
1

Towards Verification of a 
Service Orchestration 
Language

Tan Tian Huat



2

Outline

 Background of Orc
 Motivation of Verifying Orc 
 Overview of Orc Language
 Verification using PAT 
 Future Works



3

Outline

 Background of Orc
 Motivation of Verifying Orc 
 Overview of Orc Language
 Verification using PAT
 Future Works



4

Background of Orc

 Proposed by Jayadev Misra at University 
of Texas at Austin (UT Austin) in 2004.

 Orc is a service orchestration language, 
which can be used as:
Executable specification language

 Web Service Orchestration
 Workflow process [1]

General purpose programming language



5

Background of Orc

 Process calculus  Full programming language.
 Involve timing aspect.
 Has the structure and feel of a functional 

programming language, yet it handles many 
non-functional aspects effectively, including 
time-outs etc.

 A simulator is created in Java by UT Austin team.



6

Outline

 Background of Orc
 Motivation of Verifying Orc 
 Overview of Orc Language
 Verification using PAT 
 Future Works



7

Motivation of Verifying Orc 

 The only related work is [5] which is done by our 
group
 Translate Orc to Time-Automata.
 Verify it using UPPAAL.

 Downside
 The translation from Orc to Time-Automata takes time.
 The translated model might be complicated.
 Furthermore, Orc has evolved over time.

 Our new approach
 Direct Verification of Orc.



8

Outline

 Background of Orc
 Motivation of Verifying Orc 
 Overview of Orc Language
 Verification using PAT 
 Future Works



9

Overview of Orc Language

 Site – Basic service or component
Category of Sites

 Internal Site:
 +, −, ∗,  &&,  ||,  < =

 1+1(+)(1,1)
 Rtimer

 Rtimer(5000)

 External Site: Google Search, MySpace, CNN, ...
 Google ("Orc")



10

Overview of Orc Language

 Site call - two steps:
 Invocation
 Response with published value, or halt

 Published value can be:
 Constant – string, boolean, number, list, and so on
 Signal – A special value which carries no information

 Effects of calling sites:
 Response
 Halted
 Pending – Neither response nor halted



11

Structure of Orc Expression
 Simple: just a site call, eg. CNN(d)

 Publishes the value returned by the site.

 Composition of two Orc expressions:
f and g can be simple expression like CNN(d), or composite expression like 
CNN(d) | BBC(d), x is a variable to be bounded.

f | g Parallel Combinator
f >x>g Sequential Combinator
f <x< g Pruning Combinator
f ; g Otherwise Combinator

 Orc is about the theory of combinators.



12

Parallel Combinator: f | g

 Evaluate f and g independently.
 Publish all values from both.
 No direct communication or interaction between f and g. 

Example: CNN(d) | BBC(d)

Calls both CNN and BBC simultaneously. Publishes 
values returned by both sites. ( 0, 1 or 2 values)



13

Sequential Combinator: f >x> g
For all values published by f do g.
Publish only the values from g.

 CNN(d) >x> Email(address, x)
 Call CNN(d).
 Bind result (if any) to x.
 Call Email(address, x).
 Publish the value, if any, returned by Email.

 (CNN(d) | BBC(d)) >x> Email(address, x)
 May call Email twice.
 Publishes up to two values from Email.

Notation: f >>g for f >x> g, if x is unused in g.



14

Pruning Combinator: (f <x< g)
For some values published by g do f .
 Evaluate f and g in parallel.

 Site calls in f that need x are suspended.
 see (M() | N(x)) <x< g

 When g returns a (first) value:
 Bind the value to x.
 Terminate g.
 Resume suspended calls in f.

 Values published by (f < x < g) are the values returned 
by f.

 Example:
Email(address, x) <x< (CNN(d) | BBC(d))



15

Otherwise Combinator (f ; g)

 First executes f
 If f stops and publishes any value, g is ignored. If f

stops and publishes no value, then g executes. f
stops if:
 All site calls in the execution of f have either responded or 

halted.
 f will never call any more sites.
 f will never publish any more values.

 Example:
(CNN(d) ; BBC(d)) > x > Email(a,x)



16

Functional subset of Orc

 Constants – true, false, 1, 2, 3, "abc"
1let(1)

 Conditional – if true then 4 else 5
( if(b) >> let(4) | if(~b) >> let(5)) <b< let(true)

 Local variables – val a=1 a
 let(a)<a<let(1)

 Functions – def A(x ,y)=x+y



17

include "search.inc"
def sum (x, y)= x + y
val a=1 
if sum(a,1)=2 
then 

Google("Orc Language")
else 

"impossible!"

Example



18

Programming Idioms 

 Fork-Join
 Parallel Or
 Timeout
 Priorities
 And so on…



19

Programming Idioms 

 Fork-Join
 Parallel Or
 Timeout
 Priorities
 Non-deterministic choice
 And so on…



20

Timeout
result < result < ( 

Google("impatience")| (Rtimer(5000) >>"Search timed out.")
)

 Search for the keyword “impatience" in 
Google.

 If the result is not returned within 5 
seconds, "Search timed out." is published.



21

Operational Semantics of Orc [2]



22

Outline

 Background of Orc
 Motivation of Verifying Orc 
 Overview of Orc Language
 Verification using PAT 
 Future Works



23

PAT Architecture

 Background of Orc
 Motivation of Verifying Orc 
 Overview of Orc Language
 Programming Idioms
 Operational Semantic of Orc
 Verification using PAT 



24

Verification using PAT
 Support all combinators
 Local Site

 Fundamental – Arithmetic and logic operator, If site.
 Time – Rtimer
 Other – Ref site, SynChannel site, and so on …

 Remote Site
 Approach

 Parse the language into the model.
 Applying abstraction (such as Process Counter Abstraction) on the 

model.
 Generate the labeled transition system with operational semantics
 After that, the pool of verification algorithms in PAT will be available for 

usage.



25

Challenges of Verifying Orc

 State explosion problem
Many normal operations such as declaration of 

variable, or application of function are designed to run 
in parallel.
 val a=1+1

1+1+a
 def f(a,b)=1+1+a+b 

f(1+1, 1+1)

 Solution:
 Partial Order Reduction



26

Outline

 Background of Orc
 Motivation of Verifying Orc 
 Overview of Orc Language
 Verification using PAT 
 Future Works



27

Future Works

 Support verification of more libraries such 
as channel, semaphore, etc of Orc

 Refined the current state reduction 
approach

 Explore on more state reduction 
techniques



28

References
 [1] William R. Cook, Sourabh Patwardhan, and Jayadev Misra, “Workflow 

Patterns in Orc”, Proc. of the International Conference on Coordination 
Models and Languages (COORDINATION), 2006.

 [2] Ian Wehrman, David Kitchin, William R. Cook. Jayadev Misra, “A Timed 
semantics of Orc”, Theoretical Computer Science, August 2008.

 [3] David Kitchin, William R. Cook and Jayadev Misra, “A Language for 
Task Orchestration and its Semantic Properties”, Proc. of the 
International Conference on Concurrency Theory (CONCUR), 2006.

 [4] David Kitchin, “Operational and Denotational Semantics of the 
Otherwise Combinator (DRAFT)”, 
Unpublished, 2009. 

 [5] J. S. Dong, Y. Liu, J. Sun, and X. Zhang, “Verification of Computation 
Orchestration via Timed Automata”, Proc. of the 8th Int. Conference on 
Formal Engineering Methods, volume 4260 of LNCS, pages 226–245. 
Springer Verlag, 2006.



29

Thanks!


	Towards Verification of a Service Orchestration Language
	Outline
	Outline
	Background of Orc
	Background of Orc
	Outline
	Motivation of Verifying Orc 
	Outline
	Overview of Orc Language
	Overview of Orc Language
	Structure of Orc Expression
	Parallel Combinator: f | g
	Sequential Combinator: f >x> g
	Pruning Combinator: (f <x< g)
	Otherwise Combinator (f ; g)
	Functional subset of Orc
	Example
	Programming Idioms �
	Programming Idioms �
	Timeout
	Operational Semantics of Orc [2]
	Outline
	PAT Architecture
	Verification using PAT
	Challenges of Verifying Orc
	Outline
	Future Works
	References
	Thanks!

