Model Checking Hierarchical Probabilistic Systems*

Jun Sun', Songzheng Song® and Yang Liu?

! Singapore University of Technology and Design
sunjun@sutd.edu.sg
2 National University of Singapore
liuyang@comp.nus.edu.sg
3 NUS Graduate School for Integrative Sciences and Engineering
songsongzheng@nus.edu.sg

Abstract. Probabilistic modeling is important for random distributed algorithms,
bio-systems or decision processes. Probabilistic model checking is a systematic
way of analyzing finite-state probabilistic models. Existing probabilistic model
checkers have been designed for simple systems without hierarchy. In this paper,
we extend the PAT toolkit to support probabilistic model checking of hierarchi-
cal complex systems. We propose to use PCSP#, a combination of Hoare’s CSP
with data and probability, to model such systems. In addition to temporal logic,
we allow complex safety properties to be specified by non-probabilistic PCSP#
model. Validity of the properties (with probability) is established by refinement
checking. Furthermore, we show that refinement checking can be applied to ver-
ify probabilistic systems against safety/co-safety temporal logic properties effi-
ciently. We demonstrate the usability and scalability of the extended PAT checker
via automated verification of benchmark systems and comparison with state-of-
art probabilistic model checkers.

1 Introduction

Probabilistic systems are common in practice, e.g., randomized algorithms, unreliable
system components, unpredictable environment, etc. Probabilistic model checking is
a systematic way of analyzing finite-state probabilistic systems. Given a finite-state
model of a probabilistic system and a property, a probabilistic model checker calculates
the (range of) probability that the model satisfies the property. It has been proven useful
in a variety of domains (see examples in [14]).

Designing and verifying probabilistic systems is becoming an increasingly difficult
task due to the widespread applications and increasing complexity of such systems.
Existing probabilistic model checkers have been designed for hierarchically simple
systems. For instance, the popular PRISM checker [14] supports a simple state-based
language, based on the Reactive Modules formalism of Alur and Henzinger [2]. The
MRMC checker supports a rather simple input language too [16]. The input language
of the LiQuor checker [10], named Probmela, is based on an extension of Promela sup-
ported by the SPIN model checker. None of the above checkers supports analysis of
hierarchical complex probabilistic systems.

* This research was partially supported by a grant “SRG ISTD 2010 001” from Singapore Uni-
versity of Technology and Design.

In this work, we aim to develop a useful tool for verifying hierarchical complex
probabilistic systems. Firstly, we propose a language called PCSP# for system model-
ing. PCSP# is an expressive language, combining Hoare’s CSP [15], data structures, and
probabilistic choices. It extends previous work on combining CSP with probabilistic
choice [22] or on combining CSP with data structures [30]. PCSP# combines low-level
programs, e.g., sequence programs defined in a simple imperative language or any C#
program, with high-level specifications (with process constructs like parallel, choice,
hiding, etc.), as well as probabilistic choices. It supports shared variables as well as
abstract events, making it both state-based and event-based. Its underlying semantics is
based on Markov Decision Processes (MDP) [6].

Secondly, we propose to verify complex safety properties by showing a refine-
ment relationship (with probability) from a PCSP# model representing a system and a
non-probabilistic model representing properties. Note that we assume that the property
model is non-probabilistic. We view probability as a necessary devil forced upon us by
the unreliability of the system or its environment. In contrast, properties which charac-
terizes correct system behaviors are often irrelevant of the likelihood of some low-level
failures. Refinement checking has been traditionally used to verify variants of CSP [26,
27]. It has been proven useful by the success of the FDR checker [27]. Verification
of such properties are reduced to the problem of probabilistic model checking against
deterministic finite automata, which has been previously solved (see for example [4]).
Nonetheless, we present a slightly improved algorithm which is better suited for our set-
ting. Alternatively, properties can be stated in form of state/event linear temporal logic
(SE-LTL) [8]. An SE-LTL formula can be built from not only atomic state propositions
but also events, making it a perfect property specification language for PCSP#, which
is both state-based and event-based. A standard method for model checking SE-LTL
formulae is the automata-based approach [4]. In this paper, we improve it by safety/co-
safety recognition. That is, if an LTL formula or its negation is recognized as a safety
property, then the model checking problem is reduced to a refinement checking prob-
lem and solved using our refinement checking algorithm. Though the worse-case com-
plexity remains the same, we show that safety/co-safety recognition offers significantly
memory/time saving in practice. Lastly, we extend the PAT model checker with all
the techniques so as to offer a self-contained framework for probabilistic system mod-
eling, simulation (using the built-in visualized simulator), and verification. In order to
demonstrate the usability/scalability of our approach, we verify benchmark systems and
compare the results with the PRISM checker [14].

Related work This work is related to methods and tools for probabilistic system model-
ing and verification. Existing probabilistic model checkers include at least PRISM [14],
MRMC [16] and LiQuor [10]. PRISM is the most popular probabilistic model checker.
It supports a variety of probabilistic models as well as property specification languages.
The input of PRISM is a simple state-based language [2]. LiQuor is a probabilis-
tic model checker for reactive systems [10]. MRMC is a command-line based model
checker for a variety of probabilistic models and a rather simple input language. The
extended PAT checker complements the existing checkers by 1) offering a language that
is both state-based and event-based and is capable of modeling hierarchical systems; 2)

supporting both SE-LTL model checking and probabilistic refinement checking and 3)
offering a user-friendly environment for not only model checking but also simulation.

The language PCSP# is related to many works on integrating probabilistic behaviors
into process algebras or programs, among which the most relevant are [22,21,9, 33].
In [22], an extension of CSP is proposed to incorporate probabilistic behaviors in the
name of refinement checking. In [21], issues on integrating probability with Event-B
has been discussed. In [9], issues on integrating probability with non-determinism have
been addressed. Compared to [22, 21,9, 33], this work focuses on developing a practical
tool for systematic modeling and verification of probabilistic systems.

Our work on improving temporal logic model checking with safety recognition is
related to work on categorizing safety and liveness. The work presented in [1] offers
theoretical results for recognizing safety and liveness given a Biichi automaton. Others
have also considered the problem of model checking safety LTL properties. In [28], a
categorization of safety, liveness and fairness is discussed. Further, it showed that rec-
ognizing safety LTL properties is PSPACE-complete. Later, many theoretical results
and algorithms have been presented in [17], which generalizes the earlier work pre-
sented in [28]. A forward direction version of the algorithm in [17] is evidenced in [12].
In [18], the author presented a translation of safety LTL formula to a finite state automa-
ton which detects bad prefixes. Model checking safety properties expressed using past
temporal operators has been considered in [13]. Our safety recognition is based on [1,
28]. Different from the above, we present methods/algorithms which improve model
checking of not only safety properties but also a class of liveness properties; not only
finite state systems but also probabilistic systems.

Organization The remainder of the paper is organized as follows. Section 2 presents
relevant technical definitions. Section 3 introduces the syntax and semantics of PCSP#.
Section 4 presents probabilistic verification of PCSP# models. In particular, Section 4.1
presents a refinement checking algorithm. Section 4.2 presents our approach for veri-
fying SE-LTL formulae with safety recognition. Section 5 evaluates our methods. Sec-
tion 6 concludes the paper with future research directions.

2 Preliminaries

LTS A labeled transition system (LTS) L is a tuple (S, init, Act, T') where S is a finite
set of states; and init € S is an initial state; Act is an alphabet; T C S x Act x S
is a labeled transition relation. A transition label can be either a visible event or an
invisible one (which is referred to as 7). A 7T-transition is a transition labeled with 7.
For simplicity, we write s — s’ to denote (s, e,s’) € T.If s 5 s/, then we say that e
is enabled at s. Let s ~ s’ to denote that s’ can be reached from s via zero or more 7-
transitions; we write s ~» s’ to denote there exists sy and s; such that s ~> sy — §; ~>
s’. A path of L is a sequence of alternating states/events = = (so, €g, $1, €1, - - -) such
that sy = init and s; 5 ;41 forall 4. The set of path of £ is written as paths(L). Given
a path 7, we can obtain a sequence of visible events by omitting states and 7-events.
The sequence, written as trace(r), is a trace of L. The set of traces of £ is written as
traces(L) = {trace(w) | m € paths(L)}. An LTS is deterministic if and only if given

any s and e, there exists only one s’ such that s — s’. An LTS is non-deterministic
if and only if it is not deterministic. A non-deterministic LTS can be translated into a
trace-equivalent deterministic LTS by determinization. Furthermore, non-deterministic
LTSs containing 7-transitions can be translated into trace-equivalent deterministic LTSs
without 7-transitions. The process is known as normalization [26].

Definition 1 (Normalization). Let £ = (S, init, Act, T') be an LTS. The normalized
LTS of Lis nl(L) = (', init’, Act, T") where S' C 25 is a set of sets of states, init' =
{s | init ~ s} and T' is a transition relation satisfying the following condition:
(N,e,N") € T ifand only if N' = {s' | I5: N. s~ s'}.

Normalization is to group states which can be reached via the same trace. Given two
LTSs Lo and L1, it is often useful to check whether traces(Ly) is a subset of traces(L1)
(or equivalently L trace-refines £4). There are existing algorithms and tools for trace
inclusion check [26]. The idea is to construct the product of Ly and nl(£) and then
search for a state of the form (s, s’) such that s enables more visible events than s’
does. In the worse case, this algorithm is exponential in the number of states of £;. It
is nonetheless proven to be practical for real-world systems by the success of the FDR
checker [27].

SE-LTL LTL was introduced to specify the properties of executions of a system [24].
It is built up from a set of propositions using standard Boolean operators (—, A, V) and
X (next), U (until), R (release), < (eventually) and [(always). It has been adopted
for specifying properties in many systems. In [8], LTL is extended to build up from not
only state propositions but also events. The extended LTL is referred to as SE-LTL. The
simplicity of writing formulas concerning events as in the above example is not purely
a matter of aesthetics. It may yield gains in time and space [8].

LTL (and SE-LTL) formulae can be categorized into either safety or liveness. In-
formally speaking, safety properties stipulate that “bad things” do not happen during
system execution. A finite execution is sufficient evidence to the violation of a safety
property. In contrast, liveness properties stipulate that “good things” do happen even-
tually. A counterexample to a liveness property is an infinite system execution (which
forms a loop if the system has finitely many states). In this paper, we adopt the def-
inition of safety and liveness in [1]. For instance, (e = [b) and Ga = [Ob are
safety properties; (Ja = <>b is a liveness property, whose negation, however, is a
safety property. A liveness property whose negation is safety is referred to as co-safety,
e.g., a is co-safety. We remark that a formula may be neither safety nor liveness,
e.g., J<Ca A Ob. It has been shown in [28] that recognizing whether an LTL formula
is safety is PSPACE-compele. A number of methods have been proposed to identify
subsets of safety. For instance, syntactic LTL safety formulae (which is constituted by
A, V, O, U, X, and propositions or negations of propositions) can be recognized effi-
ciently. A number of methods have been proposed to translate safety LTL to finite state
automata [17, 18].

It has been proved in [32] that for every LTL formula ¢, there exists an equivalent
Biichi Automaton. There are many sophisticated algorithms on translating LTL to an
equivalent Biichi automaton [11,29]. In addition, it is possible to tell whether an LTL

formula represents safety by examining its equivalent Biichi automaton. For instance,
it has been proved in [1] that a (reduced) Biichi automaton specifies a safety property
if and only if making all of its states accepting does not change its language. Based on
this result, a Biichi automaton representing a safety property can be viewed as an LTS
for simplicity. The reason is that all of its infinite traces must be accepting and therefore
the acceptance condition can be ignored.

3 Hierarchical Modeling

In this section, we present PCSP#, which is designed for modeling and verifying prob-
abilistic systems. We remark that the LiQuor checker, which is based on Probmela,
makes a step towards an expressive useful modeling language. Nonetheless, Probmela
is not capable of modeling fully hierarchical systems.

Syntax PCSP# extends the CSP# language [30] with probabilistic choices. CSP# in-
tegrates low-level programs with high-level compositional specification. It is capable
of modeling systems with not only complicated data structures (which are manipulated
by the low-level programs) but also hierarchical systems with complex control flows
(which are specified by the high-level specification). Compared with PCSP [22], PCSP#
supports explicit complex data structures/operations.

A PCSP# model is a 3-tuple (Var, init, P) where Var is a set of global variables
(with bounded domains) and channels; init is the initial values of Var; P is a process.
A variable can be either of simple types like boolean, integer, arrays of integers or any
user-defined data type (which must be defined in an external C# library). The process
P is an extension of Hoare’s classic CSP. Part of its syntax is defined as follows.

P ::= Stop | Skip — primitives
| e—P — event prefixing
| a{program} — P — data operation prefix
| POQ|PMNQ]|ifbthen P else Q — choices
| P; — sequence
| PlQ|PI Q@ — concurrency
| P\ X — hiding
| @ — process referencing
| pcase{dy: Py; dy: Py; ---; d: Py} — probabilistic multi-choices

where P, P; and () range over processes, e is a simple event, a is the name of a sequen-
tial program; b is a Boolean expression, d; is a rational number and dy+d; +- - -+ dj, =
1. Process Stop does nothing. Process Skip terminates. Process e — P engages in event
e first and then behaves as P. Combined with parallel composition, event e may serve
as a multi-party synchronization barrier. Process a{program} — P generates an event
a, executes a sequential program program at the same time, and then behaves as P.
External C# data operations can be invoked in program.

A variety of choices are supported, e.g., P O () for external choice; P 1 for internal
non-determinism and if b then P else () for conditional branching. Process P; @
behaves as P until P terminates and then behaves as (). Parallel composition of two

processes is written as P || @, where P and () may communicate via multi-party event
synchronization. If P and) only communicate through channels or variables, then it
is written as P ||| Q. Process P \ X hides occurrence of any event in X. Recursion
is supported through process referencing. Lastly, probabilistic choice is written in the
form of pcase {dy : Po; dy : Py; ---; di : Py} Intuitively, it means that with d;
probability, the system behaves as P;. It is required that dy + dy + -+ - + dy, = 1.

Example 1 (Pacemaker). A pacemaker is an electronic implanted device which func-
tions to regulate the heart beat by electrically stimulating the heart to contract and
thus to pump blood throughout the body. Common pacemakers are designed to cor-
rect bradycardia, i.e., slow heart beats. A pacemaker mainly performs two functions,
i.e., sensing and pacing. Sensing is to monitor the heart’s natural electrical activity,
helping the pacemaker to gather information on the heart beats and react accordingly.
Pacing is when a pacemaker sends electrical stimuli, i.e., tiny electrical signals, to heart
through a pacing lead, which starts a heart beat. A pacemaker can operate in many dif-
ferent modes, according to the implanted patient’s heart problem. The following is a
high-level abstraction of the simplest mode of pacemaker, i.e., the AAT mode.

var count = 0;
AAT = (Heart || Pacing) \ {missingPulseA, missingPulseV'}
Heart = pcase {
[pA] : missingPulseA — pulseV — Heart
[pV] : pulseA — missingPulseV — Heart
[l — pA—pV]: pulseA — pulseV — Heart
b
Pacing = pulseA — Pacing O pulseV — Pacing
O missingPulseA — add{count + +} — pcase {
[99.54] : pulseB{count — —} — Pacing
[0.46] : Pacing

O missingPulseV — add{count + +} — pcase {
[99.54] : pulseW{count — —} — Pacing
[0.46] : Pacing

b

Variable count is an integer (with a default bound) which records the number of skipped
pulses. A (mode of the) pacemaker is typically modeled in the following form: Heart ||
Pacing where Heart models normal or abnormal heart condition; Pacing models how
the pacemaker functions. In this particular mode, process Heart generates two events
pulseA (i.e., atrium does a pulse) and pulseV (i.e., ventricle does a pulse), periodically
for a normal heart or with one of them missing once a while for an abnormal heart. In
the latter case, event missingPulseA or missingPulseV is generated. Constant pA is
the (patient-dependent) probability of pulseA missing; p V' is the probability of pulseV
missing. Process Pacing synchronizes with process Heart. If event missingPulseA
(denoting the missing of event pulseA) is monitored, variable count is incremented by
one. Notice that the event add is associated with the simple program of updating count.
In general, it can be associated with any state update function. It is in this way that state

update is introduced in an event-based language. Ideally, the pacemaker helps the heart
to beat by generating event pulseB. Once pulseB is generated, count is decremented
by one. Similarly, it generates pulse W when pulseV is missing. Note that it has been
reported that pacemaker may malfunction for certain rate (exactly 0.46%) [20]. This is
reflected in the model again using pcase. If a pulseB or pulseW is skipped, count is
not decremented.

At the top level, the pacemaker system is a choice of different modes. Each mode
is often a parallel composition of multiple components. Each component may have
internally hierarchies due to complicated sensing and pacing behaviors. We skip the
details (refer to [5]) and remark that our modeling language is more suitable for such
systems than those supported by existing probabilistic model checkers. O

Semantics The semantic model of CSP# (without pcase) is LTS. In this paper, we as-
sume that all variables have finite domain and the set of reachable process expressions
are finite so that the LTS has finitely states. A state in the LTS is a tuple of the form
(V, P) where V is the valuation of the variables and P is a process expression. Given
a CSP# model M, its LTS can be generated systematically following its structural op-
erational semantics (also known as firing rules [30]). A firing rule for CSP# is of the
form (V, P) % (V’, P'). Based on the LTS, different semantic objects can be defined.
For instance, the traces of M are defined to be the traces of the LTS.

The underlying semantics of PCSP# is Markov Decision Process (MDP), which is
expressive enough to capture systems with probabilistic choices as well as nondetermin-
ism and concurrency. Given a set of states .5, a distribution is a function ¢ : S — [0, 1]
such that Xscg p(s) = 1. Let Distr(S) be the set of all distributions over S. An MDP
is a 3-tuple M = (S, init, Pr) where S is a set of system states; init € S is the
initial system configuration*; Pr : S x Act x Distr(S) is a transition relation®. A
transition of the system is written as s — where y is a distribution, or equivalently
s 5 {(s1,d1), (s2,da),---} where s € S and s; € S forall i;and d; : [0, 1] is the prob-
ability of reaching s; given the distribution. A path of M is a sequence of alternating
states, events and distributions ™ = (5o, €o, 14y, 51, €1, {4y, - - -) such that s = nit and
s; — pu; and g, (s;41) > 0 for all i. The probability of exhibiting 7 by M, denoted as
Pu(m),is py(s1) * i (s2) * - - -. Given a path 7, we define trace(m) to be the sequence
of visible events in 7. Let paths(M) denote all paths of M. In an abuse of notation, let
s € 7 denote that 7 visits state s.

In the following, we assume that MDPs are deadlock-free following common prac-
tice. A deadlocking model can be made deadlock-free by adding a special self loop
to the deadlock states, without affecting the result of probabilistic verification. In-
tuitively speaking, given a system configuration, firstly an event and a distribution
is selected nondeterministically by the scheduler, and then one of successor states is
reached according to the probability distribution. A scheduler is a function decides
which event and distribution to choose based on the execution history (in the form
of a path). A Markov Chain [4] can be defined given an MDP M and a scheduler
d, denoted as M. Intuitively, a Markov Chain is an MDP where only one event and

* This is a simplified definition. In general, there can be an initial distribution.
5 This is slightly different from the classic definition of MDP.

Rule for any process constructs in CSP#:

(V,P) S (V', P')is a firing rule of CSP#

(V,P) 5 p suchthat u((V', P')) =1

Rule for pcase

(V,pease {do : Po; ---; dj : Py}) = p such that u((V, P;)) = d; for all i

Fig. 1. Firing Rules

distribution is enabled at every state. For simplicity, we write P}S\A () to denote the
probability of exhibiting a path 7 in M with scheduler 6. The probability of exhibit-
ing a set of path X C paths(My) is the accumulated probability of each path, i.e.,
P (X) = XyexPSy(z). It is often useful to find out the probability of reaching a
set of states. Note that with different scheduling, the probability may be different. The
measurement of interest is thus the maximum and minimum probability. Given a set of
target states G, the maximum probability of reaching any state in G is defined as

Pree(G) = sups Pri({r | Is € G.s € 1})

Note that the supremum ranges over all, potentially infinitely many, schedulers. Ac-
cordingly, the minimum is written as P7;"(G). Similarly, we define the maximum
probability of exhibiting a trace in a set Tr by M.

Prac(Tr) = sups Pri, ({r | trace(n) € Tr})

Accordingly, the minimum is written as P{™ (Tr).

Next, we define firing rules for PCSP#. Figure 1 presents all the necessary rules.
The first rule states that if by CSP# firing rules, (V, P) - (V’, P’), then configuration
(V, P) can perform e and result in one distribution which maps configuration (V', P’)
to 1. The second rule is for pcase. The result distribution associates dj, probability with
(V, Py) for all k. Notice that V remains unmodified during the transition. We remark
that only 7-transitions can be associated with probability other than 1. Following these
two rules, an MDP can be generated from a model systematically.

4 Probabilistic Refinement Checking

Refinement checking has been traditionally used to verify CSP [15]. Different from
temporal-logic based model checking, refinement checking works by taking a model
(often in the same language) as a property. The property is verified by showing a re-
finement relationship from the system model to the property model. There are different
refinement relationships designed for proving different properties. In the following, we
focus on trace refinement and remark that our approach can be extended to stable fail-
ures refinement or failures/divergence refinement. For instance, one way of verifying

the pacemaker is to check whether the pacemaker model (present in Example 1) trace-
refines the following model (without variables) which models a ‘fine’ heart.

OKHrt = pulseA — pulseV — OKHrt O pulseA — pulseW — OKHrt O
pulseB — pulseV — OKHrt O pulseB — pulseW — OKHrt

In theory, it is possible to encode the property model as temporal logic formulae (as
temporal logic is typically more expressive than LTS) and then apply temporal-logic
based model checking to verify the property. It is, however, impractical. For instance,
LTL model checking is exponential in the size of the formulae and therefore it cannot
handle formulae which encode non-trivial property model. In short, refinement check-
ing allows users to verify a different class of properties from temporal logic formulae.

4.1 Refinement Checking PCSP#

Because of probabilistic choices, refinement checking in our setting is not simply to
verify whether traces of a PCSP# model is subset of those of another. Instead, it is
‘how likely’ the system behaves as specified by the property model (in the presence of
unreliability of system components). Because we assume the property model is non-
probabilistic, the problem is thus to calculate the probability of an MDP (i.e., the se-
mantics of PCSP# model) trace-refines an LTS (i.e., the semantics of a non-probabilistic
PCSP# model).

Definition 2 (Refinement Probability). Let M be an MDP and L be an LTS. The max-
imum probability of M trace-refines L is defined by P (M 3 L) = Py (traces(L)).
The minimum is defined by P™"™ (M 3 L) = PR{"(traces(L)). o

Intuitively, the probability of M refines L is the sum of the probability of M exhibiting
every trace of £. The probability may vary due to different scheduling. One way of
calculating the maximum/minimum probability [4] is to (1) build a deterministic LTS
L~ which complements £ (such that traces(£~!) = X* \ traces(L)); (2) compute
the product of M and £~!; 3) calculate the maximum/minimum probability of paths
of the product.

In the following, we present a slightly improved algorithm which avoids the con-
struction of £~. Note that for a complicated language like PCSP#, computing £~*
is highly nontrivial. The algorithm is inspired by the refinement checking algorithm in
FDR. Firstly, we normalize £ using the standard powerset construction. Next, we com-
pute the synchronous product of M and ni(L), written as M x nl(L). It can be shown
that the product is an MDP.

Definition 3 (Product MDP). Let M = (S, initpq, Act, Prag) be an MDP and L =
(Sc, initz, Act, Tr) be a deterministic LTS without T-transitions. The product is the
MDP M x L = (Sp X Sg, (initpq, inite), Act, Pr) such that Pr is the least transition
relation which satisfies the following conditions.

—If 8y = pin M, then (s,,,s) — pin M x L forall s; € Sp such that
W ((sh,,81)) = pu(sh,) forall s!,, € Spy.

—Ifsm — pin M and s; > sy in L, then (sy,, s;) 5o in M x L such that
/
14 ((S;rm Sl/)) = ‘LL(S;n)fOV all s;n € Sm.

In the product, there are two kinds of transitions, i.e., 7-transitions from M with the
same probability or transitions labeled with a visible event with probability 1. Note that
T-transitions are not synchronized, whereas visible events must be jointly performed
by M and L. Let G C Sy X S be the least set of states satisfying the following
condition: for every pair (s,s’) € G, s’ = @. Intuitively, (s,s’) € G if and only if
a trace of M leading to s is not possible in £. The following theorem states our main
result on refinement checking.

Theorem 1. Let M be an MDP; L be an LTS; D = M x nl(L). P™*(M J L) =
1 —PE™(G) and P™™ (M 3 L) =1 — PE*(G).

Proof Let § be any scheduler for M. Note that § can be extended to be a scheduler
for D straightforwardly. For simplicity, we use 0 to denote both of them. Let X C
paths(M). The following shows that the equivalence holds with any scheduler.

P, ({m € paths(M) | trace(n) € traces(L)})

=1 Py, ({r € paths(M) | trace(r) & traces(L)}) — by def.
=1—PL({r € paths(D) | trace(r) & traces(L)}) —(1)
=1-"Pp(G) - ()

(1) is true because for every path of M, there is a path of D with the same probabil-
ity (as £ is non-probabilistic) and the same trace; and vice versa. (2) is true because
by [26], a path of D such that trace(rn) & traces(L) if and only if it visits some state in
G. It can be shown then P (M 3 L), which is PJ** ({m € paths(M) | trace(n) €
traces(L£)}),is 1 — P2 (G) and P™" (M D L) is 1 — PR (G). O

Intuitively, the theorem holds because, with any scheduler, the probability of M not
refining £ is exactly the probability of reaching G in M x nl(L). As a result, refinement
checking is reduced to reachability probability in D. There are known approaches to
compute Py (@) and PR4™(G), e.g., using an iterative approximation method or by
solving linear programs [4].

4.2 SE-LTL Probabilistic Model Checking as Refinement Checking

Another way of specifying properties is through temporal logic. In this section, we
examine the problem of model checking PCSP# models against SE-LTL formulae. SE-
LTL is an effective property language for PCSP# as it can be constituted by state propo-
sitions as well as events. In the pacemaker example, an SE-LTL formula could be stated
as follows: (dcount < 10) A O(missingPulseA = X pulseB) which states count
must be always less than 10 and event missingPulseA must lead to an occurrence of
event pulseB next. Given an MDP M and an SE-LTL formula ¢, let P}’#*(¢) (and
Pii™(¢)) denote the maximum (and minimum) probability of M satisfying ¢.

A standard LTL probabilistic model checking method is the automata-theoretic ap-
proach [4]. Firstly, a deterministic Rabin automaton, which is equivalent to the prop-
erty, is built. The product of the automaton and the system model is then computed.

Generate BA from @ Is safety (Prob. Refinement Checking)

if not

@@ﬂ[ﬁob. Refinement Checking)
if not

(Standard Prob. LTL Model Checking)

Fig. 2. Workflow

Thirdly, end components (which is similar to strongly connected components) in the
product which satisfy the Rabin acceptance condition are identified. Lastly, the prob-
ability of reaching any state of the end components are calculated, which is exactly
the probability of the model satisfying the property. This method is computationally
expensive due to multiple reasons. Firstly, the construction of the deterministic Rabin
automaton is expensive. Given a Biichi automaton 53, its equivalent deterministic Rabin
automaton, in the worse case, is of size 20(nlogn) where n is the size of B. Secondly,
identifying the end components is expensive. The worse case complexity is bounded by
#S X (#5 4+ #T) where #5S is the number system states and # T is the number of
the system transitions. In this section, we show that by recognizing safety properties,
we can improve probabilistic model checking of certain class of SE-LTL formulae by
avoiding constructing the Rabin automaton or computing the end components.

Given a formula ¢, we check whether ¢ is a safety property using the following
approach. Firstly, we check whether it is a syntactic LTL safety formula [28]. If it is
not, we generate an equivalent Biichi automaton using an existing approach [11], and
then check whether all states of the Biichi automaton are accepting. If positive, by the
result proved in [1], ¢ is a safety property. If we cannot conclude that ¢ is safety, we
assume that it is not. This is a sound but not complete method for recognizing safety. In
practice, we found that it is effective in recognizing most of the commonly used safety
properties, including for example (J(a = [Ob) and Ga = 0.

Next, we adopt the workflow shown in Figure 2 to improve probabilistic model
checking. Let ¢ be an SE-LTL formula and B be the equivalent Biichi automaton. If ¢ is
a safety property, then B can be simply treated as an LTS, as discussed in Section 2. The
problem of model checking a system model M against ¢ is thus reduced to calculate
the probability of M refines the LTS B. If ¢ cannot be determined as a safety property,
then we check whether ¢ is a co-safety property. A Biichi automaton B’, equivalent to
—1 ¢, is generated. If B’ is a safety property, the problem of model checking ¢ is thus
reduced to calculate the probability of M refines the LTS B'.

Theorem 2. Let M be an MDP; ¢ be an SE-LTL formula; B be the Biichi automaton
equivalent to ¢. Let B~ be the Biichi automaton equivalent to — ¢. If ¢ is safety, then
Proc(¢) = P™ (M 2 B) and PRy™(¢) = P™"(M 3 B); If ¢ is co-safety, then
Proc(¢) =1—Pm™(M I B~') and P (¢) = 1 — P™(M I B~). o

The proof of the theorem is sketched as follows. If ¢ is a safety property, any trace
of B is accepting. It can be shown that any trace of M which is not a trace of B is a

counterexample to ¢. Therefore, the probability of M exhibiting a trace of B (i.e., the
probability of M trace-refines B) is the probability of M satisfying ¢. Next, the theo-
rem states that the probability of M not-refining B is the probability of M executing a
finite prefix of any traces which is not possible for . Similarly, we can prove the result
for co-safety properties.

By the theorem, probabilistic model checking of safety LTL formula or co-safety
LTL formula is reduced to probabilistic refinement checking, which is considerably
more efficient as we avoid constructing the deterministic Rabin automaton or identify-
ing end components. This is confirmed by the experiments conducted in Section 5.

5 Case Studies

Our methods have been implemented in the PAT® model checker [31]. PAT is a self-
contained framework for system modeling, simulation and verification. It supports a
layered system design so that new modeling languages and new model checking al-
gorithms/techniques can be easily incorporated. In this paper, we extend PAT with a
module to support PCSP#, integrating the existing CSP# language with probabilistic
choices. Furthermore, we extend the library of model checking algorithms in PAT with
probabilistic refinement checking and probabilistic SE-LTL model checking with safety
recognition. We evaluate our implementation using benchmark systems. We compare
our results with PRISM version 3.3.1. In order to perform a fair comparison, we use ex-
isting PRISM models; re-model them using the extended CSP# language and re-verify
them using PAT. It should be noticed that our language is capable of specifying hierar-
chical systems which are beyond PRISM. Working with existing PRISM models, which
are not hierarchical, is not justified to show our advantage. Nonetheless, we show that
even for those systems, PCSP# offers an intuitive and compact representation and PAT
offers comparable performance. The following models are adopted for comparison.

— Model ME describes a probabilistic solution to N-process mutual exclusion prob-
lem, which is based on [25].

— Model RC is a shared coin protocol of the randomized consensus algorithm, which
is based on [3]. Note that N is the number of coins and K is a parameter used to
generate suitable probability.

— Model DP is the probabilistic N-dining philosophers under fairness, based on [19].

— Model CS is the IEEE 802.3 CSMA/CD (Carrier Sense, Multiple Access with Col-
lision Detection) protocol, which is based on [23]. Note that N is the number of
stations and K is the exponential backoff limit.

The models (and others) with configurable parameters are embedded in the latest ver-
sion of PAT. In the following, we discuss three aspects of the comparison.

Comparison on modeling The simplicity of writing models is not purely a matter of
aesthetics. It may yield gains in time and space. Table 1 presents the size of the models
(in number lines of codes) as well as the number of global states. The size of all mod-
els are reduced. Note that with different parameters, the PRISM models vary in sizes,

6 Available at http://pat.comp.nus.edu.sg

System PAT PRISM
LOC |#States |Deadlock Check(s)|LOC| #States |Deadlock Check(s)
ME (N=5) 22 | 5489 0.351 36 308800 0.410
ME (N=8) 22 | 86966 7.279 39 | 390068480 1.203
RC (N=4,K=4) | 24 | 6835 0.218 25 43136 0.110
RC (N=10, K=6)| 24 |997403 56.072 31 7598460928 3.250
DP (N=5) 20 | 32766 2.413 30 93068 0.156
DP (N=6) 20 260100 25.775 31 917424 0.672
CS (N=2,K=4) | 115 | 9165 0.337 119 7958 0.266
CS (N=3,K=2) | 94 |49101 2.243 122 36850 0.772

Table 1. Experiments on modeling

whereas the size of the PAT models remain constant. The state counts for PAT models
are significantly smaller than those of the PRIMS models. The state counts are reported
by PAT and PRISM when checking deadlock-freeness of both models. One of the rea-
sons why PAT may have much less states is that global variables in the PRISM models,
which are used to track local state of each processes, are removed (and become part of
the process definition). The processes then become fully symmetric (as expected in the
original protocol), which then triggered an internal state reduction based on symmetry
reduction in PAT.

Performance of refinement checking In general, refinement checking and temporal logic
verification are good at different classes of properties. For instance, using temporal logic
formulae to capture the process OK Hrt (shown in Section 4) would result in a large for-
mula which in turn result in in-efficient verification. Our experiments, however, show
that even for those properties designed for temporal-logic based verification, proba-
bilistic refinement checking offers comparable performance. Given any safety property
of the above mentioned models, we build a property model and verify the property by
refinement checking. Table 2 presents the experiment results. The experiment data are
obtained with Intel Core 2 Quad 9550 CPU at 2.83GHz and 2GB RAM. We use the
iterative method in calculating the probability and set termination threshold as relative
difference 1.0E-6 (exactly same as PRISM). PAT performs worse than PRISM for MFE,
comparable for RC' and better for DP. The main reason that PAT outperforms PRISM
for the DP model is that PAT has less states and its refinement checking algorithm
has less computation than temporal logic-based model checking. Note that because the
models are designed to satisfy the properties, the result probability is all 1.

Performance improvement using safety recognition Lastly, we show that safety recogni-
tion improves probabilistic LTL model checking and allows PAT to outperform PRISM
in many cases. Safety recognition in PAT is based on syntax analysis or simple heuris-
tics based on the generated Biichi automata. The computational overhead is negligible.
Table 3 presents the experiment results on verifying the models against safety, co-safety
and properties which are neither. Column PAT (w) (PAT (w/0)) shows the time taken
with (without) safety recognition. If the property is neither safety or co-safety, safety

System Property Result(Pmax)|PAT (s)|PRISM (s)
ME (N=5) mutual exclusion 1 0.359 0.282
ME (N=8) mutual exclusion 1 9.831 1.234

ME (N=10) mutual exclusion 1 81.192| 3.127
RC (N=4,K=4) consensus 1 0.218 0.328
RC (N=6,K=6) consensus 1 2.813 2.543
RC (N=8,K=8) consensus 1 19.642| 14.584

DP (N=5) |once eat, never hungry 1 3.333 | 37.769
DP (N=6) |once eat, never hungry 1 53.062| 389.334

Table 2. Experiments on refinement checking

recognition becomes computational overhead. The cost is however negligible as evi-
denced in the table. For safety or co-safety properties, PAT performs better with safety
recognition. In comparison with PRISM, PAT outperforms PRISM (for almost all prop-
erties) for some models, e.g., ME and RC'. This is mainly because the PAT models have
much less states, because of the difference in modeling. For some other models (e.g.,
DP and CS), safety recognition allows PAT to outperform PRISM.

In general, PRISM handles more states per time unit than PAT. This is suggested
by the experiment results presented in Table 1, which shows the time for verifying
deadlock-freeness. Apart from the fact that PRISM has been optimized for many years,
the main reason is the complexity in handling hierarchical models. Note that though
these models have simple structures, there is overhead for maintaining underlying data
structures designed for hierarchical systems. PRISM is based on MTBDD, whereas
PAT is based on explicit state representation currently. Symbolic methods like BDD are
known to handle more states [7]. Applying BDD techniques to hierarchical complex
languages like PCSP# is highly non-trivial. It remains as one of our ongoing work. The
experiment results are not to be taken as the limit of PAT. The fact that PAT handles less
states per time unit does not imply that PAT is always slower than PRISM, as evidenced
in the experiments. The main reason is that 1) a system modeled using PRISM may have
more states than its model in PCSP# due to its language limitation; 2) safety/co-safety
recognition which avoid much computation in probabilistic model checking.

6 Conclusion

The main contribution of this work is the extended PAT model checker which offers
a self-contained framework for modeling and checking of hierarchical complex proba-
bilistic systems. Compared to existing probabilistic model checkers, PAT offers an ex-
pressive modeling language and an alternative way of probabilistic system verification,
i.e., refinement checking. In addition, PAT improves LTL probabilistic model checking
by supporting SE-LTL and safety recognition.

As for future research directions, we will explore methods for checking refinement
relationship between probabilistic PCSP# models. Furthermore, We are investigating
how to combine zone abstraction for real-time systems with probabilistic system be-
haviors so that we can support real-time probabilistic systems. In addition, in order

System Property |Result(Pmax)| PAT (w) | PRISM |PAT (w/o)
ME (N=5) co-safety 1 2.356 | 231.189 | 27.411
ME (N=8) co-safety 1 94.204 - 8901.295

ME (N=10) | co-safety 1 1076.217 - -
RC (N=4,K=4)|co-safety(1)| 0.99935 0.379 21.954 | 12.150
RC (N=4,K=4)| neither 0.54282 6.106 45.612 6.087
RC (N=4,K=4)|co-safety(2)| 0.15604 6.703 35.144 7.868
RC (N=6,K=6) |co-safety(1) 1 5.854 |1755.984| 585.706
RC (N=6,K=6)| neither 0.53228 457.815 - 442.008
RC (N=6,K=6)|co-safety(2)| 0.12493 355.027 - 453.362
RC (N=8,K=8) |co-safety(1) 1 52.906 - -
RC (N=8,K=8)| neither 0.52537 |10179.796 - 10107.268
RC (N=8,K=8)|co-safety(2)| 0.10138 |5923.086 - 9420.430
DP (N=5) safety 1 1.162 37.769 | 10.006
DP (N=6) safety 1 9.760 |389.334 | 164.423
DP (N=5) co-safety 1 1.039 38.347 | 544.307
DP (N=6) co-safety 1 9.091 |384.231 -
CS (N=2, K=4)|co-safety(1) 1 0.615 0.921 0.736
CS (N=2, K=4)|co-safety(2)| 0.99902 0.933 2314 1.034
CS (N=3, K=2)|co-safety(1) 1 6.118 1.733 6.707
CS (N=3, K=2)|co-safety(2)| 0.85962 6.284 7.233 7.484

Table 3. Experiments on LTL checking

to tackle the state space explosion problem, optimization techniques like partial order
reduction and symmetry reduction will be incorporated.

References

1.

2.

10.

B. Alpern and F. B. Schneider. Recognizing Safety and Liveness. Distributed Computing,
2(3):117-126, 1987.

R. Alur and T. A. Henzinger. Reactive Modules. Formal Methods in System Design, 15(1):7—
48, 1999.

. J. Aspnes and M. Herlihy. Fast Randomized Consensus Using Shared Memory. Journal of

Algorithms, 15(1):441-460, 1990.

. C. Baier and J. Katoen. Principles of Model Checking. The MIT Press, 2008.
. S. S. Barold, R. X. Stroopbandt, and A. F. Sinnaeve. Cardiac Pacemakers Step by Step: an

Hllustrated Guide. Blachwell Publishing, 2004.

. R.Bellman. A Markovian Decision Process. Journal of Mathematics of Mechanics, 6, 1957.
. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic Model

Checking: 10%° States and Beyond. Inf. Comput., 98(2):142-170, 1992.

. S. Chaki, E. M. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. State/Event-Based Soft-

ware Model Checking. In IFM, volume 2999 of LNCS, pages 128—147. Springer, 2004.

. Y. Chen and J. W. Sanders. Unifying Probability with Nondeterminism. In FM, volume 5850

of LNCS, pages 467-482. Springer, 2009.
F. Ciesinski and C. Baier. LiQuor: A Tool for Qualitative and Quantitative Linear Time
Analysis of Reactive Systems. In QEST, pages 131-132. IEEE Computer Society, 2006.

11

12.

13.

15.

16.

17.

18.

20.

21.

22.

23.

24.
25.

26.
27.

28.

29.

30.

31.

32.

33.

P. Gastin and D. Oddoux. Fast LTL to Biichi Automata Translation. In CAV, volume 2102
of LNCS, pages 53—-65. Springer, 2001.

M. Geilen. On the Construction of Monitors for Temporal Logic Properties. Electr. Notes
Theor. Comput. Sci., 55(2), 2001.

K. Havelund and G. Rosu. Synthesizing Monitors for Safety Properties. In TACAS, volume
2280 of LNCS, pages 342-356. Springer, 2002.

. A. Hinton, M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: A Tool for Automatic

Verification of Probabilistic Systems. In TACAS, volume 3920 of LNCS, pages 441-444.
Springer, 2006.

C. Hoare. Communicating Sequential Processes. International Series in Computer Science.
Prentice-Hall, 1985.

J. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen. The Ins and Outs of
the Probabilistic Model Checker MRMC. In QEST, pages 167-176. IEEE Computer Society,
20009.

O. Kupferman and M. Y. Vardi. Model Checking of Safety Properties. Formal Methods in
System Design, 19(3):291-314, 2001.

T. Latvala. Efficient Model Checking of Safety Properties. In SPIN, volume 2648 of LNCS,
pages 74-88. Springer, 2003.

. D. Lehmann and M. Rabin. On the Advantage of Free Choice: A Symmetric and Fully

Distributed Solution to the Dining Philosophers Problem (Extended Abstract). In POPL,
pages 133-138. ACM, 1981.

W. H. Maisel, M. Moynahan, B. D. Zuckerman, T. P. Gross, O. H. Tovar, D. Tillman, and
D. B. Schultz. Pacemaker and ICD Generator Malfunctions. The Journal of American
Medical Association, 295(16):1901-1906, 2006.

C. Morgan, T. S. Hoang, and J. Abrial. The Challenge of Probabilistic Event B - Extended
Abstract. In ZB, volume 3455 of LNCS, pages 162-171. Springer, 2005.

C. Morgan, A. Mclver, K. Seidel, and J. W. Sanders. Refinement-Oriented Probability for
CSP. Formal Asp. Comput., 8(6):617-647, 1996.

X. Nicollin, J. Sifakis, and S. Yovine. Compiling Real-time Specifications into Extended
Automata. IEEE Transactions on Software Engineering, 18(9):794-804, 1992.

A. Pnueli. The Temporal Logic of Programs. In FOCS, pages 46-57. IEEE, 1977.

A. Pnueli and L. Zuck. Verification of Multiprocess Probabilistic Protocols. Distributed
Computing, 1(1):53-72, 1986.

A. W. Roscoe. Model-checking CSP. pages 353-378, 1994.

A. W.Roscoe, P. H. B. Gardiner, M. Goldsmith, J. R. Hulance, D. M. Jackson, and J. B. Scat-
tergood. Hierarchical Compression for Model-Checking CSP or How to Check 1020 Dining
Philosophers for Deadlock. In TACAS, volume 1019 of LNCS, pages 133—152. Springer,
1995.

A. P. Sistla. Safety, Liveness and Fairness in Temporal Logic. Formal Asp. Comput.,
6(5):495-512, 1994.

F. Somenzi and R. Bloem. Efficient Biichi Automata from LTL Formulae. In CAV, volume
1855 of LNCS, pages 248-263. Springer, 2000.

J. Sun, Y. Liu, J. S. Dong, and C. Q. Chen. Integrating Specification and Programs for System
Modeling and Verification. In TASE, pages 127-135. IEEE Computer Society, 2009.

J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible Verification under Fairness.
In CAV, volume 5643 of LNCS, pages 709-714. Springer, 2009.

M. Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Program Verifi-
cation. In LICS, pages 332-344. IEEE Computer Society, 1986.

H. Zhu, S. Qin, J. He, and J. Bowen. PTSC: Probability, Time and Shared-Variable Concur-
rency. International Journal on Innovations in Systems and Software Engineering, 5(4):271—
294, 2009.

