1 >> P2 << b2 >> · · ·Pk << bk >> Stop

That is, the conditions b1, · · · , bn are evaluated one by once in order until one process
guarded by a condition which evaluated to true is found. Notice that internally, all other
forms of conditional choices are translated to processes of the above form.

P << b >> Q ≡ if (b : P) (¬ b : Q) endif
[b]P ≡ if (b : P) endif

3.9 Interrupt

Process P |> Q behaves as specified by P until the first visible event of Q is engaged
and then the control transfers to Q . The following is an example,

Routine() |> exception → ExceptionHandling()

where Routine is a process which performs normal daily task and ExceptionHandling
is a process which performs necessary actions for error handling. Whenever an ex-
ception occurs (modeled as event exception), process ExceptionHandling takes the
control over. The following rules capture its semantics,

(P ,V ,C ) e→ (P ′,V ′,C ′)
[ interrupt1 ]

(P |> Q ,V ,C ) e→ (P ′ |> Q ,V ′,C ′)

(Q ,V ,C ) e→ (P ′,V ′,C ′), e 6= τ
[ interrupt2 ]

(P |> Q ,V ,C ) e→ (Q ′,V ′,C ′)



(Q ,V ,C ) τ→ (P ′,V ′,C ′)
[ interrupt3 ]

(P |> Q ,V ,C ) τ→ (P |> Q ′,V ′,C ′)

An invisible transition of Q will not interrupt process P (rule interrupt3). Notice that
process e → Stop |> e → Stop is trace-equivalent process e → Stop <> e → Stop.

3.10 Hiding

Process P \ A where A is a set of events turns events in A to invisible ones. Hiding
is applied when only certain events are interested. Hiding may be used to introduce
non-determinism. In the following example, because event get .i .i and put .i .i are only
relevant to process Phil(i) and Fork(i) in the dining philosopher problem, we may
hide them from the rest of the system as in the following example.

Phil(i) = get .(i + 1)%N .i → get .i .i → eat .i →
put .(i + 1)%N .i → put .i .i → Phil(i);

Fork(i) = get .i .i → put .i .i → Fork(i) []
get .(i − 1)%N .i → put .(i − 1)%N .i → Fork(i);

PhilForkPair(i) = (Phil(i) ‖ Fork(i)) \ {get .i .i , put .i .i}

where ‖ denotes alphabetized parallel composition (refer to Section 3.14). The follow-
ing captures the semantics of the hiding operator.

(P ,V ,C ) e→ (P ′,V ′,C ′), e ∈ A
[ hiding1 ]

(P \A,V ,C ) τ→ (P ′ \A,V ′,C ′)

(P ,V ,C ) e→ (P ′,V ′,C ′), e 6∈ A
[ hiding2 ]

(P \A,V ,C ) e→ (P ′ \A,V ′,C ′)

A transition of P which is labeled with a visible event is turned into an τ -transition if
the event is contained in A.

3.11 Selecting

The dual of hiding is selecting . Process P/A where A is a set of events turns events
NOT in A to invisible ones. In contrast to hiding, A is the set of events which are of
interest. This language feature is particularly useful when only a small number of events
are of interest. Assume we are only interested in event eat .i and do not care about the
order in which the forks are picked up, we may hide other events from the rest of the
system as in the following example.

PhilForkPair(i) = (Phil(i) ‖ Fork(i))
College() = (PhilForkPair(0) ‖ PhilForkPair(1))/{eat .0, eat .1}



where ‖ denotes alphabetized parallel composition (refer to Section 3.14). The follow-
ing captures the semantics of the hiding operator.

(P ,V ,C ) e→ (P ′,V ′,C ′), e ∈ A
[ selecting1 ]

(P/A,V ,C ) e→ (P ′/A,V ′,C ′)

(P ,V ,C ) e→ (P ′,V ′,C ′), e 6∈ A
[ selecting2 ]

(P/A,V ,C ) τ→ (P ′/A,V ′,C ′)

A transition of P which is labeled with a visible event is turned into an τ -transition if
the event is not contained in A.

3.12 Sequential Composition

Sequential composition of two processes is written as P ; Q , where ; serves as se-
quential composition operator. Intuitively, the semantics is that Q starts only when P
terminates. The termination of P is signaled by the special event X (refer to section 3.2).
The following captures the semantics of sequential composition.

(P ,V ,C ) e→ (P ′,V ′,C ′), e 6= X
[ seq1 ]

(P ; Q ,V ,C ) e→ (P ′; Q ,V ′,C ′)

(P ,V ,C ) X→ (P ′,V ′,C ′)
[ seq2 ]

(P ; Q ,V ,C ) τ→ (Q ,V ′,C ′)

Notice that whenever X engages in P , Q takes over control and the system makes a
τ -move. Though sequential composition seemed simple enough, it may not be so when
mixed with parallel/interleaving composition (refer to Section 3.13 and 3.14).

3.13 Interleaving

Process P ||| Q is the interleaving of the two processes P and Q . Thus, P and Q may
behave independently of each other (with one exception, refer to the semantics). The
following captures its semantics.

(P ,V ,C ) e→ (P ′,V ′,C ′), e 6= X
[ interleave1 ]

(P ||| Q ,V ,C ) e→ (P ′ ||| Q ,V ′,C ′)

(Q ,V ,C ) e→ (Q ′,V ′,C ′), e 6= X
[ interleave2 ]

(P ||| Q ,V ,C ) e→ (P ||| Q ′,V ′,C ′)



(P ,V ,C ) X→ (P ′,V ,C ), (Q ,V ,C ) X→ (Q ′,V ,C )
[ interleave3 ]

(P ||| Q ,V ,C ) X→ (P ′ ||| Q ′,V ,C )

The first two rules state that P or Q may behave on its own. The third rule states that
P and Q must synchronize on termination. The intuition is that given two processes
(which may be physically remote) running in parallel (with synchronization), the whole
terminates if and only if both processes has terminated. For instance, given the process
(a → Skip ||| b → Skip); c → Stop, it is intuitive that c must happen only after both
a and b have happened.

Remarks The indexed interleaving is written as

||| x : 0..N • P(x )

where N is a natural number. Given N is of value 2, the above process is compiled to
P(0) ||| P(1) ||| P(2).

3.14 Parallel Composition

Parallel composition of two processes with synchronization is written as

P ‖ Q

where ‖ is the parallel composition operator. In parallel composition, abstract events
shared by both P and Q must be synchronized.

Before we explain the semantic rules, we must first define the alphabet of a process.
The alphabet of a process is the set of events that the process takes part in. For instance,
given the process defined as follows,

VM () = insertcoin → coffee → VM ();

The alphabet of VM () is exactly the set of events which constitute the process expres-
sion, i.e., {insertcoin, coffee}. However, calculating the alphabet of a process is not
always trivial. It may be complicated by two things. One is process referencing. The
other is process parameters. In the above example, the process reference VM () hap-
pens to be the same as the process whose alphabet is being calculated. Thus, it is not
necessarily to unfold VM () again. Should a different process is referenced, we must
unfold that process and get its alphabet. For instance, assume the VM () is now defined
as follows,

VM () = insertcoin → Inserted();
Inserted() = coffee → VM ();

To calculate the alphabet of VM (), we must unfold process Inserted() and combine
alphabets of Inserted() with insertcoin . Notice that a simple procedure must be used to
prevent unfolding the same process again. However, even with such a procedure, it may



still be infeasible to calculate mechanically the alphabet of a process. The complicated
is due to process parameters. For instance, given the following process,

P(i) = a.i → P(i + 1);

Naturally, the unfolding process is non-terminating. In general, there is no way to solve
this problem. Therefore, PAT offers two compromising ways to get the alphabets. One
is to use a reasonably simple procedure to calculate a default alphabet of a process.
When the default alphabet is not as expected, an advanced user is allowed to define the
alphabet of a process manually. We detail the first in the following.

First of all, alphabet of processes are calculated only when it is necessarily. That
means, only when a parallel composition is evaluated. This saves a lot of computational
overhead. Processes in a large number of models only communicate through shared
variables. If no parallel composition is present, there is no need to evaluate alphabets.
We remark that when there is no shared abstract events, process P ||| Q and P ‖ Q
are exactly the same. Therefore, we recommend ||| when appropriate. When a parallel
composition is evaluated for the first time, the default alphabet of each sub-process is
calculated (if not manually defined). The default alphabet of a process is the set
of events which constitute its process expression. If process references are present,
each process reference is unfolded exactly once. By far, this default alphabet has been
intuitive.

The following is the firing rules associated with parallel composition. Let ΣP be
the alphabet of process P .

(P ,V ,C ) e→ (P ′,V ′,C ′), e 6∈ ΣQ
[ parallel1 ]

(P ‖ Q ,V ,C ) e→ (P ′ ‖ Q ,V ′,C ′)

(Q ,V ,C ) e→ (Q ′,V ′,C ′), e 6∈ ΣP
[ parallel2 ]

(P ‖ Q ,V ,C ) e→ (P ‖ Q ′,V ′,C ′)

(P ,V ,C ) e→ (P ′,V ,C ), (Q ,V ,C ) e→ (Q ′,V ,C )
[ parallel3 ]

(P ||| Q ,V ,C ) e→ (P ′ ‖ Q ′,V ,C )

The alphabet of a process always implicitly includes the special event X. Therefore, by
the last rule above, X as other shared events must be synchronized. Notice that the last
rule assumes that the synchronization does not change the global variables or channels,
which is guaranteed in PAT.

3.15 Process Referencing

We have seen a lot of process referencing by far. Process referencing is used to invoke an
already-defined process, with customized parameters. It is also used to realize recursive
processes or mutual recursive processes.



Annotation Name Semantics
wf (e) weak fair event 32e is enabled ⇒ 23e is engaged
sf (e) strong fair event 23e is enabled ⇒ 23e is engaged
wl(e) weak live event 32e is ready ⇒ 23e is engaged
sl(e) strong live event 23e is ready ⇒ 23e is engaged

Table 1. Event-based Fairness Annotations

4 Event-based Fairness

PAT support the notion of event-based fairness, i.e., fairness constraints which are asso-
ciated with individual events. Given any event e, four different annotations can be used
to associate different fairness assumptions with e. The annotations are summarized in
Table 1. In the following, we discuss them one by one.

4.1 Weak Fair Events

A weak fair event is written as

wf (e)

Event wf (e) plays the same role as e except that it carries a weak fairness constraint.
That is, if a weak fair event is always enabled, it must be eventually engaged. In other
words, the system must move beyond a state where there is a weak fair event enabled.
Weak fair events allow us to express weak fairness constraints naturally. The following
demonstrates how we may achieve process level weak fairness (as the option offered in
SPIN) using weak fair events.

fPhil(i) = wf (get .i .(i + 1)%N ) → wf (get .i .i) → wf (eat .i)
→ wf (put .i .(i + 1)%N ) → wf (put .i .i) → fPhil(i)

fFork(i) = wf (get .i .i) → wf (put .i .i) → fFork(i)[]
wf (get .(i − 1)%N .i) → wf (put .(i − 1)%N .i) → fFork(i)

fCollege() = ‖ x : {0..N − 1}@(fPhil(x ) ‖ fFork(x ))

The idea is to annotate all events in a process weak fair so that an enabled event of the
process is not ignored forever.

4.2 Strong Fair Events

It can be shown that both weak and strong fairness are expressible using weak fair
events (as strong fairness can be transformed to weak fairness by paying the price of
one variable). However, strong fairness constraints may require more than what fair
events can offer in a natural way. Therefore, we introduce the notion of strong fair
events to capture strong fairness elegantly. A strong fair event, written as sf (e), must
be engaged if it is repeatedly enabled.



The following specifies the Peterson’s algorithm for mutual exclusion. Without fair-
ness assumptions, the algorithm allows unbounded overtaking, i.e., a process which
intends to enter the critical section may be overtaken by other processes infinitely.

P(i , j ) = (sf (update.i .j ){pos[i ] := j ; step[j ] := i ; } → Rest()

where pos, step are two lists of integers (with initial value 0) of size N − 1 and N
respectively. In order to guarantee a system is completely strongly fair, communicating
events or events guarded by conditions must be annotated with strong fairness, whereas
weak fairness is sufficient for local actions which are not guarded.

4.3 Live Events

The following two event annotations are connected to CSP’s alphabetized parallel syn-
chronization. Skip this section if necessary.

In practice, even stronger fairness may be necessary. One example of a fairness
constraint which is very strong is the notion of accepting states in Büchi automata,
i.e., the system must keep moving until entering at least one accepting state (and do
that infinitely often). Other examples of stronger fairness include the compassion con-
ditions [KPRS06]. In order to capture these fairness constraints, we introduce two ad-
ditional fairness annotations, which have the capability of driving the system to reach
certain point. The additional annotations relies on the concept of “readiness” so that
system behaviors may be restricted by fairness assumptions which are associated with
events that are not even enabled.

Definition 2 (Readiness). Let P be a process. Let V be a valuation of the variables.

ready(Stop,V ) = ready(Skip,V ) = ∅
ready(e → P ,V ) = {e}
ready(Skip; Q ,V ) = ready(Q ,V )
ready(P ; Q ,V ) = ready(P ,V ) – if P 6= Skip.
ready(P []Q ,V ) = ready(P ,V ) ∪ ready(Q ,V )
ready(P <> Q ,V ) = ready(P ,V ) ∪ ready(Q ,V )
ready(P |> Q ,V ) = ready(P ,V ) ∪ ready(Q ,V )
ready(P << b >> Q ,V ) = ready(P ,V ) – if V ² b.
ready(P << b >> Q ,V ) = ready(Q ,V ) – if V ² ¬ b.
ready(P ‖ Q ,V ) = ready(P ,V ) ∪ ready(Q ,V )

Event e is ready given process P and valuation V if and only if e ∈ ready(P ,V ). Note
that enabledness and readiness are similarly defined for all process expressions except
parallel composition. The difference is captured by the last line of the above definition.
Given process P ‖ Q , a shared event is enabled if and only if it is enabled in both P
and Q , whereas it is ready if it is ready in either P or Q . Intuitively, an event is ready
if and only if one thread of control is ready to engage in it. An enabled event must be
ready. A weak live event, written as wl(e), must be engaged if it is always ready (not
necessarily enabled). Similarly, a strong live event, written as sl(e), must be engaged
if it is repeated ready. Because whether an event is ready or not depends on only one



process (in a parallel composition), live events may be used to design a controller which
drives the execution of a given system.

Let LiftSystem() be the modeling of a multi-lift system, which contains two events
turn on light and turn off light . In order to model that the light is always eventu-
ally turned off, the LiftSystem() may be replaced by LightSystem() ‖ LightCon()
where LightCon() = turn on light → wl(turn off light) → LightCon(). Because
both events must be synchronized, whenever event turn on light is engaged, event
turn off light becomes ready. In this case, it remains ready until it is engaged. Thus,
by definition, the light must eventually be turned off.

With live events, the dining philosophers may be modified as follows,

lPhil(i) = wl(get .i .(i + 1)%N ) → get .i .i → eat .i
→ put .i .(i + 1)%N → put .i .i → lPhil(i)

lFork(i) = get .i .i → wl(put .i .i) → lFork(i)[]
get .(i − 1)%N .i → wl(put .(i − 1)%N .i) → lFork(i)

lCollege(N ) = ‖ x : {0..N − 1}@(lPhil(x ) ‖ lFork(x ))

Model checking 23eat .0 against lCollege(5) returns true. Initially, wl(get .i .(i +
1)%N ) is ready and therefore by definition, it must be engaged (since it is not possible
to make it not ready). Once get .i .(i+1)%N is engaged, wl(put .(i−1)%N .i) becomes
ready and thus the system is forced to execute until it is engaged. For the same reason,
wl(put .i .i) must be engaged afterwards. Once put .i .i is engaged, wl(get .i .(i+1)%N )
becomes ready again. Therefore, the system is forced to execute infinitely and fairly.
The traces which lead to the deadlock state is not returned as a counterexample. This is
because event wl(put .(i − 1)%N .i) is ready in the deadlock state. Hence the trace is
considered invalid because it does not satisfied the fairness assumption, i.e., the event
wl(put .(i − 1)%N .i) is always ready but never engaged.

The fairness annotations restrict the possible behaviors of the system. It disallows
unfair (or unrealistic) traces and results in a smaller set of traces. Note that fairness
constraints cannot be captured using firing rules. Therefore, a two-levels semantics is
used to prune un-fair traces from infinite traces. The semantics is embedded in the
verification algorithms implemented in PAT (refer to [SLD08]).

5 Assertions

PAT allows user to state a number of different assertions. We details them one-by-one
in the following.

5.1 Deadlock-freeness

To assert that that a process is deadlock-free, we write the following assertion,

#assert College() deadlockfree;

A counter example to the assertion is a finite sequence of events which lead to a dead-
lock state.



5.2 Reachability Analysis

Reachability analysis is used to verify whether a particular condition could be true or
not. It is often useful for solving puzzles. For instance, given process BridgeCrossing()
which models the bridge crossing puzzle, the following asks for a solution.

#assert BridgeCrossing() reachable goal ;

where goal is a aliasing for the goal configuration of the game, i.e., all crossed the
bridge (refer to Section 2.4). Intuitively, the assertion states that a state satisfying the
goal condition is reachable in process BridgeCrossing().

5.3 Linear Temporal Logic

PAT allows the full set of LTL. An LTL assertion is of the following form.

#assert P() |= LTLFormula

where P() is a process and LTLFormula is an LTL formula.
To verify that something always holds, e.g., the balance of a saving account is al-

ways positive, the following LTL formula is used, assuming that balance is the variable
recording the balance of the account.

#define inv balance >= 0;
#assert Account() |= []inv ;

where inv is defined as an aliasing for the predicate balance >= 0 (refer to Sec-
tion 2.4). The modal operator [] reads as ‘always’. There are a number of other modal
operators. The following shows a list using illustrative examples. Assume F ,H are LTL
formulae,

[]F – always F is true.
<> F – eventually F is true.
F && H – F and H are true.
F → H – F implies H .
X F – nextly F is true.

Notice that it is possible to compose different modal operators, for instance [] <> is
often used to ‘always eventually’ something happens, or <> [] to ‘eventually always’
something happens, etc.

5.4 Refinement and Equivalence

The following assertions are used to check whether one process refines/equals the other.
There are three different kinds of refinement (equivalence) relationship between two
processes, namely trace refinement (equivalence), stable failures refinement (equiva-
lence) and failures/divergence refinement (equivalence). Refer [Hoa85,For03] for de-
tailed introduction on these notions. Intuitively, in contrast to LTL formulae which talk



about properties of each execution of a given process, refinement (equivalence) check-
ing looks at the behaviors of a process in whole and compare them with the behaviors
of another process.

#assert Implementation() [T = Specification();
#assert Specification() [T = Implementation();
#assert Implementation() [F = Specification();
#assert Specification() [F = Implementation();
#assert Implementation() [FD = Specification();
#assert Specification() [FD = Implementation();
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