TINUS
%

Hational University
of Singapore

An Automatic Approach to Model
Checking UML State Machines

ZHANG Shaojie, LIU Yang

National University of Singapore

The Fourth |IEEE International Conference on Secure Software Integration and Reliability Improvement

Agenda

» Introduction

» Our Approach

» Case Study

» Conclusion & Future Work

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Introduction

» Unified Modeling Language (UML) is de facto standard for
designing and architecting software systems.

» UML model consists of a set of diagrams that together
describes the single system.

Specification
Visualization
Architecture design
Construction
Simulation and Testing

Documentation

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Introduction

| T
- I = B
] | L I—-—_-'—I r | i
e — el |
! Eaankfunnoiant Diagram —— e
Lemmar © String =
| balance : Doflars = 0 2
st { amaunt © Coltars) | |
| i il | arnount @ Dollars) Structure Behavior
Diagram Diagram
[| I [| |
. Component Object Activity Use Case State Machine
Class Diagram Diagram Diagram Diagram Diagram Diagram
L
Compesite Deployment Package Interaction 1T
Diagram Diagram Diagram Diagram
ﬂ | —r——
[I
. . - Actively Diaerm Sequence |“t':-‘""“_“°" i
- | i = o= = Diagram G?EN'EW ¥ e
" Diagram
- [
] z Communication Timing
- - s = g Diagram Diagram

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Introduction

» Lack of precise and complete semantics
Esp. for dynamic behavior

How can we ensure that the models for a system analysis
and its design are consistent!?

How can we check that a design model correctly realizes
a system requirement model?

» Take advantage of formal methods to detect model-level
errors

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Model Checking Principle

System behaviour “OK”

description = /72%__\
Model checker et
Error
Logical " _ / "

Properties - Counter example

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

UML & Model Checking

,/— UML Modeling Tnal;\

Rlaguidenant d,cithity Ciollabaranss HMI

@

PAT

Epquence Uss Case St Chuart

\] =] / H:__ —

Simulation & Verification

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Introduction

» Present a translation approach to verifying UML state
machines.

Fully automatically
Independent of any modeling tools

» Verification tool: PAT
SPIN, FDR, SMV, UppAal, Chess, Magic, Verisoft, Slam, Blast...
Expressive modeling language
Simulator
Deadlock, reachability, trace refinement relationship,

linear temporal logic (LTL) properties with various fairness
assumptions.

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Introduction

» Compared with other works

Support a larger subset of UML state machines than most
other works

Esp. advanced modeling constructs

Minimize the use of shared variables

Directly specify in terms of processes and events

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Agenda

» Introduction

» Our Approach

» Case Study

» Conclusion & Future Work

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Modeling language

» CSP# (Communicating sequential programs)

Communicating Sequential Processes + shared variables +
low-level programming constructs

» Grammar
P ::= Stop | Skip | e{prog} — P | Py; P> | P O Ps
P ||| P2 | Py || P2 | |b]P | atomic{P}
Py /APy | chlexp — P| chix — P
case{bl : Py; b2 : Py; ---; default : P}

e ::= name|.exp)*

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Translation Rules

f:UML — CSP#

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

UML State Machines

» A state machine describes the lifetime of a single object.
» It contains states and transitions between them.

f(finalState) = Skip
initial state
|

rf—-—. = _,_ff” /jll . final state

\L sh utDr::'.-.-n

-\ keyFress
Idle - Cooling #—
F\"\—__—__
/. e J finished ~name

f
|

' T——— stale —
Mame

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

UML state machines

» A state is a condition or situation during the life of an
object during which some invariant condition holds.

» An event is an occurrence of a stimulus that can trigger a
state transition.

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

State

» A state has three kinds of optional behavior:

Entry
DoActivity
f (state) =
f (entry); //atomic process
f (doActivity)
A
(f (transl) L] f (trans?2) L] - - - f (transN))

The Fourth IEEE International Conference on
Secure Software Integration and Reliability

State

» Three kinds of states
Simple

Composite (”Maintenance N

Submachine

» Composite state =

™

f (compositeState) =
f (entry);

E - Testing

Testing Self O
devices diagnosis

T I i R = S

Commanding [continue]
f—‘w‘aﬁv‘—‘\

(f (doActivity) ||| f(r1) ||| f(rD]]]...)

A
(f (transl) L] f (trans2)

f (transN))

The Fourth IEEE International Conference on
Secure Software Integration and Reliability

State

» Submachine state

Specifies the insertion of the specification of a submachine
state machine

ReadAmount :
ReadAmountsSM

'
p—

again

f (ReadAmout) = f (ReadAmountAM)

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Transition

» A transition has five parts.
Source state
Target state
Event trigger

Guard condition
Effect

keystroke [input < required_length]

keystroke [input = required_length]/
Gathering | Submitinput Processing
input input

State machine

» State machine
f (sm) = f (i) where i is the topmost initial state of sm.

» System
f(s)=f(sml) [l f(sm2)|ll -~ -l f(smn)
f(s)=f(sml)|[f(sm2) || -- [f(smn)

The Fourth IEEE International Conference on
Secure Software Integration and Reliability

Advanced States and Transitions
» Fork

» Join
» Entry/Exit point
» History

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Fork

» Fork state deals with the transition from a single source
state to several substates in different regions of a
composite state.

» When a transition from a fork state is fired, control
passes to all the target states.

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Ps(i,j. k)* = enter_a_state —

[Prl(i) ||| Pri(j]) ”l Prﬂ(k));
PF-:-.-'JI: = PS(Z,D? 1]?

} The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Join

» Join state specifies the transition from substates in
different regions of a composite state to a target state
outside the composite state.

» A join transition is effective only if all the source states
are active.

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Join

. 50 T

entry £ entersd
et /et

51 el 52 |

B
et A emits 2 %.' of
T — G '

r 55h) s
'.' —| ewit / exitSH 66 Po(i,j k) = entrySO — (P1(i) || Pr2(j)) || Pra(k));
- Py = (€2 — exitS2 — Skip) O
(join — exitS2 — exitSO — Pjip);
Py — join — exitS0 — Pjyiy:
55 = (eb — exit§5 — Skip) O
(Join — exitS5 — exitSU — Pjgin);
ij'rz = ebh — PSE:

The Fourth IEEE International Conference on
Secure Software Integration and Reliability

Entry/Exit point

» Entry/exit point is the entry/exit point of a state machine
referred by a submachine state.

» Behaviorally analogous to a subroutine

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

@

el

active

i

ntry/Exit point

Ps;

=
(<2 - SHZ W
aborted

ctm SHZ)

J/ starting

i 54 "

abort

) N—

active

agnrted

_—

el — ch!0 — Skip;
ch?l — P_gg;

ch?0 — starting — Psy;
abort — ch!l — Skip:;

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

History

» History state adds “memory "to composite state by
recording the last substate that was active prior to a
transition from the composite state.

» An integer shared variable is used to record which
substate is currently active.

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Agenda

» Introduction

» Our Approach

» Case Study

» Conclusion & Future Work

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Case Study CDPLAYER() = NONPLAYING(O):

stm CD Player

var present = false, track = 0;

NONPLAYING(i) = o NONPLAYING 3
case{ var | = 0;

(i==0) : CLOSED() BUSY(i) =

(i==1) : OPEN() _ find track start — case{(i==0) :
LA (PLAYING()

(['present](play — NONPLAYING(0))) (1==1): PAUSED()} A

1 ([present](play — BUSY(0))) ; ((load — NONPLAYING(1))
(off — SKip)); = O ([track! = N]

[I({track = track + 1} — BUSY(0)))
[track = trackCount] LI([track == N]NONPLAYING(0))
CI(stop — NONPLAYING(0))

of [1(off — Skip)
C(play — BUSY()));

“ !

[track = trackCount] £ track++

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

ase Study

[Simulation - temp123.csp A=

Processes CDPLAYER ~ FySimulate (F)Play Trace | 2] Generate Graph | PReset 3% Settings = | 3] Interaction Pane |[# Data Pane

& QOO EEEE=s AL

Ewent

SrcSt.. | SrcProcess | Enabled Event }"‘ |}

[(CLOSED... play I

& {{openftr... off

] BLSY(0) find_track_s...

Q BUSY(O)... stop

[BLISY{O)... off 3

2 BUSY(OM... play

10 {(find_tra... load

10 (find_tra... T

10 ((find_tra... stop

10 {(find_tra.., off

1t BUSY()v... Find_track_s...

pis BUSY(V... load

11 BUSY{fW... T

11 BUSY(V... stop

11 BUSY{W... off

b BUSY(V... play

1z (PLAYING, T

1z (PLAYING,., pause Toell

17 oLavmG T 1
[|

Event Trace

SrcSt.. | Event Tgt St... | Target

o init 1 COPLAY

1 off 2 Skop

1 load 3 ({opend

3 play 1 NOMPLY

i play 1 NOMPLY

3 open 4 (OPEM

4 off 2 Stop

3 off 2 Skop

4 play 1 NOMPLY

4 load 5 {{closed

5 play 1 NOMPLY

5 of f 2 Skop

5 close 6 (CLOSE,

& of f 7 Skop

[load 8 ({opend

& play 9 BUSY(O

8 open 4 (OPER!

9 T 10 ((find_t

10 play 11 BUSY(

10 find_trac... 12 (PLAVIH

1z load 13 NOMPLY

i find_trac... 14 (PLAYIM

1z off 15 Stap

9 load 16 NOMPLY

12 find_trac... 14 (PLAYIN
2 i |l 2]

iaraph Generated: 16 Nodes, 24 Edges

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Case Study

» Two basic requirements
] ~((track _—— O)/\(Play_tl‘GCk)) {1 Verification - temp123.csp E]@

Azzertions

L ((present == true)/\play —5 | @1 coraverglDP

@ 2 COPLAYER() deadlockfree

[(] 1| [>]
Selected Azsertion
COPLAYER I=[1P
| Yernfy | [Yiew Blichi Automata
O ptionz
Suztem Fairneszs Setting Paralh
Clutpit
erfication Result: ~

" The Aszertion [COPLAYERI] = [] P s WALID.™

erfication Setting:

Method: Refinement Based S afety Analyziz - The LTL formula iz a safety
propertyl

Fairmezs: Mot Applicable

System abstiaction: Falze

erification Statistics
Yigited States: 1009
Total Tranzitions: 3033
Search Depth:95
Time Used:0.043466
E stimated Memony Used: 1741 788KB v

Yerification Completed

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Agenda

» Introduction
» Our Approach
» Case Study

» Conclusion & Future Work

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Conclusion

» Defined a translation scheme for a UML model composed
of asynchronously executing, hierarchical state machines.

Effectively handle advanced modeling techniques in state
machines.

Provide a automatic approach to transforming a model of state
machines to the input model of PAT model checker

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

Future work

» Looking for more industrial cases

» Support deferred events and time events

» Sequence diagrams, activity diagrams,

» Provide an easier way to specify properties.

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

The |

()
-
O,

Thank you for your kind attention!

The Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

