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Background of Orc

 Proposed by Jayadev Misra at University 
of Texas at Austin (UT Austin) in 2004.

 Orc is a service orchestration language, 
which can be used as:
Executable specification language

 Web Service Orchestration
 Workflow process [1]

General purpose programming language
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Background of Orc

 Process calculus  Full programming language.
 Involve timing aspect.
 Has the structure and feel of a functional 

programming language, yet it handles many 
non-functional aspects effectively, including 
time-outs etc.

 A simulator is created in Java by UT Austin team.
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Motivation of Verifying Orc 

 The only related work is [5] which is done by our 
group
 Translate Orc to Time-Automata.
 Verify it using UPPAAL.

 Downside
 The translation from Orc to Time-Automata takes time.
 The translated model might be complicated.
 Furthermore, Orc has evolved over time.

 Our new approach
 Direct Verification of Orc.
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Overview of Orc Language

 Site – Basic service or component
Category of Sites

 Internal Site:
 +, −, ∗,  &&,  ||,  < =

 1+1(+)(1,1)
 Rtimer

 Rtimer(5000)

 External Site: Google Search, MySpace, CNN, ...
 Google ("Orc")
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Overview of Orc Language

 Site call - two steps:
 Invocation
 Response with published value, or halt

 Published value can be:
 Constant – string, boolean, number, list, and so on
 Signal – A special value which carries no information

 Effects of calling sites:
 Response
 Halted
 Pending – Neither response nor halted
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Structure of Orc Expression
 Simple: just a site call, eg. CNN(d)

 Publishes the value returned by the site.

 Composition of two Orc expressions:
f and g can be simple expression like CNN(d), or composite expression like 
CNN(d) | BBC(d), x is a variable to be bounded.

f | g Parallel Combinator
f >x>g Sequential Combinator
f <x< g Pruning Combinator
f ; g Otherwise Combinator

 Orc is about the theory of combinators.
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Parallel Combinator: f | g

 Evaluate f and g independently.
 Publish all values from both.
 No direct communication or interaction between f and g. 

Example: CNN(d) | BBC(d)

Calls both CNN and BBC simultaneously. Publishes 
values returned by both sites. ( 0, 1 or 2 values)
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Sequential Combinator: f >x> g
For all values published by f do g.
Publish only the values from g.

 CNN(d) >x> Email(address, x)
 Call CNN(d).
 Bind result (if any) to x.
 Call Email(address, x).
 Publish the value, if any, returned by Email.

 (CNN(d) | BBC(d)) >x> Email(address, x)
 May call Email twice.
 Publishes up to two values from Email.

Notation: f >>g for f >x> g, if x is unused in g.
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Pruning Combinator: (f <x< g)
For some values published by g do f .
 Evaluate f and g in parallel.

 Site calls in f that need x are suspended.
 see (M() | N(x)) <x< g

 When g returns a (first) value:
 Bind the value to x.
 Terminate g.
 Resume suspended calls in f.

 Values published by (f < x < g) are the values returned 
by f.

 Example:
Email(address, x) <x< (CNN(d) | BBC(d))



15

Otherwise Combinator (f ; g)

 First executes f
 If f stops and publishes any value, g is ignored. If f

stops and publishes no value, then g executes. f
stops if:
 All site calls in the execution of f have either responded or 

halted.
 f will never call any more sites.
 f will never publish any more values.

 Example:
(CNN(d) ; BBC(d)) > x > Email(a,x)
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Functional subset of Orc

 Constants – true, false, 1, 2, 3, "abc"
1let(1)

 Conditional – if true then 4 else 5
( if(b) >> let(4) | if(~b) >> let(5)) <b< let(true)

 Local variables – val a=1 a
 let(a)<a<let(1)

 Functions – def A(x ,y)=x+y
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include "search.inc"
def sum (x, y)= x + y
val a=1 
if sum(a,1)=2 
then 

Google("Orc Language")
else 

"impossible!"

Example
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Programming Idioms 

 Fork-Join
 Parallel Or
 Timeout
 Priorities
 And so on…
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Programming Idioms 

 Fork-Join
 Parallel Or
 Timeout
 Priorities
 Non-deterministic choice
 And so on…
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Timeout
result < result < ( 

Google("impatience")| (Rtimer(5000) >>"Search timed out.")
)

 Search for the keyword “impatience" in 
Google.

 If the result is not returned within 5 
seconds, "Search timed out." is published.
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Operational Semantics of Orc [2]
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Verification using PAT
 Support all combinators
 Local Site

 Fundamental – Arithmetic and logic operator, If site.
 Time – Rtimer
 Other – Ref site, SynChannel site, and so on …

 Remote Site
 Approach

 Parse the language into the model.
 Applying abstraction (such as Process Counter Abstraction) on the 

model.
 Generate the labeled transition system with operational semantics
 After that, the pool of verification algorithms in PAT will be available for 

usage.
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Challenges of Verifying Orc

 State explosion problem
Many normal operations such as declaration of 

variable, or application of function are designed to run 
in parallel.
 val a=1+1

1+1+a
 def f(a,b)=1+1+a+b 

f(1+1, 1+1)

 Solution:
 Partial Order Reduction
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Future Works

 Support verification of more libraries such 
as channel, semaphore, etc of Orc

 Refined the current state reduction 
approach

 Explore on more state reduction 
techniques
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