
Complexity of the Soundness Problem
of Bounded Workflow Nets

Guan Jun Liu1, Jun Sun1, Yang Liu2, and Jin Song Dong3

1 ISTD, Singapore University of Technology and Design, Singapore 138682
{guanjun liu,sunjun}@sutd.edu.sg

2 Temasek Lab, National University of Singapore, Singapore 117417
tslliuya@nus.edu.sg

3 School of Computing, National University of Singapore, Singapore 117417
dongjs@comp.nus.edu.sg

Abstract. Classical workflow nets (WF-nets) are an important class of Petri nets
that are widely used to model and analyze workflow systems. Soundness is a
crucial property that guarantees these systems are deadlock-free and bounded.
Aalst et al. proved that the soundness problem is decidable, and proposed (but not
proved) that the soundness problem is EXPSPACE-hard. In this paper, we show
that the satisfiability problem of Boolean expression is polynomial time reducible
to the liveness problem of bounded WF-nets, and soundness and liveness are
equivalent for bounded WF-nets. As a result, the soundness problem of bounded
WF-nets is co-NP-hard.

Workflow nets with reset arcs (reWF-nets) are an extension to WF-nets, which
enhance the expressiveness of WF-nets. Aalst et al. proved that the soundness
problem of reWF-nets is undecidable. In this paper, we show that for bounded
reWF-nets, the soundness problem is decidable and equivalent to the liveness
problem. Furthermore, a bounded reWF-net can be constructed in polynomial
time for every linear bounded automaton (LBA) with an input string, and we
prove that the LBA accepts the input string if and only if the constructed reWF-
net is live. As a result, the soundness problem of bounded reWF-nets is PSPACE-
hard.

Keywords: Petri nets, workflow nets, workflow nets with reset arcs, soundness,
co-NP-hardness, PSPACE-hardness.

1 Introduction

In the recent decade, workflow nets (WF-nets) have been widely applied to (inter-
organizational) workflow management systems and business process management sys-
tems to model and analyze their operational processes [1]-[4], [11]-[14], [16].
WF-nets can well characterize their system features such as concurrency, choices, and
synchronous/asynchronous communication. To enhance the expressive power, some ex-
tensions to WF-nets, such as workflow nets with reset or inhibitor arcs (reWF-nets and
inWF-nets, respectively) [17,18], are proposed which can express priority, preemption,
or cancelation.

Soundness [1]-[4] is an important property of these systems which, informally speak-
ing, reflects whether the designed systems are correct. For instance, the soundness of

S. Haddad and L. Pomello (Eds.): PETRI NETS 2012, LNCS 7347, pp. 92–107, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Complexity of the Soundness Problem of Bounded Workflow Nets 93

WF-nets guarantees that the designed systems are deadlock-free and bounded. Aalst et
al. [4] defined eight notions of soundness. This work considers the classical soundness
[4] that means any run of the designed systems is always finished correctly and each
action has a right/chance to be executed.

It has been proven that the soundness of WF-nets is decidable [3,11]. Aalst proposed
(but not proved) in [3] that the soundness problem is EXPSPACE-hard, based on the
work in [5], which shows that the problems of reachability, liveness, and deadlock of
Petri nets are all EXPSPACE-hard. In addition, Aalst proved in [3] that the soundness
problem of a workflow net can be decided in polynomial time if the workflow net is a
free-choice one [6].

Generally, enhancing the models’ expressive power increases the complexity of de-
ciding their properties. Aalst et al. [4] proved that the soundness problems of reWF-
and inWF-nets are both undecidable.

Our contribution. In this paper, we show that the satisfiability problem of Boolean
expression (SAT problem) is polynomial time reducible to the liveness problem of
bounded WF-nets, and the soundness and liveness are equivalent for bounded WF-nets,
thereby proving that the soundness problem of bounded WF-nets is co-NP-hard. Based
on the Linear Bounded Automaton Acceptance problem (LBA Acceptance problem),
we show that the soundness problem of bounded reWF-nets is decidable but PSPACE-
hard. To the best of our knowledge, it is the first time to propose and prove these con-
clusions for WF- and reWF-nets.

Organization. The remainder of the paper is organized as follows. Section 2 reviews
the definitions of Petri nets, WF- and reWF-nets, and the SAT and LBA Acceptance
problems. Section 3 proves the co-NP-hardness of the soundness of bounded WF-nets
and Section 4 proves the PSPACE-hardness of the soundness of bounded reWF-nets.
Section 5 concludes this paper.

2 Preliminary

In this section, we review the definitions of Petri nets, WF-nets, reWF-nets, SAT prob-
lem, and LBA Acceptance problem. For more details, please refer to [4] and [9].

2.1 Petri Nets

Let N = {0, 1, 2, · · ·} be the set of nonnegative integers, Given m ∈ N and m > 0, let
Nm = {1, 2, · · · ,m} be the set of integers from 1 to m.

Definition 1. A net is a 3-tuple N = (P, T, F) where P is a set of places, T is a set of
transitions, F ⊆ (P × T) ∪ (T × P) is a set of arcs, P ∪ T �= ∅, and P ∩ T = ∅.

A transition t is called an input transition of a place p and p is called an output place of
a transition t if (t, p) ∈ F. Input place and output transition can be defined similarly.
Given a net N = (P, T, F) and a node x ∈ P ∪ T, •x = {y ∈ P ∪ T | (y, x) ∈ F} and
x• = {y ∈ P ∪ T | (x, y) ∈ F} are called the pre-set and post-set of x, respectively.



94 G.J. Liu et al.

A marking of N = (P, T, F) is a mapping M: P → N. p ∈ P is marked at M if
M(p) > 0. A marking may be viewed as a | P |-dimensional non-negative integer vector
in which every element represents the number of tokens in corresponding place at this
marking, e.g., M = (1, 0, 6, 0) over P = {p1, p2, p3, p4} represents that at M, p1,
p2, p3, and p4 have 1, 0, 6, and 0 tokens, respectively. Notice, we assume a total order
on the set of places P so that the i-th entry in the vector corresponds to the i-th place in
the ordered set. When the number of places is very large and the distribution of tokens
is sparse, the above two kinds of presentation of a marking are relatively complex. For
convenience, M is denoted as M =

∑
p∈P M(p) ·p in this paper. For the above example,

it is written as M = p1 + 6p3.
If ∀ p ∈ •t: M(p) > 0, then t is said to be enabled at M, which is denoted as M[t〉 .

Firing an enabled transition t produces a new marking M′, which is denoted as M[t〉M′,
such that M′(p) = M(p) − 1 if p ∈ •t \ t•; M′(p) = M(p) + 1 if p ∈ t•\•t; and
M′(p) = M(p) otherwise.

A marking Mk is said to be reachable from a marking M if there exists a firing
sequence σ = t1t2 · · · tk such that M[t1〉M1[t2〉 · · ·〉Mk−1[tk〉Mk. M[σ〉Mk represents that
M reaches Mk after firing sequence σ. The set of all markings reachable from M in a net
N is denoted as R(N, M).

A net N with an initial marking M0 is called a Petri net, and denoted as (N, M0).

Definition 2. Given a Petri net (N, M0) = (P, T, F, M0), t ∈ T is called live if
∀M ∈ R(N, M0), ∃M′ ∈ R(N, M): M′[t〉. A Petri net (N, M0) is called live if every
transition is live. It is called bounded if ∀ p ∈ P, ∃ k ∈ N, ∀M ∈ R(N, M0): M(p) ≤ k.

2.2 WF-Nets

WF-nets are an important subclass of Petri nets and widely studied and applied in aca-
demic and industrial systems. Each WF-net has a source place representing the begin-
ning of a task and a sink place representing the ending of the task.

Definition 3. A net N = (P, T, F) is a WF-net if

1. N has two special places i and o where i ∈ P is called source place such that
•i = ∅ and o ∈ P is called sink place such that o• = ∅; and

2. NE = (P, T ∪ {b}, F ∪ {(b, i), (o, b)}) is strongly connected.

For instance, Fig. 1(a) is a WF-net in which i and o are its source and sink places,
respectively. This WF-net may be seen as a composition of three subsystems. The left
and right subsystems produce parts and the middle assembles them.

Definition 4. Let N = (P, T, F) be a WF-net, M0 = i, and Md = o. N is sound if the
following requirements hold:

1. ∀M ∈ R(N, M0): Md ∈ R(N, M); and
2. ∀ t ∈ T, ∃M ∈ R(N, M0): M[t〉.

Aalst [3] proves that the soundness is equivalent to the liveness and boundedness for
WF-nets.



Complexity of the Soundness Problem of Bounded Workflow Nets 95

(a) (b)

i

o

t6

p6

t7

p7

t1

p1 p3

p9

t9

t3

p4

p2

t2 t4

p5

t5

t8

p11p10

p8

t11

t10

i

o

t6

p6

t7

p7

t1

p1 p3

p9

t9

t3

p4

p2

t2 t4

p5

t5

t8

p11p10

p8

t11

t10p13p12 p13p12

Fig. 1. (a) A WF-net; and (b) an reWF-net

Theorem 1. Let N = (P, T, F) be a WF-net, NE = (P, T∪{b}, F∪{(b, i), (o, b)}),
and M0 = i. Then, N is sound if and only if (NE, M0) is live and bounded.

Therefore, the following conclusion is obvious.

Corollary 1. Let N = (P, T, F) be a WF-net such that (NE, M0) = (P, T ∪{b}, F ∪
{(b, i), (o, b)}, i) is bounded. Then, N is sound if and only if (NE, M0) is live.

2.3 reWF-Nets

reWF-nets are an extension to WF-nets in which some reset arcs are added. A reset arc
can delete all tokens from related places and then the next computing can be started.

Definition 5. A 4-tuple N = (P, T, F, R) is an reWF-net if

1. N = (P, T, F) is a WF-net; and
2. R ⊆ [P \ {o} × T] is the set of reset arcs.

A reset arc is represented by a double-headed arrow in an reWF-net chart, and denoted
as [p, t] formally in order to differ from (p, t) which is the notation of an arc in general
Petri nets. We denote ◦t = {p ∈ P | [p, t] ∈ R}, ∀ t ∈ T, as the set of places that
connect with t by reset arcs. For example, Fig. 1(b) is an reWF-net that has two reset
arcs [p10, t9] and [p11, t9]. ◦t9 = {p10, p11}.

Rules of enabling and firing a transition are defined as follows:
Given an reWF-net N = (P, T, F, R) and a marking M, if ∀ p ∈ •t: M(p) > 0, then

t is said to be enabled at M, which is denoted as M[t〉. Firing an enabled transition t
produces a new marking M′, which is denoted as M[t〉M′ , such that M′(p) = 0 if p ∈◦t;
M′(p) = M(p) − 1 if p �∈◦t ∧ p ∈ •t \ t•; M′(p) = M(p) + 1 if p �∈◦t ∧ p ∈ t•\•t; and
M′(p) = M(p) otherwise.



96 G.J. Liu et al.

Obviously, the enabling rule of transitions of reWF-nets identifies with that of gen-
eral Petri nets, but, after firing a transition, the tokens in those places that connect with
the transition by reset arcs are all removed.

Other notions of reWF-nets, such as liveness, boundedness, and soundness, are the
same as those of Petri nets and WF-nets, and are omitted here.

2.4 SAT Problem

The SAT problem, which is NP-complete [9], is used in this paper. Assume that there
are n Boolean variables x1, x2,· · ·, and xn. A literal l is a variable x or its negation
¬x. An expression G of conjunctive normal form (CNF) is a conjunction of m different
terms and each term is a disjunction of different literals not containing a complementary
pair x and ¬x. An expression H of disjunctive normal form (DNF) is a disjunction of
m different terms and each term is a conjunction of different literals not containing a
complementary pair x and ¬x.

Our proof is based on the 3SAT problem, i.e., each term has exactly three literals.

3SAT Problem: For a CNF expression G in which each term has exactly three literals,
is there an assignment of variables such that G = 1?

For convenience, an equivalent problem, which is constructed by negating the CNF
expression G, is used instead of the above problem. That is, DNF expressions are con-
sidered. This problem is denoted by 3SAT [15].

3SAT Problem: For a DNF expression H in which each term has exactly three literals,
is there an assignment of variables such that H = 0?

Without loss of generality, it is assumed that m > 3 (notice, m is the number of terms
in the formula) and each variable and its negation are both in H. Additionally, we need
the following assumption.


 There is no variable x such that it or its negation ¬x occurs in all terms.

This assumption is reasonable. If there exists a variable such that it or its negation occurs
in all terms, we may produce two expressions H′ and H′′ by assigning this variable the
value 1 and 0, respectively. Then, H = 0 if and only if H′ = 0 ∨ H′′ = 0, while
the problem of H′ = 0 ∨ H′′ = 0 belongs to 2SAT problem that can be decided in
polynomial time [9].

2.5 LBA Acceptance Problem

An LBA is a Turing machine that has a finite tape containing initially a test string with
a pair of bound symbols on either side.

Definition 6. An 8-tuple Ω = (Q, Γ, Σ, Δ, q0, qf , #, $) is an LBA if



Complexity of the Soundness Problem of Bounded Workflow Nets 97

1. Q = {q0, q1, · · · , qm, qf }, m ≥ 0, is a set of control states where q0 is the initial
state and qf is the accept state;

2. Γ = {a1, a2, · · · , an}, n > 0, is a tape alphabet;
3. Σ ⊆ Γ is an input alphabet;
4. Δ ⊆ Q × Γ × {R, L} × Q × Γ is a set of transitions where R and L represent

respectively that the read/write head moves right or left by one cell; and
5. # and $ are two bound symbols that are next to the left and right sides of an input

string, respectively.

We assume that there is no transition from the accept state qf because the computation is
finished correctly once qf is reached. We also assume that there is a transition sequence
(q0, , , q′, ), (q′, , , q′′, ), · · ·, (q(k), , , qf , ) in an LBA. Otherwise, the accept
state is never reached.

If an LBA is at state p with the read/write head scanning a cell in which symbol a is
stored, and there is a transition δ = (p, a, R, q, b) ∈ Δ, then firing δ causes: 1) the
read/write head erase a from the cell, write b in the cell, and move right by one cell;
and 2) the LBA be at state q.

LBA Acceptance Problem: For an LBA with a test string, does it accept the string?

This problem is PSPACE-complete even if the LBA is deterministic [9].

3 co-NP-Hardness of the Soundness of Bounded WF-Nets

In this section, we prove that the soundness problem of bounded WF-nets is co-NP-hard
based on the 3SAT problem.

Let x1, x2,· · ·, and xn be n variables and H = D1∨D2∨· · ·∨Dm = (l1,1∧l1,2∧l1,3)∨
(l2,1 ∧ l2,2 ∧ l2,3) ∨ · · · ∨ (lm,1 ∧ lm,2 ∧ lm,3) be a DNF expression. The 3SAT problem
is reducible in polynomial time to the liveness problem of bounded WF-nets, thereby
proving that the soundness problem of bounded WF-nets is co-NP-hard by Corollary 1.

For each term Dk, k ∈ Nm, let Ψ(Dk) denote the set of subscripts of three variables
in Dk. For example, if D = ¬x1 ∧ x3 ∧ x6, then Ψ(D) = {1, 3, 6}.

For each DNF expression H, a WF-net can be constructed by the following method.

Construction 1

– P = {i, o, p0}
∪{pk, p′

k, vk, v′k, ck, c′k | k ∈ Nn}
– T = {b, t0, t′0}

∪{dj, d′
j | j ∈ Nm}

∪{tk, t′k, ek, e′k | k ∈ Nn}
– F = {(i, t0), (t′0, p0), (o, b), (b, i)}

∪{(p0, dj), (d′
j , o) | j ∈ Nm}

∪{(t0, pk), (p′
k, t′0) | k ∈ Nn}

∪{(dj, vk), (v′k, d′
j) | k ∈ Nn \ Ψ(Dj), j ∈ Nm}

∪{(pk, tk), (pk, t′k), (tk, p′
k), (t

′
k, p′

k) | k ∈ Nn}



98 G.J. Liu et al.

∪{(tk, ck), (t′k, c′k), (ck, ek), (c′k, e′k) | k ∈ Nn}
∪{(vk, ek), (vk, e′k), (ek, v′k), (e

′
k, v′k) | k ∈ Nn}

∪{(ck, dj) | lj,1 = xk ∨ lj,2 = xk ∨ lj,3 = xk, k ∈ Nn, j ∈ Nm}
∪{(c′k, dj) | lj,1 = ¬xk ∨ lj,2 = ¬xk ∨ lj,3 = ¬xk, k ∈ Nn, j ∈ Nm}

– M0 = i

For example, given a DNF expression H0 = (¬x3 ∧ x4 ∧ x5)∨ (x1 ∧¬x2 ∧ x3)∨ (¬x1 ∧
x2 ∧ x4) ∨ (¬x3 ∧ ¬x4 ∧ ¬x5), the constructed Petri net is shown as Fig. 2. Notice
that, strictly speaking, the Petri net constructed by Construction 1 is not a WF-net but a
trivial extension of a WF-net, i.e., if transition b, as a bridge connecting source and sink
places, is deleted, then the resulting net is a WF-net. Sometimes, we do not distinguish
between a WF-net and its trivial extension if no ambiguity is produced.

Intuitively, the constructed Petri net can be viewed as the composition of two part-
ners. One (e.g., the left section of Fig. 2, i.e., the subnet generated by {i, t0, t′0} ∪
{tk, t′k, pk, p′

k, ck, c′k | k ∈ Nn}) is to set an assignment for variables, and another (e.g.,
the right section of Fig. 2, i.e., the subnet generated by {o, p0}∪{ek, e′k, vk, v′k, ck, c′k |
k ∈ Nn}∪{dj, d′

j | j ∈ Nm}) is to decide whether H is 0 under the assignment. Variables
xk and ¬xk, k ∈ Nn, are represented by places ck and c′k, respectively. When ck (resp. c′k)
has a token, it means xk = 1 (resp. ¬xk = 1).

At the initial marking M0 = i, only t0 is enabled. After firing t0, only t1, t′1, t2, t′2,
· · ·, tn, and t′n are enabled, but for the pair tk and t′k, firing one will disable another since
pk has only one token. Firing tk (resp. t′k) means assigning the value 1 to xk (resp. ¬xk)
since a token is moved into ck (resp. c′k ). Obviously, xk and ¬xk are not assigned true at
the same time. In a word, this partner is to set an assignment for variables. Only after
each variable is assigned a value, transition t′0 is enabled. Only after firing t′0, another
partner can start to decide whether the expression H equals to 0 under the corresponding
assignment.

Transitions d1, d2, · · ·, and dm represent terms D1, D2, · · ·, and Dm respectively
because ck or c′k (k ∈ Nn) is an input place of dj (j ∈ Nm) if and only if xk or ¬xk occurs
in Dj. If none of d1, d2, · · ·, and dm is enabled under an assignment, then it means
H = 0 under this assignment. Notice that, this case (H = 0) implies that the Petri
net is not live. If H = 1 under certain assignment, i.e., some terms are true under this
assignment, then the corresponding transitions in {d1, d2, · · · , dm} are enabled, but
only one of these enabled transitions can be fired since p0 has only one token. Let dj be
an enabled transition under this assignment. Then, after firing dj, we have that for each
k ∈ Nn \Ψ(Dj), a token is put into vk, the token assigned to ck or c′k is still retained, and
tokens in •dj are removed. For removing the token from ck or c′k where k ∈ Nn \Ψ(Dj),
ek or e′k is competent, i.e., if ck is marked, then only ek is enabled, otherwise, only e′k
is enabled. After firing ek or e′k, ∀ k ∈ Nn \ Ψ(Dj), d′

j can be fired. Notice that, after
firing d′

j , only o has one token, and other places have no tokens. This decision is ended.
Finally, firing b means that the initial marking is returned, i.e., a new decision may be
started.

In what follows, it is proven that there is an assignment of variables such that H = 0
if and only if the constructed Petri nets is not live.

Lemma 1. There is an assignment of variables such that H = 0 if and only if Petri net
(P, T, F, M0) constructed by Construction 1 is not live.



Complexity of the Soundness Problem of Bounded Workflow Nets 99

p

p p p p p v

d

v v

d d d

v v
c

c

t t t t t t tt t t

b

t0

p p p p p

c

c

c

c

c

c

c

c

dd
d d

v v v v v
eeeeeee eee

t

i

o

Fig. 2. The WF-net corresponding to H0 = (¬x3 ∧ x4 ∧ x5) ∨ (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧
x4) ∨ (¬x3 ∧ ¬x4 ∧ ¬x5) where xk (resp. ¬xk), k ∈ N5, corresponds to ck (resp. c′k)

Proof: (only if ) Let (κ1, κ2, · · · , κn) be an assignment of (x1, x2, · · · , xn) such that
H = 0, where κk = 1 or κk = 0, ∀ k ∈ Nn. Then, after firing the transition sequence
t0τ1τ2 · · · τnt′0, where τi = ti if κi = 1 or τi = t′i if κi = 0, there is no enabled transition.
This is because: if there is still an enabled transition after firing t0τ1τ2 · · · τnt′0, this
transition must be the one in {d1, d2, · · · , dm}, which means that there is a term whose
value is 1 under the assignment, thereby making H = 1. A contradiction is produced.

(if ) (by contradiction) Assume that no assignment fulfills H = 0, i.e., for each as-
signment (κ1, κ2, · · · , κn), there always exists a term that is true. Through the analysis
in the paragraph above this lemma, we know that for each assignment, (P, T, F, M0)
always returns to its initial marking. Therefore, b, t0, t′0, t1, t′1, · · ·, tn, and t′n are obvi-
ously live. For each dj, we can fire the corresponding transitions in {t1, t′1, · · · , tn, t′n}
to move tokens into the input places of dj, thereby ensuring that dj can be fired. That
is, dj and d′

j are also live. What remains is to show that e1, e′1,· · ·, en, and e′n are live.
Obviously, if the pre-set of vk is not empty, then ek and e′k are live, ∀ k ∈ Nn. By the
previous assumption (i.e., there is no variable x such that it or its negation ¬x occurs in
each term), we know that for each vk, its pre-set is not empty, because there always is
a term Dj such that k ∈ Nn \ Ψ(Dj), i.e., xk and ¬xk are not in Dj. Hence, ek and e′k are
also live, ∀ k ∈ Nn. �



100 G.J. Liu et al.

Notice that, by the above conclusion we know that Petri net (P, T, F, M0) constructed
by Construction 1 is live if and only if for each assignment of variables there is H =
1. The problem on deciding whether there is always H = 1 for each assignment of
variables is co-NP-complete [9].

Corollary 2. Petri net (P, T, F, M0) constructed by Construction 1 is live if and only
if H = 1 for each assignment of variables.

Lemma 2. Let (P, T, F, M0) be the Petri net constructed for a DNF H by Construc-
tion 1. Then, (P, T \ {b}, F \ {(o, b), (b, i)}, M0) is a bounded WF-net.

Proof: It is obvious that for each transition t ∈ T \ {b} (resp. each place p ∈ P) in
the net (P, T \ {b}, F \ {(o, b), (b, i)}), there is a directed path from i to o such
that t (resp. p) occurs in it. Therefore, (P, T, F) is strongly connected. Therefore,
(P, T \ {b}, F \ {(o, b), (b, i)}) is a WF-net.

Obviously, i, o, p0, p1, p′
1,· · ·, pn, p′

n, v1, v′1, · · ·, vn, and v′n are all bounded in
(P, T, F, M0) because the two subnets generated by them represent the state tran-
sition of the two partners and are easily shown to be bounded. We only need to observe
places v1, v′1, · · ·, vn, and v′n. In the case that (P, T, F, M0) is not live: all deadlock
states satisfy that p0 has a token, each pair ck and c′k has a token, and others have no to-
ken. In the case that (P, T, F, M0) is live: before o is marked, each pair ck and c′k has at
most one token, and when o is marked, all tokens in c1, c′1, · · ·, cn, and c′n are removed.
Hence, (P, T, F, M0) is bounded, thereby (P, T \ {b}, F \ {(o, b), (b, i)}, M0)
bounded. �

Theorem 2. The soundness problem for bounded WF-nets is co-NP-hard.

Proof: For each DNF expression in which there are n variables and m terms and each
term has 3 literals, it is easy to compute that the constructed WF-net has 6n + 3 places,
4n + 2m + 3 transitions, and 2mn + 14n − m + 4 arcs. Therefore, the WF-net can be
constructed in polynomial time (i.e., O(2mn + 24n + m + 10)). Therefore, it is known
by Lemma 2 and Corollaries 1 and 2 that the soundness problem of bounded WF-net is
co-NP-hard. �

4 PSPACE-Hardness of the Soundness of Bounded reWF-Nets

Obviously, the reachability, liveness, and soundness are all decidable for bounded reWF-
nets since we can construct their reachability graph by which these properties can be
decided. However, we are to show that they are PSPACE-hard. First, we prove that the
liveness and soundness are equivalent for bounded reWF-nets.

Lemma 3. Let N = (P, T, F, R) be an reWF-net such that (NE, M0) = (P, T ∪
{b}, F ∪ {(b, i), (o, b)}, R, i) is bounded. Then, N is sound if and only if (NE, M0)
is live.

Proof: (only if ) Please see Lemma 5.1 in [4].
(if ) First, let Md = o. Because (NE, M0) is live, b is live. Hence, ∃M ∈ R(NE, M0):

M[b〉. Hence, M ≥ Md. Let M0[σ〉M and M[b〉M′. Next, we use the contradiction



Complexity of the Soundness Problem of Bounded Workflow Nets 101

method to prove M = Md. Assume that there is place p ∈ P such that M(p) >
Md(p) = 0. Then, M′(p) > Md(p) = 0 and M′(i) = 1 = M0(i) since there is no
reset arc between b and p, i.e., firing b does not empty p. Hence, σb can fire infinitely,
thereby making place p unbounded. This contradicts the boundedness of (NE, M0).
Hence, for each marking M ∈ R(NE, M0), if M ≥ Md, then M = Md = o. Hence,
R(NE, M0) = R(N, M0). Hence, by using the liveness of (NE, M0), we can easily
prove that 1) ∀M ∈ R(N, M0): Md ∈ R(N, M); and 2) ∀ t ∈ T, ∃M ∈ R(N, M0):
M[t〉. Hence, N is sound. �

Next, we prove that the soundness problem is PSPACE-hard for bounded reWF-nets.
Given an LBA Ω = (Q, Γ, Σ, Δ, q0, qf , #, $) with an input string S, an reWF-

net can be constructed. The construction below is refered as Construction 2. We first
assume that the length of S is l, l ≥ 0, and the i-th element of S is denoted as Si.
Q = {q0, q1, · · · , qm, qf}, m ≥ 0. Γ = {a1, a2, · · · , an}, n > 0. Cells storing #S$
are labeled 0, 1, · · ·, l, and l + 1, respectively.

– P = {i, o, p0, p′
0}

∪{A0,#, Al+1,$, Ai,j | i ∈ Nl, j ∈ Nn}
∪{Bi,j | i ∈ {0, 1, · · · , l + 1}, j ∈ {0, 1, · · · , m}}

A token in A0,# (resp. Al+1,$) means that the tape cell 0 (resp. l + 1) stores # (resp.
$). Therefore, once the computation starts, A0,# (resp. Al+1,$) has a token until the
computation ends since the two special symbols are not allowed to be replaced by other
symbols. A token in Ai,j means that the symbol in the cell i is aj. A token in Bi,j means
that the read/write head is on the cell i and the machine is at state qj. Notice that, in
the computing process, the LBA is only at one state at any time, thus only one place
in {Bi,j | i ∈ {0, 1, · · · , l + 1}, j ∈ {0, 1, · · · , m}} is marked by one token in the
modeling process. Once the computation finishes, i.e., the LBA accepts the input string
S, the token in {Bi,j | i ∈ {0, 1, · · · , l + 1}, j ∈ {0, 1, · · · , m}} is moved into p0. The
purpose of having p′

0 will be discussed later.
The sets of transitions, arcs, and reset arcs of the reWF-net are constructed as follows.

– b is a transition such that •b = {o} and b• = {i}.
– ts is a transition such that •ts = {i} and t•s = {A0,#, Al+1,$, B0,0} ∪ {Ai,j | Si =

aj, i ∈ Nl, j ∈ Nn}. In fact, t•s corresponds to the initial configuration of the
LBA, i.e., tokens in {A0,#, Al+1,$, Ai,j | Si = aj, i ∈ Nl, j ∈ Nn} represent the
input string with the two bound symbols, and the token in B0,0 represents that the
machine is at the initial state q0 and the read/write head is on the leftmost cell.

– t′s is a transition such that •t′s = {p′
0} and t′•s = {p0} ∪ {A0,#, Al+1,$, Ai,j | i ∈

Nl, j ∈ Nn} ∪ {Bi,j | i ∈ {0, 1, · · · , l + 1}, j ∈ {0, 1, · · · , m}}. Later, we will
explain the reason of having t′s.

– te is a transition such that •te = {p0} and t•e = {p′
0}. Only te connects with reset

arcs such that ◦te = {p0} ∪ {A0,#, Al+1,$, Ai,j | i ∈ Nl, j ∈ Nn} ∪ {Bi,j | i ∈
{0, 1, · · · , l+1}, j ∈ {0, 1, · · · , m}}. The token in p0 means that the computation
ends, and then firing te will empty all places in {p0} ∪ {A0,#, Al+1,$, Ai,j | i ∈
Nl, j ∈ Nn} ∪ {Bi,j | i ∈ {0, 1, · · · , l + 1}, j ∈ {0, 1, · · · , m}}, i.e., the tape is
emptied and the machine is not at any state.

– t′e is a transition such that •t′e = {p′
0} and t′•e = {o}



102 G.J. Liu et al.

For each transition δ ∈ Δ, we construct transitions of the reWF-net. We first consider
transitions in Δ that make the LBA to enter the accept state qf .

– If δ is the form of (qh, #, R, qf , #), h ∈ {0, 1, · · · , m}, i.e., the LBA halts
correctly and the read/write head is on the leftmost cell, we construct a transition t
of the reWF-net such that •t = {A0,#, B0,h} and t• = {A0,#, p0}.

– If δ is the form of (qh, $, L, qf , $), h ∈ {0, 1, · · · , m}, i.e., the LBA halts correctly
and the read/write head is on the rightmost cell, we construct a transition t such that
•t = {Al+1,$, Bl+1,h} and t• = {Al+1,$, p0}.

– If δ is the form of (qh, aj, L/R, qf , ak), h ∈ {0, 1, · · · , m}, j, k ∈ Nn, i.e., the
LBA halts correctly but the read/write head is possibly on any cell, we construct for
each cell r (r ∈ Nl) a transition tr. Formally, ∀ r ∈ Nl, a transition tr is constructed
such that •tr = {Ar,j, Br,h} and t•r = {Ar,k, p0}.

Next, we consider other transitions in Δ that have no pf .

– If δ is the form of (qh, #, R, qi, #), h, i ∈ {0, 1, · · · , m}, i.e., the read/write head
scans #, # is rewritten, the read/write head moves right, and the state is changed
into qi from qh. For this δ, we construct a transition t of the reWF-net such that
•t = {A0,#, B0,h} and t• = {A0,#, B1,i}.

– If δ is the form of (qh, $, L, qi, $), h, i ∈ {0, 1, · · · , m}, i.e., the read/write head
scans $, $ is rewritten, the read/write head moves left, and the state is changed into
qi from qh. For this δ, we construct a transition t such that •t = {Al+1,$, Bl+1,h}
and t• = {Al+1,$, Bl,i}.

– If δ is the form of (qh, aj, R, qi, ak), h, i ∈ {0, 1, · · · , m}, j, k ∈ Nn, then we
construct l transitions, i.e., we should consider each cell. Formally, ∀ r ∈ Nl, a
transition tr is constructed such that •tr = {Ar,j, Br,h} and t•r = {Ar,k, Br+1,i}.

– If δ is the form of (qh, aj, L, qi, ak), h, i ∈ {0, 1, · · · , m}, j, k ∈ Nn, then we
also construct l transitions, i.e., ∀ r ∈ Nl, a transition tr is constructed such that
•tr = {Ar,j, Br,h} and t•r = {Ar,k, Br−1,i}.

In the running process of the Petri net, a marking over {p0} ∪ {A0,#, Al+1,$, Ai,j |
i ∈ Nl, j ∈ Nn} ∪ {Bi,j | i ∈ {0, 1, · · · , l + 1}, j ∈ {0, 1, · · · , m}} corresponds
to a configuration of the LBA, i.e., tokens in {A0,#, Al+1,$, Ai,j | i ∈ Nl, j ∈ Nn}
correspond to the string on the tape, and the token in {p0} ∪ {Bi,j | i ∈ {0, 1, · · · , l +
1}, j ∈ {0, 1, · · · , m}} represents the current state of the LBA.

We know that the LBA halts correctly and accepts the input string when a token
enters p0, and at this marking, only te is enabled. Firing te makes all places in {p0} ∪
{A0,#, Al+1,$, Ai,j | i ∈ Nl, j ∈ Nn}∪{Bi,j | i ∈ {0, 1, · · · , l+1}, j ∈ {0, 1, · · · , m}}
emptied because te have reset arcs with these places. However, some transitions, which
correspond to Δ, are not necessarily enabled in the computing process. It is because
for an LBA with an acceptable input string, not all transitions of the LBA are used
in the deciding process. Therefore, we use t′s to produce a token for each place in
{p0} ∪ {A0,#, Ai,j, Al+1,$ | i ∈ Nl, j ∈ Nn} ∪ {Bi,j | i ∈ {0, 1, · · · , l + 1}, j ∈
{0, 1, · · · , m}}, which makes all transitions corresponding to Δ have an enabling right
again. Clearly, once te is fired, all places in {p0} ∪ {A0,#, Ai,j, Al+1,$ | i ∈ Nl, j ∈



Complexity of the Soundness Problem of Bounded Workflow Nets 103

Nn} ∪ {Bi,j | i ∈ {0, 1, · · · , l + 1}, j ∈ {0, 1, · · · , m}} are emptied again. This guar-
antees that all transitions corresponding to Δ are live when the LBA accepts the input
string. Obviously, if t′e and then b are fired, the initial marking, M0 = i, is returned.

Notice that, places in {A0,#, Al+1,$, Ai,j | i ∈ Nl, j ∈ Nn}∪{Bi,j | i ∈ {0, 1, · · · , l+
1}, j ∈ {0, 1, · · · , m}} are set in order to consider all possible cases for each cell, but
because Δ is finite, some of these places are not used or only have input or output
transitions. This makes the constructed net not strongly connected. Therefore, we add a
transition d such that

– for each place p in {A0,#, Al+1,$, Ai,j | i ∈ Nl, j ∈ Nn}∪{Bi,j | i ∈ {0, 1, · · · , l+
1}, j ∈ {0, 1, · · · , m}}, p ∈•d and p ∈ d•.

This ensures that the constructed net is strongly connected. Obviously, d does not influ-
ence the behavior of the constructed Petri net, and only after firing t′s, d is enabled. Note
that, even though there is no transition d, there also exists a direct path from place i to
place o, which is guaranteed by the previous assumption (i.e., for an LBA, there always
exists a transition sequence (q0, , , q′, ), (q′, , , q′′, ), · · ·, (q(k), , , qf , ).).

For example, the LBA Ω0 = (Q, Γ, Σ, Δ, q0, qf , #, $) can produce the language
{ai1bi1ai2bi2 · · · aim bim | i1, i2, · · · , im,m ∈ N}, where

– Q = {q0, q1, q2, q3, qf}
– Γ = {a, b, X}
– Σ = {a, b}
– Δ = {(q0, #, R, q1, #), (q1, $, L, qf , $), (q1, X, R, q1, X), (q1, a, R, q2, X),

(q2, a, R, q2, a), (q2, X, R, q2, X), (q2, b, L, q3, X), (q3, a, L, q3, a),
(q3, X, L, q3, X), (q3, #, R, q1, #)}

Notice that, this LBA accepts the empty string. For the LBA with the input string ab,
the Petri net constructed by Construction 2 is (NE, M0) = (P, T, F, R, i) where

– P = {i, o, p0, p′
0}

∪{A0,#, A3,$, Ai,j | i ∈ N2, j ∈ N3}
∪{Bi,j | i, j ∈ {0, 1, 2, 3}}

– T = {b, ts, t′s, te, t′e, d}
∪{t0, t1, t2, ti,j | i ∈ N7, j ∈ N2}

– F = {(p0, te), (te, p′
0), (p

′
0, t′e), (t

′
e, o), (o, b), (b, i)}

∪{(i, ts), (ts, A0,#), (ts, A3,$), (ts, A1,1), (ts, A2,2), (ts, B0,0)}
∪{(t0, p0), (t0, A3,$), (A3,$, t0), (B3,1, t0)}
∪{(t1, B1,1), (t1, A0,#), (A0,#, t1), (B0,0, t1)}
∪{(t2, B1,1), (t2, A0,#), (A0,#, t2), (B0,3, t2)}
∪{(t1,1, B2,1), (t1,1, A1,3), (A1,3, t1,1), (B1,1, t1,1)}
∪{(t1,2, B3,1), (t1,2, A2,3), (A2,3, t1,2), (B2,1, t1,2)}
∪{(t2,1, B2,1), (t2,1, A1,3), (A1,1, t2,1), (B1,1, t2,1)}
∪{(t2,2, B3,1), (t2,2, A2,3), (A2,1, t2,2), (B2,1, t2,2)}
∪{(t3,1, B2,2), (t3,1, A1,1), (A1,1, t3,1), (B1,2, t3,1)}
∪{(t3,2, B3,2), (t3,2, A2,1), (A2,1, t3,2), (B2,2, t3,2)}
∪{(t4,1, B2,2), (t4,1, A1,3), (A1,3, t4,1), (B1,2, t4,1)}



104 G.J. Liu et al.

∪{(t4,2, B3,2), (t4,2, A2,3), (A2,3, t4,2), (B2,2, t4,2)}
∪{(t5,1, B0,3), (t5,1, A1,3), (A1,2, t5,1), (B1,2, t5,1)}
∪{(t5,2, B1,3), (t5,2, A2,3), (A2,2, t5,2), (B2,2, t5,2)}
∪{(t6,1, B0,3), (t6,1, A1,1), (A1,1, t6,1), (B1,3, t6,1)}
∪{(t6,2, B1,3), (t6,2, A2,1), (A2,1, t6,2), (B2,3, t6,2)}
∪{(t7,1, B0,3), (t7,1, A1,3), (A1,3, t7,1), (B1,3, t7,1)}
∪{(t7,2, B1,3), (t7,2, A2,3), (A2,3, t7,2), (B2,3, t7,2)}
∪{(p′

0, t′s), (t′s, A0,#), (t′s, A3,$)}
∪{(t′s, Ai,j) | i ∈ N2, j ∈ N3}
∪{(t′s, Bi,j) | i, j ∈ {0, 1, 2, 3}}
∪{(d, A0,#), (d, A3,$), (A0,#, d), (A3,$, d)}
∪{(d, Ai,j), (Ai,j, d) | i ∈ N2, j ∈ N3}
∪{(d, Bi,j), (Bi,j, d) | i, j ∈ {0, 1, 2, 3}}

– R = {[A0,#, te], [A3,$, te], [p0, te]}
∪{[Ai,j, te] | i ∈ N2, j ∈ N3}
∪{[Bi,j, te] | i, j ∈ {0, 1, 2, 3}}

Fig. 3 shows another constructed Petri net that corresponds to the above LBA Ω0 with
an empty string. Notice, the following (reset) arcs are not drawn in Fig. 3:

t′•s = {p0, A0,#, A1,$, B0,0, B0,1, B0,2, B0,3, B1,0, B1,1, B1,2, B1,3}
◦te = {p0, A0,#, A1,$, B0,0, B0,1, B0,2, B0,3, B1,0, B1,1, B1,2, B1,3}
•d = d• = {A0,#, A1,$, B0,0, B0,1, B0,2, B0,3, B1,0, B1,1, B1,2, B1,3}
Clearly, if there are no transition d as well as the related arcs, the constructed net is
not strongly connected. Notice that, because the input string is an empty one, there
are no transitions for (q1, X, R, q1, X), (q1, a, R, q2, X), (q2, a, R, q2, a),
(q2, X, R, q2, X), (q2, b, L, q3, X), (q3, a, L, q3, a), and (q3, X, L, q3, X).
Transitions t0, t1, and t2 correspond to (q0, #, R, q1, #), (q3, #, R, q1, #)}, and
(q1, $, L, qf , $), respectively. Firing ts produces respectively one token for A0,#, A1,$,
and B0,0, which represents the initial configuration of the LBA, i.e., the tape stores an
empty string (i.e., only two bound symbols are on the tape), the machine is at state
q0, and the read/write head is on the leftmost cell. At this marking, only transition t0
is enabled. t0 corresponds to (q0, #, R, q1, #). At the initial configuration, only
(q0, #, R, q1, #) is enabled. After firing (q0, #, R, q1, #), the configuration of
the LBA is that the machine is at state q1 and the read/write head moves right (i.e., it
is moved on the cell storing $). This is in accordance with t0 because firing t0 removes
the token from B0,0 and put a token into B1,1. At this marking, only t2 is enabled,
which is also in accordance with the LBA since at the corresponding configuration only
(q1, $, L, qf , $) is valid. Firing t2 moves a token into p0, which means the LBA accepts
this input string.

Lemma 4. An LBA accepts an input string if and only if the Petri net constructed by
Construction 2 is live.

Proof: (only if ) Because the LBA accepts the input string, we have that for each mark-
ing M ∈ R(N, M0) such that M0[σ〉M but te is not in σ, there is a reachable marking



Complexity of the Soundness Problem of Bounded Workflow Nets 105

Fig. 3. The reWF-net corresponding to the LBA Ω0 with the empty string

M′ ∈ R(N, M) such that p0 is marked at M′. At marking M′, only transition te is en-
abled. After firing te, marking M′′ = p′

0 is reached. At marking M′′, only t′e or t′s is
enabled. Firing t′s produces a token for each place in {p0} ∪ {A0,#, Ai,j, Al+1,$ | i ∈
Nl, j ∈ Nn} ∪ {Bi,j | i ∈ {0, 1, · · · , l + 1}, j ∈ {0, 1, · · · , m}}, which makes tran-
sition d and transitions corresponding to Δ have an enabling right. Clearly, once te is
fired again, all places in {p0} ∪ {A0,#, Ai,j, Al+1,$ | i ∈ Nl, j ∈ Nn} ∪ {Bi,j | i ∈
{0, 1, · · · , l + 1}, j ∈ {0, 1, · · · , m}} are emptied again. If firing t′e at marking M′′

and then firing b, the initial marking, M0 = i, is returned. Therefore, the constructed
Petri net is live.

(if ) By Construction 2 we know that when the constructed Petri net is live, there is
a reachable marking such that transition te is enabled at this marking, i.e., this marking
marks place p0. By Construction 2 we know that if place p0 can be marked by some
reachable marking, then the LBA accepts the input string. �

Lemma 5. Let (P, T, F, R, M0) be the Petri net constructed for an LBA with an input
string by Construction 2. Then, (P, T \ {b}, F \ {(o, b), (b, i)}, R, M0) is a bounded
reWF-net.

Proof: Clearly, (P, T, F, R, M0) is strongly connected after deleting all reset arcs.
Therefore, (P, T \ {b}, F \ {(o, b), (b, i)}, R, M0) is an reWF-net. For boundedness,
we only need to observe the constructed transitions corresponding to Δ. Since each of
them has two input places and two output places, they neither increase nor decrease the
number of tokens at any time. �

Theorem 3. The soundness problem for bounded reWF-nets is PSPACE-hard.

Proof: It is derived by Lemmas 3, 4, and 5. Notice that, the reWF-net can be constructed
in O(l · (m + n + k)) time where l =| S |, m =| Q |, n =| Γ |, and k =| Δ |. �

The soundness of bounded reWF-nets is decidable but PSPACE-hard. However, it is
still an open problem whether the boundedness problem of reWF-nets is decidable.
What we know is that the boundedness problem is undecidable for general Petri nets
with reset arcs [7,8].

Similarly, based on the LBA Acceptance problem, we can prove that the soundness
problem of bounded WF-nets with inhibitor arcs is PSPACE-hard. The boundedness
problem is undecidable for general Petri nets with inhibitor arcs [10,19].



106 G.J. Liu et al.

5 Conclusion

The SAT problem is shown to be polynomial time reducible to the soundness problem
for bounded WF-nets. This implies the latter is co-NP-hard. The soundness problem
of bounded reWF-nets is proven to be PSPACE-hard by reducing the LBA Accep-
tance problem to it in polynomial time. Co-NP-hardness (resp. PSPACE-hardness) of
the soundness problem of bounded WF-nets (resp. reWF-nets) shows a lower limit of
the complexity. Therefore, future work focuses on finding if the soundness problem is
co-NP-complete for bounded WF-nets and PSPACE-complete for bounded reWF- and
inWF-nets.

The results in this paper is meaningful in theory. However, WF- and reWF-nets are of
the strong application background in industry and often have special structures such as
AND-join and OR-split [3]. Therefore, it is our future work to explore efficient analysis
methods for specially structural WF- and reWF-nets.

Acknowledgement. We would like to thank Professor W.M.P. van der Aalst who en-
courages us to explore the complexity of the soundness problem for general WF-nets,
and also thank four anonymous reviewers whose constructive comments improve the
qualities of this paper. This paper was partially supported by research grant ”SUTD-
ZJU/RES/05/201”.

References

1. Van der Aalst, W.M.P.: Interorganizational Workflows: An Approach Based on Message Se-
quence Charts and Petri Nets. System Analysis and Modeling 34, 335–367 (1999)

2. Van der Aalst, W.M.P.: Loosely Coupled Interorganizational Wokflows: Modeling and Ana-
lyzing Workflows Crossing Organizational Boundaries. Inf. Manage. 37, 67–75 (2000)

3. Van der Aalst, W.M.P.: Structural Characterizations of Sound Workflow Nets. Computing
Science Report 96/23, Eindhoven University of Technology (1996)

4. Van der Aalst, W.M.P., Van Hee, K.M., Ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of Workflow Nets: Classification, Decid-
ability, and Analysis. Formal Aspects of Computing 23, 333–363 (2011)

5. Cheng, A., Esparza, J., Palsberg, J.: Complexity Results for 1-safe Nets. Theoretical Com-
puter Science 147, 117–136 (1995)

6. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical Computer
Science, vol. 40. Cambridge University Press, Cambridge (1995)

7. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset Nets Between Decidability and Undecid-
ability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443,
pp. 103–115. Springer, Heidelberg (1998)

8. Dufourd, C., Jančar, P., Schnoebelen, P.: Boundedness of Reset P/T Nets. In: Wiedermann,
J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 301–310.
Springer, Heidelberg (1999)

9. Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company (1976)

10. Hack, M.: Petri Net Languages. Technical Report 159. MIT (1976)
11. van Hee, K.M., Sidorova, N., Voorhoeve, M.: Generalised Soundness of Workflow Nets Is

Decidable. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 197–215.
Springer, Heidelberg (2004)



Complexity of the Soundness Problem of Bounded Workflow Nets 107

12. Kang, M.H., Park, J.S., Froscher, J.N.: Access Control Mechanisms for Inter-organizational
Workflow. In: Proc. of the Sixth ACM Symposium on Access Control Models and Technolo-
gies, pp. 66–74. ACM Press, New York (2001)

13. Kindler, E.: The ePNK: An Extensible Petri Net Tool for PNML. In: Kristensen, L.M.,
Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp. 318–327. Springer, Heidelberg
(2011)

14. Kindler, E., Martens, A., Reisig, W.: Inter-operability of Workflow Applications: Local Cri-
teria for Global Soundness. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) BPM
2000. LNCS, vol. 1806, pp. 235–253. Springer, Heidelberg (2000)

15. Ohta, A., Tsuji, K.: NP-hardness of Liveness Problem of Bounded Asymmetric Choice Net.
IEICE Trans. Fundamentals E85-A, 1071–1074 (2002)

16. Tiplea, F.L., Bocaneala, C.: Decidability Results for Soundness Criteria of Resource-
Constrained Workflow Nets. IEEE Trans. on Systems, man, and Cybernetics, Part A: Systems
and Humans 42, 238–249 (2011)

17. Verbeek, H.M.W., Van der Aalst, W.M.P., Ter Hofstede, A.H.M.: Verifying Worklows with
Cancellation Regions and OR-joins: An Approach Based on Relaxed Soundness and Invari-
ants. Computer Journal 50, 294–314 (2007)

18. Verbeek, H.M.W., Wynn, M.T., Van der Aalst, W.M.P., Ter Hofstede, A.H.M.: Reduction
Rules for Reset/Inhibitor Nets. BMP Center Report BMP-07-13, BMP-center.org (2007)

19. Van der Vlugt, S., Kleijn, J., Koutny, M.: Coverability and Inhibitor Arcs: An Example.
Technical Report 1293, University of Newcastle Upon Tyne (2011)


	Complexity of the Soundness Problem of Bounded Workflow Nets
	Introduction
	Preliminary
	Petri Nets
	WF-Nets
	reWF-Nets
	SAT Problem
	LBA Acceptance Problem

	co-NP-Hardness of the Soundness of Bounded WF-Nets
	PSPACE-Hardness of the Soundness of Bounded reWF-Nets
	Conclusion


