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Introduction

» Unified Modeling Language (UML) is de facto standard for
designing and architecting software systems.

» UML model consists of a set of diagrams that together
describes the single system.

Specification
Visualization
Architecture design
Construction
Simulation and Testing

Documentation
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Introduction

» Lack of precise and complete semantics
Esp. for dynamic behavior

How can we ensure that the models for a system analysis
and its design are consistent!?

How can we check that a design model correctly realizes
a system requirement model?

» Take advantage of formal methods to detect model-level
errors
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Model Checking Principle

System behaviour “OK”

description = /72%__\
Model checker et
Error
Logical " _ / "

Properties - Counter example
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UML & Model Checking
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Introduction

» Present a translation approach to verifying UML state
machines.

Fully automatically
Independent of any modeling tools

» Verification tool: PAT
SPIN, FDR, SMV, UppAal, Chess, Magic, Verisoft, Slam, Blast...
Expressive modeling language
Simulator
Deadlock, reachability, trace refinement relationship,

linear temporal logic (LTL) properties with various fairness
assumptions.
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Introduction

» Compared with other works

Support a larger subset of UML state machines than most
other works

Esp. advanced modeling constructs

Minimize the use of shared variables

Directly specify in terms of processes and events
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Modeling language

» CSP# (Communicating sequential programs)

Communicating Sequential Processes + shared variables +
low-level programming constructs

» Grammar
P ::= Stop | Skip | e{prog} — P | Py; P> | P O Ps
P ||| P2 | Py || P2 | |b]P | atomic{P}
Py /APy | chlexp — P| chix — P
case{bl : Py; b2 : Py; ---; default : P}

e ::= name|.exp)*
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Translation Rules

f:UML — CSP#
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UML State Machines

» A state machine describes the lifetime of a single object.
» It contains states and transitions between them.

f(finalState) = Skip
initial state
|
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UML state machines

» A state is a condition or situation during the life of an
object during which some invariant condition holds.

» An event is an occurrence of a stimulus that can trigger a
state transition.
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State

» A state has three kinds of optional behavior:

Entry
DoActivity
f (state) =
f (entry); //atomic process
f (doActivity)
A
(f (transl) L] f (trans?2) L] - - - f (transN))
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State

» Three kinds of states
Simple

Composite (”Maintenance N

Submachine

» Composite state =

™

f (compositeState) =
f (entry);

E - Testing

Testing Self O
devices diagnosis

T I i R = S

Commanding [continue]
f—‘w‘aﬁv‘—‘\

(f (doActivity) ||| f(r1) ||| f(rD]]]... )

A
(f (transl) L] f (trans2)

f (transN))
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State

» Submachine state

Specifies the insertion of the specification of a submachine
state machine

ReadAmount :
ReadAmountsSM

'
p—

again

f (ReadAmout) = f (ReadAmountAM)
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Transition

» A transition has five parts.
Source state
Target state
Event trigger

Guard condition
Effect

keystroke [input < required_length]

keystroke [input = required_length]/
Gathering |  Submitinput Processing
input input




State machine

» State machine
f (sm) = f (i) where i is the topmost initial state of sm.

» System
f(s)=f(sml) [l f(sm2)|ll -~ -l f(smn)
f(s)=f(sml)|[f(sm2) || -- [ f(smn)
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Advanced States and Transitions
» Fork

» Join
» Entry/Exit point
» History
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Fork

» Fork state deals with the transition from a single source
state to several substates in different regions of a
composite state.

» When a transition from a fork state is fired, control
passes to all the target states.
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Ps(i,j. k)* = enter_a_state —

[Prl(i) ||| Pri(j]) ”l Prﬂ(k));
PF-:-.-'JI: = PS(Z,D? 1]?
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Join

» Join state specifies the transition from substates in
different regions of a composite state to a target state
outside the composite state.

» A join transition is effective only if all the source states
are active.
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Join
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Entry/Exit point

» Entry/exit point is the entry/exit point of a state machine
referred by a submachine state.

» Behaviorally analogous to a subroutine
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History

» History state adds “memory "to composite state by
recording the last substate that was active prior to a
transition from the composite state.

» An integer shared variable is used to record which
substate is currently active.
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Case Study CDPLAYER() = NONPLAYING(O):

stm CD Player

var present = false, track = 0;

NONPLAYING(i) = o NONPLAYING 3
case{ var | = 0;

(i==0) : CLOSED() BUSY(i) =

(i==1) : OPEN() _ find track start — case{(i==0) :
LA ( PLAYING()

(['present](play — NONPLAYING(0)))  (1==1): PAUSED()} A

1 ([present](play — BUSY(0))) ; ((load — NONPLAYING(1))
(off — SKip)); = O ([track! = N]

[I({track = track + 1} — BUSY(0)))
[track = trackCount] LI([track == N]NONPLAYING(0))
CI(stop — NONPLAYING(0))

of [1(off — Skip)
C(play — BUSY()));

“ !

[track = trackCount] £ track++
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ase Study
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Case Study

» Two basic requirements
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Conclusion

» Defined a translation scheme for a UML model composed
of asynchronously executing, hierarchical state machines.

Effectively handle advanced modeling techniques in state
machines.

Provide a automatic approach to transforming a model of state
machines to the input model of PAT model checker
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Future work

» Looking for more industrial cases

» Support deferred events and time events

» Sequence diagrams, activity diagrams, .....

» Provide an easier way to specify properties.
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Thank you for your kind attention!
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