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Abstract

We address the Linear Temporal Logic (LTL) model checking problem for finite-state sys-
tems, which is often reduced to finding accepting cycles in a graph. Even though recent hardware
developments bring a lot of potential to speed up the performance of existing algorithms by ap-
plying parallelism, SCC-based model checking with fairness constraints algorithm has not been
much investigated. In this work, we propose a new version of this algorithm, adapted to shared
memory, multi-core architectures. Experimental results show that our algorithm exhibits good
speed up, especially when a system space contains many strongly connected components.

Subject Descriptors:
D.1.3 Concurrent Programming
D.2 Software Engineering
D.2.4 Software/Program Verification
D.4.1 Process Management
G.2.2 Graph Algorithms

Keywords:
Formal Verification, LTL Model Checking, PAT, Fairness, Shared Memory Architecture,

Parallel Algorithm
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Chapter 1

Introduction

Model checking has become a very practical technique for automated formal verification. The

purpose is to verify whether a given hardware or software system meets its specification. For the

analysis of properties expressed in LTL, this problem is often reduced to checking the emptiness

of a Büchi automaton defined as the product of the system and an automaton negating the

formula to check. However, its applicability has suffered by the state explosion problem (i.e.

the enormous increase in the size of the state space).

As the availability of multicore chips has been brought up by the rapid development in

hardware industry, the use of parallel algorithms to combat the state explosion problem gained

interest in recent years (Barnat, Brim, & Chaloupka, 2003) (Barnat, Brim, & Ročkai, 2007).

Two main classes of algorithms for LTL model checking are Nested Depth-First Search (NDFS)

(Courcoubetis, Vardi, Wolper, & Yannakakis, 1992) and SCC-based algorithms based on the

Tarjain strongly connected components (SCC) detection (Tarjan, 1972). Both NDFS and SCC-

based algorithms cannot trivially be adapted to a multi-core setting, since they strongly rely

on depth-first search, which is inherently sequential (Reif, 1985).

Another problem we want to investigate in this project is fairness constraints, which are used

to restrict the behavior of the system. Without fairness, verification often produces unrealistic

loops where one process or event is infinitely ignored by the scheduler. Those counterexamples

should be ruled out and resources should be utilized to find real bugs. However, combining

model checking with fairness is expensive and non-trivial.
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Even though parallel algorithms for LTL model checking have been researched extensively

recently, not much work has been done for the Tarjan based algorithm, especially with fairness

constraints. In this work, we propose an on-the-fly parallel model checking algorithm with

fairness, which is based on Swarm Verification and Liu Yang et al. previous work (Liu, Sun, &

Dong, 2009). At the same time, we develop the Process Analysis Toolkit (PAT) with various

state-of-art model checking algorithms in the multicore architecture with shared memory for

further research purpose.

The rest of the report is structured as follows. Chapter 2 introduces the basis of LTL

model checking together with a family of different fairness notions and reviews some related

algorithms for LTL model checking. In the next two chapters, we describe in details several

algorithms that I implemented in PAT during this project. The algorithms are divided into two

classes: NDFS and Tarjan SCC, which are presented in chapter 3 and chapter 4 respectively.

Especially, the last section of chapter 4 details our proposed parallel algorithm and gives its

analysis. Chapter 5 shows some experimental results to compare all the implemented algorithms

and demonstrate the effectiveness of the parallel algorithm. Chapter 6 concludes the work and

gives some perspectives for future work.
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Chapter 2

Background

In order to facilitate the understanding of our work, we begin with a brief background on LTL

model checking and different fairness constraints based on it.

2.1 The LTL Model Checking Problem

In this work, we will model the actions of processes in terms of states and transitions, which

are captured in the definition of a Labeled Transition Systems (LTS).

Definition 1 (LTS). A Labeled Transition System L is a tuple (S, s0, E, T ) where S is a set

of system configurations/states, s0 ∈ S is the initial system state, E is the set of all events in

the model, and T ⊆ S × E × S is the set of transitions.

Given two states s, s′ ∈ S and event e ∈ E, we write s
e−→ s′ to denote a transition from s to

s′ with event e, and we call e the engaged event of the transition. An infinite execution of L is

a infinite sequence 〈s0, e0, s1, e1, ..., ei, si, ...〉 where si
ei−→ si+1 for all i ≥ 0. The set of enabled

event at s is enabledEvt(s) = {e ∈ E | ∃s′ ∈ S, s e−→ s′}. If the system has multiple processes

running in parallel, define enabledProc(s) to be the set of enabled processes which can make a

move from the system state s. Given a transition s
e−→ s′, we denote engagedProc(s, e, s′) to be

the set of the processes which have made some progress during the transition.

To be able to explain the model checking procedure, we formally define Büchi automaton

as follows.
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Definition 2 (Büchi automaton). A Büchi automaton is a tuple B = (B, b0,
∑

, L, F ), where

B is a set of Büchi states, b0 ∈ B is the initial state,
∑

is an alphabet, L ⊆ B ×
∑

is a

nondeterministic transition function, and F ⊆ B is a set of accepting states.

A run of B is a infinite sequence 〈b0, b1, ...〉 where bi ∈ B and there exists ai ∈
∑

such that

bi+1 ∈ L(bi, ai) for all i ≥ 0. A run σ = 〈b0, b1, ...〉 is accepted if and only if at least one state

from set F appears infinitely often in σ.

Assume we are given a LTS L = (S, s0, E, T ) and a property f of L expressed in LTL.

Model checking is to search for an execution of L which fails f . In automata based model

checking approach, the negation of f is converted into a Büchi automaton B = (B, b0,
∑

,

L, F ). Then, the intersection of LTS L and Büchi automaton B is computed by taking their

automata product with certain restricted transition relations. Any infinite run accepted by this

intersection product of L and B now corresponds to a run of L where ¬f is satisfied. By simple

argument, the automata has infinite run if and only if it contains a loop that has at least one

accepting state. Verification is now reduced to the problem of finding accepting cycles in a

graph. For the detailed algorithms to translate LTL formula to Büchi automaton and construct

the product, interested readers may refer to (Holzmann, 1999) and (Vardi & Wolper, 1986).

2.2 Fairness Definitions

Given the basic concept of LTL model checking, we further look at some definitions relating to

fairness.

Fairness is a concept that is used in multithreaded/multiprocess programming environment.

It often refers to a fair scheduling of CPU time to threads/processes or the relative speed of

the processors in distributed systems. Many recent self stabilizing distributed algorithms are

designed to function only under fairness (Angluin, Aspnes, Fischer, & Jiang, 2008), (Angluin,

Fischer, & Jiang, 2006). In order to verify those algorithms, model checking techniques must

take the respective fairness into account. In the following, we review a variety of fairness notions

from (Sun, Liu, Dong, & Pang, 2009).
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Definition 3 (Event-level weak fairness). Let E = 〈s0, e0, s1, e1, ...〉 be an execution. E satisfies

event-level weak fairness, if and only if for every event e, if e eventually becomes enabled forever

in E, then ei = e for infinitely many i, i.e., 23 e is enabled ⇒ 32 e is engaged .

Event-level weak fairness (EWF) basically restricts that if there is a point in the run from

where event e is always enabled, it must not be infinitely ignored. Now we look at a similar

version of fairness, which is applied for process.

Definition 4 (Process-level weak fairness). Let E = 〈s0, e0, s1, e1, ...〉 be an execution. E satis-

fies process-level weak fairness, if and only if for every process p, if p eventually becomes enabled

forever in E, then p ∈ engagedPro(si, ei, si+1) for infinitely many i, i.e., 23 p is enabled⇒ 32

p is engaged .

Process-level weak fairness (PWF) states that if there is a point in the run from where

process p can always make progress, it must be engaged infinitely often. PWF may be seen

as a restriction that does not allow one process to be infinitely faster than other processes.

Peterson’s algorithm for mutual exclusion is one of the well known algorithms that requires at

least PWF to function correctly (Sun et al., 2009).

Now we look at some examples to demonstrate more about these two fairness constraints.

proc P

s0

s1

ba

a

(a)

proc Q

s0

a

proc R

s1

s2

ba

b

(b)

Figure 2.1: Event-level weak fairness and Process-level weak fairness

Consider the property 23a. From Figure 2.1a, we can see that event a is enabled forever.

Thus, under EWF , the property is true. However, under PWF , the property is not necessarily
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satisfied for every run. Process P is enabled forever, so it will be engaged infinitely often. But,

it can choose event b forever, so event a is never engaged, which means this is a counter example

for the property under PWF. The LTS in 2.1b is different. Under PWF the property is true,

because process P is enabled forever, hence it must be engaged infinitely often, and it can only

choose event a. Generally, PWF is a weaker fairness constraint compared to EWF. Under EWF,

PWF can be achieved by labeling all events in a process with the same name.

Definition 5 (Event-level strong fairness). Let E = 〈s0, e0, s1, e1, ...〉 be an execution. E satisfies

event-level strong fairness, if and only if for every event e, if e is infinitely often enabled, then

e = ei for infinitely many i, i.e. 23e is enabled ⇒ 23e is engaged.

Event-level strong fairness (ESF) is a stronger fairness constraint compared to EWF and

PWF . It has several other names in different papers: strong fairness (Lamport, 2000), strong

local fairness (Fischer & Jiang, 2006), compassion (Pnueli & Sa’ar, 2007). Under this fairness

assumption, if event e is enabled infinitely often in a run, it must be engaged infinitely often.

proc P

s0 s1s2

eat.0

fork.0fork.1

eat.1

Figure 2.2: Event-level strong fairness

Given the LTS in Figure 2.2, and consider the property 23eat.1. Because eat.1 and fork.1

is not always enabled (when the system is in state s1), under EWF, the system is allowed

to take the branch fork.0, then eat.0, and traverse the loop forever. However, under PWF,

cause fork.1 is infinitely often enabled (when the system is in state s0), fork.1 will be engaged

infinitely often. Because of that, eat.1 will also be engaged infinitely often.

Definition 6 (Process-level strong fairness). Let E = 〈s0, e0, s1, e1, ...〉 be an execution. E

satisfies process-level strong fairness, if and only if for every process p, if p is infinitely often

enabled, then p ∈ engagedPro(si, ei, si+1) for infinitely many i, i.e. 23p is enabled ⇒ 23p is

engaged..
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Process-level strong fairness (PSF) is quite similar to ESF, but applies for process-level. It

states that if in a run, a process p is enabled infinitely often, it will eventually be engaged.

proc P

s0

s1

a{x:=0}b{x:=1}

proc Q

s2

s3

[x=1]cd

Figure 2.3: Process-level strong fairness

In the example in Figure 2.3, consider the property 23c. Under PWF assumption, as event

c is not always enabled (it has a guarded condition x = 1), the property is not true. However,

it is true under PSF . The reason is that event b is infinitely often enabled, which makes event

c infinitely often enabled. By the definition of PSF , c is infinitely often engaged, i.e. 23c is

true.

Definition 7 (Strong global fairness). Let E = 〈s0, e0, s1, e1, ...〉 be an execution. E satisfies

strong global fairness, if and only if for every s, e, s′ such that s
e−→ s′, if s = si for infinitely

many i, then si = s and ei = e and si+1 = s′ for infinitely many i, i.e. 23(s, e, s′) is enabled

⇒ 23(s, e, s′) is engaged.

Different from previous notions of fairness, Strong global fairness (SGF) deals with the

fairness of both events and states. It can be proven that SGF is stronger than both ESF and

EPF.

proc P

s0 s1s2

a

ba

c

Figure 2.4: Process-level strong fairness

Consider the LTS from Figure 2.4 and the property 23b. Under SGF, both of the transitions
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with event a: s0
a−→ s1 and s0

a−→ s2 must be taken infinitely often. Thus, the transition s1
a−→ s0

must also be taken infinitely often, which means the property is true. However, under ESF or

ESP, the system may run forever in the loop s0
a−→ s2

c−→ s0 and event b will never be engaged.

Therefore, the property is only true under SGF.

2.3 Related work

This section reviews different existing works on parallel model checking as well as model checking

with fairness.

In the past, the difficulty of model checking lies on on enormous size of the system. In

order to verify whether a system specification adheres to a given temporal property, the system

needs to store the entire state space in memory, which consists of about 1010 − 1011 states

in a real systems. Recent hardware developments, such as the 64-bit technologies along with

improvement in memory reduction techniques, has contributed to harnessing formal verifica-

tion memory limitations. Recent observations support that the problem we face now is ”time

explosion” rather than a lack of memory (Barnat et al., 2007). Parallel algorithms seem to be

a feasible approach to solve the ”time explosion” problem and have been rigorously explored in

the past five years.

One of most used parallel algorithms is the Maximal Accepting Predecessor algorithm

(MAP) (Brim, Černá, Moravec, & Šimša, 2004). It relies on Bread First Search Techniques

and is designed for distributed memory architecture. It computes the map function mapping

each state s to the greatest accepting state that is backward reachable from s. Another algo-

rithm, One-Way-Catch-Them-Young, uses the idea to repeatedly remove states from the graph

that cannot be in the accepting cycle (Cerná & Pelánek, 2003). Combining MAP and One-Way-

Catch-Them-Young, Barnat et al. proposed on-the-fly One-Way-Catch-Them-Young which has

the advantages of both algorithms.

Two works (Barnat, Brim, Ceka, & Lamr, 2009) and (Brim et al., 2004) have drawn our

interest particularly at the beginning of the project. Those works are some of the first that

make use of NVIDIA GPU cards with CUDA technology to deal with LTL model checking
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problem, and we wanted to utilize the GPU platform to make a multicore Tarjan SCC algorithm.

However, we found out the the nature of their approach is very different with ours. We concluded

that it is not feasible to implement the Tarjan algorithm on CUDA and we decided to focus on

Depth First Search based algorithms on shared memory architecture.

The first parallel algorithm designed for shared memory architecture was the dual core NDFS

based on the observation that the blue and the red DFS can be performed independently and

is implemented in SPIN (Holzmann & Bosnacki, 2007). The linear complexity of NDFS is kept,

though it is only applicable to two cores.

Two recent works of Laarman et al. (Laarman, Langerak, van de, Weber, & Wijs, 2011)

and Evangelista et al. (Evangelista, Petrucci, & Youcef, 2011) have greatly gained our interest.

They proposed for the first time multi-core NDFS algorithms that can scale beyond two threads,

while keeping the same worst case time complexity. Their algorithms make use of the idea from

swarm verification, which is primarily aimed at settings with distributed memory. In swarm

verification, each processor performs a DFS with a unique ordering of successor states. Using

this, each worker explores different parts of the graph, and bugs may be found in a much

shorter time compared to sequential verification. However, in the absence of bugs, the graph

will be explored N times, where N is the number of workers. Using the advantage of swarm

verification with extra synchronization among workers, two versions of parallel Nested DFS has

been presented. In their algorithm, Laarman et al. make use of the shared red states, whereas

in the other algorithm, Evangelista et al. the shared blue states are used to synchronize and

fasten the graph search. More details of Laarman et al. algorithm will be discussed in the

subsequent chapters.

The practical applications of model checking with fairness have been discussed extensively.

Despite the fact that fairness constraints are crucial for designing distributed algorithms, ex-

isting model checking algorithms with fairness are inefficient. One possible approach for model

checking under fairness is to reformulate the property so that the fairness becomes its premise.

However, as the size of the Büchi automaton is exponential to the size of the property, this

approach does not scale well with large formulas, whereas a typical system may have multiple
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fairness constraints. SPIN, the most well known model checker, can only support weak fairness

for population protocols (Pang, Luo, & Deng, 2008). Protocols relying on stronger fairness are

beyond the capacity of SPIN even for small networks.

In the next two chapters, we look into details of several algorithms which are implemented

into PAT during this project. All of the algorithms are based on Depth First Search and work

in shared memory architecture.
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Chapter 3

Nested Depth First Search

In this chapter, we introduce one of the two best known enumerative sequential algorithms

based on fair-cycle detection: Nested DFS.

3.1 Sequential Nested DFS

Nested DFS was the first linear time algorithm to detect accepting cycles, and was initially

introduced by Courcoubetis et al. in (Courcoubetis et al., 1992). Although there are many

versions of the Nested DFS algorithms with various modifications and improvements, we decide

to choose the algorithm from (Schwoon, 2005), as it exibits very good run-time performance

experimentally.

The basic idea of Nest DFS is as follows. The algorithm consists of two basic depth-first

search procedures. Initially, all the states are colored white. At first, NDFS(s0) initiates a DFS

from state s0, which is called the Blue DFS, since all the explored states are colored blue. This

DFS is to detect all accepting states that are reachable from the initial state. At line 25, if the

Blue DFS backtracks over an accepting state s, it performs another DFS, called the Red DFS, to

identify whether this state is reachable from itself. We call s the seed of the corresponding Red

DFS. If s is reachable from itself, then an accepting cycle is found, and the NDFS procedure

exits. Otherwise, for each blue successor, the Red DFS is called on line 12. The algorithm

continues until it find an accepting cycle (which we call a counterexample) or the whole graph

11



is traversed.

1: procedure ndfs(s0)

2: BLUE DFS(s0);

3: report no cycle;

4:

5: procedure red dfs(s)

6: for s′ in successor(s) do

7: if s′.color = cyan then

8: report cycle and exit ;

9: else if s′.color = blue then

10: s′.color := red;

11: RED DFS(s′);

12: procedure blue dfs(s)

13: s.color = cyan;

14: for s′ in successor(s) do

15: if s′.color = cyan ∧ (s ∈ A ∨ t ∈ A)

then

16: report cycle and exit ;

17: else if s′.color = white then

18: BLUE DFS(s′);

19: if s ∈ A then

20: RED DFS(s);

21: s.color := red;

22: else

23: s.color := blue;

Figure 3.1: The Nested NDFS algorithm

On top of the basis of the classic Nested DFS, we implemented several improvements which

has been suggested in the past.

To detect a counterexample in the original algorithm, the Red DFS needs to traverse until

it find the accepting state where the Red DFS is initiated. A modification from (Holzmann,

Peled, & Yannakakis, 1996) suggests that as soon as the the Red DFS initiated at s finds a state

t that is inside the call stack of of the Blue DFS, we can report the accepting run, because s is

obviously reachable from t . To identify which states are inside the call stack of the Blue DFS

in constant time, one additional bit per state is used. Each state now is encoded with two bits,

and is assigned with one of four colours:

- white : All states are coloured white at the beginning to mark unvisited state.

- cyan : A state whose blue search has not terminated, i.e. a state in the call stack of the

Blue DFS.

12



- blue : A state whose blue search has terminated, but has not been reached by a red search.

- red : A state that is already visited by the red search.

With the two-bit colour encoding, the seed remains cyan during the red search and is

colored red if no accepting run is found. Thus the need for a seed variable is eliminated. The

counterexample can be obtained using the call stacks of the Blue DFS and Red DFS at the time

when the cycle is reported.

Another improvement from (Gastin, Moro, & Zeitoun, 2004) suggests that the Blue DFS

can detect an accepting cycle if it finds an edge from an accepting state to a state in the call

stack or from a state to an accepting state in the call stack (line 19) . With this improvement,

a cycle may be detected without entering the red search.

An extension called allred (Gaiser & Schwoon, 2009) is also considered. The basic idea

is that red state cannot be part of any counterexample; therefore a state that has only red

successors cannot be either. The idea can be applied by incorporating an additional check in

the Blue DFS, if all successors of a state s are red, then s can be coloured red as well. This

may avoid certain invocations of the red search. However, the computational effort required to

check for allred is comparable with the effort expended in the red search: one additional check

for each successor state. Therefore, we do not use this extension in our sequential algorithm.

However, in the next section, this extension proves to be very useful for the parallel algorithm.

The time complexity of Nested DFS is linear to the size of the automaton, since each

reachable state is visited at most twice, one by the Blue DFS, and one by the Red DFS. The

algorithm is correct due to the fact that the Red DFS is initiated according to the post-order

of the accepting states imposed by the Blue DFS. Thus, a red state will not be re-visited by

another Red DFS later. More detailed proof of the soundness and complexity of the algorithm

can be referred in (Courcoubetis et al., 1992).

3.2 Multicore Nested DFS with Shared Red States

Because of the inherently sequential property of Depth First Search, the tasks of parallelizing

or scaling up to multi-core for Nested DFS and Tarjan algorithms are non trivial. Laarman
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proposed the first multi-core on-the-fly LTL model checking algorithm which is linear-time in

the size of the input graph, and has a potential speedup greater than two (Laarman et al.,

2011).

The algorithm makes use of the idea from swarm verification, which is primarily aimed at

settings with distributed memory. Swarm verification uses embarrassingly parallel techniques,

where each individual worker operates fully independently, i.e. without communicating with

the other workers. In swarm verification, each worker performs a DFS with unique ordering of

successor states. By this setting, each worker explores different parts of the graph, and bugs

may be found in a much shorter time compared to sequential verification. However, in the

absence of bugs, the graph will be explored N times, where N is the number of workers, since

the workers are unaware of each other’s results. In (Laarman, van de Pol, & Weber, 2010), a

shared lockless hash table is proposed to store all the states and proved to scale well with this

purpose.

The details of the algorithm are shown at Figure 3.2. We denote successorbi (s) (successorri (s))

to be the permutation of successors used in the Blue (Red) DFS by worker i. The key idea of

this algorithm is to share the information about red states in the backtrack of the Red DFS. A

pink colour is introduced to replace the local red colour in the sequential algorithm, represent-

ing the nodes which are current processed by the Red DFS. The red colour now becomes global

and every worker can access this information. Because of this global red colour, one additional

bit is needed for each state. A state is globally coloured red after the Red DFS makes sure that

the state is not in any accepting cycle. The shared red states will be ignored by both the Blue

and Red DFS of all workers, thus pruning the total search spaces. In line 18 and 19, the total

number of workers that initiate the Red DFS, s.count is used as a synchronization mechanism.

This enforces that multiple workers calling Red DFS from the same accepting states will have

to finish simultaneously. The purpose for this synchronization is illustrated in Figure 3.3.
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1: procedure mc ndfs(s0, N)

2: for i = 1 to N do

3: BLUE DFS(s0, i);

4: report no cycle;

5:

6: procedure red dfs(s, i)

7: s.color[i] := pink;

8: for s′ in successorri (s) do

9: if s′.color[i] = cyan then

10: report cycle and exit ;

11: else if s′.color[i] 6= pink ∧ ¬s′.red

then

12: RED DFS(s′, i);

13: if s ∈ A then

14: s.count := s.count− 1;

15: await s.count = 0;

16: s.red := true;

17: procedure blue dfs(s, i)

18: allred := true;

19: s.color[i] = cyan;

20: for s′ in successorbi (s) do

21: if s′.color[i] = cyan∧(s ∈ A∨t ∈ A)

then

22: report cycle and exit ;

23: else if s′.color[i] = white ∧ ¬s′.red

then

24: BLUE DFS(s′, i);

25: if ¬s′.red then

26: allred := false;

27: if allred then

28: s.red = true;

29: else if s ∈ A then

30: s.count := s.count+ 1;

31: RED DFS(s, i);

32: s.color[i] := blue;

Figure 3.2: The Multi-core NDFS Algorithm with Shared Red States
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Figure 3.3: Illustration for await statement

We will show that without the await statement, there are some cases that the algorithm will

miss out accepting cycles. A worker 1 can have a Blue DFS that explores state s0, s1, s4, s3, s5,

backtracks from s5, explored s2 and then backtracks to the accepting state s1. Worker 1 then

performs a Red DFS from s1 which visits s4, s3 and stops at s5. A second worker, worker 2,

now starts and performs a similarBlue DFS but has different exploring order: s0, s1, s5, s3, s4, s2

and then backtracks to s1. Its Red DFS starts from s1 and visits s5, s3, s4, and colours s4 red

because it can not traverse further. Worker 1 resumes, and, colours s5 red as well. Note that,

in this scenario, the accepting cycle can still be found by any of the two workers visiting s3, s2

and then s1. However, the problem arises when there is a third worker starts a Blue DFS

traversing s0, s2, s1. Then it performs a Red DFS at s1 and colours s1 red because it cannot

proceed further as s5 is globally red. No accepting cycle is found in this situation. The await

can prevent this problem, by stopping worker 3 at b1, does not allow it to colour s1 as red.

Thus, either worker 1 or 2 can detect the accepting cycle.

For each state, the local colour white, cyan, blue, pink can be encoded using two bits similar

to the sequential algorithm. With the additional global red colour, the status of each state can

be stored in three bits. The early cycle detection by Blue DFS extension can still be applied in

this algorithm (line 27 and 28). Since the parallel workload of the algorithm depends entirely

on the proportion of the state graph that can be marked red, allred extension can be used to

improve the performance (line 32, 33, 36, 37).

The correctness of the algorithm is based on the fact that it will never miss all reachable
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accepting cycles. Its time complexity is linear in the size of the input graph, and it acts on-the-

fly. However, in the worst case, each worker may have to traverse the whole graph. For detailed

proof of correctness, readers may refer to (Laarman et al., 2011). Experiments show that this

algorithm has very good speed up with models with accepting cycles, and performs reasonably

well with models without accepting cycles.

Evangelista’s algorithm also uses the same idea from swarm verification. Two algorithms

seem to be complementary, since one shares the red states and the other shares the blue states.

Also, instead of using synchronization, Evangelista’s approach speculatively continues parallel

execution and calls a sequential repair procedure in the case of dangerous situations. We choose

to implement Laarman et. al algorithm because it has been reported to have better performance

experimentally.
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Chapter 4

Tarjan SCC Algorithm

In the first two sections, we presents two existing SCC-based model checking algorithms under

fairness constraints which are implemented in PAT, one sequential (Sun et al., 2009), and one

parallel algorithm (Liu et al., 2009). And in the last section, we propose a new parallel SCC-

based algorithm based on the idea of swarm verificaion and shared memory.

4.1 Sequential SCC-based algorithm under Fairness

Fairness and model checking with fairness have attracted much theoretical interests for decades,

and their practical implications in system/software design and verification have been discussed

extensively (Giannakopoulou, Magee, & Kramer, 1999 lamport). However, existing model check-

ers are shown to be ineffective with respect to fairness (Liu, 2010). In the two main families of

model checking algorithms, Nested DFS is shown to work efficiently under no fairness. However,

it is not suitable for verification under fairness because whether an execution is fair depends on

the whole path instead of one state (Holzmann, 2003). Recently, Jun Sun et al. propose a unified

on-the-fly SCC-based model checking algorithm which handles a variety of fairness including

process-level weak/strong fairness, event-level weak/strong fairness, strong global fairness, etc.

Before going to the details, we look at the key idea of all SCC- based algorith: the original

Tarjan’s algorithm from (Tarjan, 1972).
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4.1.1 Original Tarjan’s Algorithm

Tarjan’s Algorithm is a graph theory algorithm for finding strongly connected components in an

input graph. The algorithm performs a DFS from the root state and visits all states which have

not been explored. The states are placed on a stack in the order of the DFS traversal. When

the search backtracks to any state, the state is taken out from the stack and checked whether

it is the head of a strongly connected component (the first state in the strongly connected

component which is visited during the DFS.

To determine whether a state is the head of a strongly connected component, each state

contains two integers: index and lowlink. The index value of state s is the number of states

visited before s in the DFS. The lowlink value of state s is equal to the smallest index of

some node reachable from s, and always less than the index of s, or equal to the index of

s if no other state is reachable from s. The details of the algorithm are presented in Figure

4.1. Because the state spaces may contain millions of states, and using the recursive version of

the Tarjan’s algorithm will most likely to cause StackOverFlow problem, we implemented the

iterative version of Tarjan’s algorithm in PAT.

The variable done in line 8, 12, 13 is to keep track whether the DFS finishes traversing all

of the neighbours of the current state. After traversing all of the neighbours w of state v, the

lowlink value of v can be calculated by applying the following formula for each of the neighbour.

v.lowlink =


min{v.lowlink,w.lowlink} if w.index > v.index

min{v.lowlink,w.index} otherwise

Variable scc queue is to store the states in the processing SCC. After finding the head of

the SCC, all of those states will be pushed into scc, and the SCC is reported. Aside from index

and lowlink, each state contains one more additional bit, scc found, which is used to check

whether a state in is a found SCC.
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1: procedure tarjan(s0)

2: Stack S := ∅; Stack scc queue := ∅; index := 0;

3: S.push(s0);

4: while S 6= ∅ do

5: v := S.peek();

6: if v is un-visited then

7: index := index+ 1; v.index := index;

8: done := true;

9: for w in successor(v) do

10: if w is un-visited then

11: S.push(w);done := false; break;

12: if done then

13: S.pop(); v.lowlink = v.index;

14: for w in successor(v) do

15: if ¬w.scc found then

16: if w.index > v.index then

17: v.lowlink := min{v.lowlink,w.lowlink};

18: else

19: v.lowlink := min{v.lowlink,w.index};

20: if v.lowlink = v.index then

21: scc := ∅; scc.push(v); v.scc found = true;

22: repeat

23: k = scc queue.pop();

24: scc.push(k); k.scc found = true;

25: until scc queue.Peek().index <= v.index

26: report scc;

27: else

28: scc queue.push(v) ;

Figure 4.1: The Tarjan’s Algorithm
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4.1.2 Model checking with Fairness

First, we introduce important definitions and lemmas that the algorithm from (Sun et al., 2009)

is based on.

Given a LTS L = (S, s0,
∑

, L) and a property f expressed in LTL. Model checking under

fairness is to search for an infinite execution which is accepting to the Büchi automaton and at

the same time satisfies the fairness constraints.

We write L |=EWF f , L |=PWF f , L |=ESF f and L |=PSF f to mean that L satisfies

f under event-level weak fairness, process-level weak fairness, event-level strong fairness, and

process-level strong fairness respectively. We take the product of L and the negation Büchi

automaton B¬f . Let Ri
j = 〈(s0, b0), e0, ..., (si, bi), ei, ..., (sj , bj), ej , (sj+1, bj+1)〉, where si is a

state of L, bi is a state of B¬f , si = sj+1 and bi = bj+1. We define the following sets:

alwaysEvt(Ri
j) = {e | ∀k : {i, ..., j}, e ∈ enabledEvt(sk)}

alwaysProc(Ri
j) = {p | ∀k : {i, ..., j}, e ∈ enabledProc(sk)}

onceEvt(Ri
j) = {e | ∃k : {i, ..., j}, e ∈ enabledEvt(sk)}

onceProc(Ri
j) = {p | ∃k : {i, ..., j}, e ∈ enabledProc(sk)}

onceStep(Ri
j) = {(s, e, s′) | ∃k : {i, ..., j}, s = sk ∧ s

e−→ s′}

engagedStep(Ri
j) = {(s, e, s′) | ∃k : {i, ..., j − 1}, s = sk ∧ e = ek ∧ s′ = sk+1}

engagedEvt(Ri
j) = {e | ∃k : {i, ..., j}, e = ek)}

engagedProc(Ri
j) = {p | ∃k : {i, ..., j}, p ∈ engagedProc(sk, ek, sk+1)}

Two lemmas that form the basis for the algorithm are presented in the following:

Lemma 1. Let L be a LTS, B be a Büchi automaton equivalent to the negation of a LTL

formula f , S be a strongly connected component in the product of L and B.

• L |=EWF f if and only if there does not exist Ri
j such that Ri

j is accepting and alwaysEvt(Ri
j) ⊆

engagedEvt(Ri
j)

• L |=PWF f if and only if there does not exist Ri
j such that Ri

j is accepting and alwaysProc(Ri
j) ⊆

engagedProc(Ri
j)
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• L |=ESF f if and only if there does not exist Ri
j such that Ri

j is accepting and onceEvt(Ri
j) ⊆

engagedEvt(Ri
j)

• L |=PSF f if and only if there does not exist Ri
j such that Ri

j is accepting and onceProc(Ri
j) ⊆

engagedProc(Ri
j)

• L |=SGF f if and only if there does not exist Ri
j such that Ri

j is accepting and onceStep(Ri
j) ⊆

engagedStep(Ri
j)

The lemma can be proved straightforwardly using contradiction. From this lemma, another

lemma which is helpful for the algorithm is presented.

Lemma 2. Let L be a LTS, B be a Büchi automaton equivalent to the negation of a LTL

formula f , S be a strongly connected component in the product of L and B.

• L |=EWF f if and only if there does not exist S such that S is accepting and alwaysEvt(S) ⊆

engagedEvt(S)

• L |=PWF f if and only if there does not exist S such that S is accepting and alwaysProc(S) ⊆

engagedProc(S)

• L |=ESF f if and only if there does not exist S such that S is accepting and onceEvt(S) ⊆

engagedEvt(S)

• L |=PSF f if and only if there does not exist S such that S is accepting and onceProc(S) ⊆

engagedProc(S)

• L |=SGF f if and only if there does not exist S such that S is accepting and onceStep(S) ⊆

engagedStep(S)

Interested readers can find the proof for these two lemmas at (Liu, 2010). We now present

the algorithm in Figure 4.2.
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1: index := 0

2: procedure mc(states)

3: while there are un-visited states s do

4: scc := TARJAN(s)

5: mark states in scc as visited

6: if ISFAIR(scc)=true then

7: generate a counterexample

8: return false

9: else

10: scc :=PRUNE(scc)

11: if MC(scc)= false then

12: return false

13: return true

Figure 4.2: Algorithm for sequential model checking under fairness assumption

The basic idea is to identify one SCC at a time and then check whether it is fair or not.

If it is, the search is over. Otherwise, the SCC is partitioned into multiple smaller strongly

connected subgraphs, which are then checked recursively one by one.

At line 4, SCC is identified using Tarjan procedure. If the found SCC is fair, a counterex-

ample is generated and the procedure returns false. If SCC is not fair, a procedure prune is

used to prune bad states. Bad states are the states that cause the SCC not fair. The intuition

behind the pruning procedure is that there may be a fair strongly connected component in the

subgraph after removing the bad states. Different fairness can be handled by modifying the

prune differently. After pruning, at line 11, a recursive call to MC is made to check whether

there is a fair strongly connected subgraph within the remaining states.

The definition of ISFAIR function is based on Lemma 2, which deals with all notions of

fairness that we are considering. Now, we show different modifications of the PRUNE for

different notions of fairness. For EWF, PWF and SGF, if the SCC does not satisfy the fairness
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assumption, none of its subgraphs will do. The following defines the PRUNE function for those

3 fairness notions.

PRUNE(S,EWF ) =


S if alwaysEvt(S) ⊆ engagedEvt(S)

∅ otherwise

PRUNE(S, PWF ) =


S if alwaysProc(S) ⊆ engagedProc(S)

∅ otherwise

PRUNE(S, SGF ) =


S if onceStep(S) ⊆ engagedStep(S)

∅ otherwise

For ESF and PSF, a state is pruned if and only if there is an event (process) enabled at this

state but never enaged in the subgraph.

PRUNE(S,ESF ) = {s : S | enabledEvt(S) ⊆ engagedEvt(S)}

PRUNE(S, PSF ) = {s : S | enabledProc(S) ⊆ engagedProc(S)}

The PRUNE function has a linear worst case time complexity to the size of the input

SCC. Under no fairness assumption, there is no need for pruning, so the time complexity of the

algorithm is linear in the number of transitions. Under EWF, PWF or SGF, each state is only

visited at most twice, once by the TARJAN function, and once by the PRUNE function, so

the complexity is linear to the number of transitions of the graph as well. For ESF and PSF,

in the worst case (i.e., the whole system is strongly connected and only one state is pruned

every time), the complexity is equal to the product of the number of states and the number of

transitions in the system. The proof for soundness and different fairness can be found in (Sun

et al., 2009).

4.2 Multicore SCC algorithm with Spawning Fair Thread

Based on the previous work in the previous subsection, Liu Yang et al. proposed an on-the-fly

algorithm (Liu et al., 2009). As observed from the sequential algorithm, when a SCC is de-

tected, it will be processed by four actions: fairness testing, bad states pruning, counterexample

generation and recursive sub-SCC detection. We can see that the processing of each SCC can
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be done independently with each other and also independently with the main Tarjan algorithm.

Inspired by these observations, a SCC-based parallel algorithm has been presented with four

parts: Tarjan thread, SCC worker thread, SCC worker thread pool and parallel model checker.

In this approach, the Tarjan thread is the main thread that performs the DFS searching of

Tarjan’s algorithm (line 6). A global variable jobF inished is used to stop the Tarjan thread

and all the worker threads as soon as a worker thread reports a counterexample. When a SCC

is detected , if the forking conditions are satisfied, a new worker thread is forked and it will

process the SCC. Otherwise, the SCC will be process locally. The function for local process is

the same as the WORKER function. The workerthread basically processes a detected SCC

and determine whether the SCC contains an accepting cycle. The forking conditions can be

that of size of SCC is big enough and the thread pool is not full. The conditions are there

to avoid increasing the overhead cost of creating thread and passing the SCC to the worker

thread. The worker threads work on a detected SCC and report whether that SCC contains a

counterexample or not.

1: jobF inished := false;

2: procedure run(threadpool, states)

3: while there are un-visited states s do

4: if jobF inished then

5: return ;

6: scc := TARJAN(s);

7: mark states in scc as visited;

8: if forking conditions then

9: threadpool.forkWorker(scc);

10: else

11: process scc locally;

12: return true

13: procedure worker(scc)

14: if jobF inished then

15: return ;

16: if ISFAIR(scc)=true then

17: generate a counterexample;

18: JobF inished := true;

19: return false;

20: else

21: scc :=PRUNE(scc)

22: if MC(scc)= false then

23: return false;

Figure 4.3: Tarjan thread and Fair thread implementation
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1: Queue threadQueue := ∅;

2: procedure forkWorker(states)

3: lock(threadQueue);

4: if ¬JobF inished then

5: t = new Thread( WORKER);

6: threadPool.Add(t);

7: register t to THREAD TERMINATION;

8: threadQueue.enqueue(t);

9: unlock(threadQueue);

10: procedure thread termination(t)

11: lock(threadQueue);

12: if t finds counterexample ∧¬JobF inished

then

13: JobF inished := true;

14: threadPool.Remove(t);

15: threadQueue.e = dnqueue(t);

16: unlock(threadQueue);

Figure 4.4: Thread pool implementation

We used thread pool for the task of spawning fair threads. Because the number of threads

created is indeterminable at the beginning of the model checking procedure, thread pool is a

much more efficient compared to spawning the thread in the normal way. As thread pool has a

fixed number threads when created, the overhead of thread creation and thread destruction is

avoided, and threads can be reused after finishing its task. The THREAD TERMINATION

is triggered whenever a fair thread finish its job. The function will check whether the thread

found any counterexample. If there is, it will stop all fair thread and the tarjan thread by

setting the flag JobF inished, which is visible to all threads, otherwise, it waits until all the

threads stop.

The time and space complexity of the parallel algorithm are the same as its sequential

version, since the parallel algorithm simply splits SCC analysis into worker threads, and the

total number of states visited in this algorithm is equal. The algorithm is designed for shared

memory architecture, the transitions of the graph and the SCCs are shared among the fair

threads and the tarjan thread, so there is no communication overhead. In order to import

the algorithm to distributed memory settings, only the states in SCC will be passed. The fair

thread will explore the transitions locally to avoid communication overhead.
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4.3 Multicore SCC algorithm with Shared SCC Found States

Even though possessing a very good theoretical complexity, the problem with the parallel al-

gorithm in the previous section is that to be able to scale well, the model must contains many

big SCCs. In the case of model with very few SCCs, or the SCCs are mostly trivial, the algo-

rithm does not have much speed up compared to the sequential algorithm, no matter how much

processors the algorithm is run on.

Inspired by Laarman’s algorithm (Laarman et al., 2011) and Evangelista’s algorithm (Evan-

gelista et al., 2011) with the idea of using randomized verification with shared memory for

synchronization, we propose a new on-the-fly parallel SCC-based algorithm with fairness con-

straints.

4.3.1 Difficulty of Parallelizing SCC based algorithm

First, we demonstrate the problem with naive parallelizing SCC based algorithm. Consider

the LTS in Figure 4.5. Accepting states are marked with double circle. The graph contains a

reachable accepting SCC (s1 −→ s2 −→ s1)

s0start

s1s2

Figure 4.5: A graph with possible faulty execution of the naive parallel version of Tarjan’s

algorithm

As the order of traversal can be totally different (maybe even in reverse order), the informa-

tion of index and lowlink data is not possible to be shared among thread. Consider the naive

parallel version of the Tarjan’s algorithm, where all the visited states are shared, and thread

does not re-traverse visited states. Running this algorithm with two thread t1 and t2 may not

detect the accepting run in the graph.

The traversal done by thread t1 first visits s0. At the same time, thread t2 explores s0 before
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t1 marks s0 as visited. Then, t1 visits s1, marks s1 as visited, and halts there temporarily. t2

now proceeds to s2 and mark s2 as visited. At this moment, both threads cannot proceed

anymore, backtrack to s0 and terminate without report any counterexample. Using a lock to

make each traversing step atomic is not feasible, cause it negates the initial purpose of using

parallel algorithm, and furthermore, it still produces the same problem of cycle detection if the

graph has multiple starting states. This example highlights the key idea that one state can only

be marked as visited for other processes to avoid visiting only if when the whole SCC contains

that state is detected or other thread does not interrupt with the SCC detection.

4.3.2 Details of the algorithm

Observing that if one state is found to be in a SCC which is already processed or stored locally

by one thread, that state does not need to be revisited by other threads. Thus, having a global

bit for each state to mark whether the state has been found along with its SCC or not, and

making other threads to avoid those states will prune down the total search space. We can

make use of the scc found bit in the sequential algorithm, so that the memory space for each

thread does not increase. At the same time, the global bit must be stored in a data structure

that allows concurrent reads and writes without creating duplicate entries.

We choose to use the ConcurrentDictionary provided by Microsoft .NET 4.0 which make

use of lightweight synchronization and smart locking mechanisms. Another possible choice is to

use a shared lockless hash table from (Laarman et al., 2010) that scales well for this purpose.
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1: procedure Parallel Tarjan(s0, i)

2: Stack S := ∅; Stack scc queue := ∅; index := 0; S.push(s0);

3: while S 6= ∅ do

4: v := S.peek(); done := true;

5: if (v.scc found) then

6: repeat

7: scc queue.pop(); continue;

8: until scc queue.Peek().index[i] <= v.index[i]

9: if v is un-visited then

10: index := index+ 1; v.index[i] := index;

11: for w in successori(v) do

12: if w is un-visited ∧¬w.scc found then

13: S.push(w); done := false; break;

14: if done then

15: S.pop(); v.lowlink[i] = v.index[i];

16: for w in successori(v) do

17: if ¬w.scc found then

18: if w.index[i] > v.index[i] then

19: v.lowlink[i] := min{v.lowlink[i], w.lowlink[i]};

20: else

21: v.lowlink[i] := min{v.lowlink[i], w.index[i]};

22: if v.lowlink[i] = v.index[i] then

23: scc := ∅; scc.push(v); v.scc found = 1;

24: repeat

25: k = scc queue.pop();scc.push(k); k.scc found = true;

26: until scc queue.Peek().index[i] <= v.index[i]

27: Process scc;

28: else

29: scc queue.push(v) ;

Figure 4.6: The Parallel Algorithm with shared SCC Found States
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The details for the algorithm is shown in Figure 4.6. Similar to Laarman’s algorithm, with

different DFS traversal successori for each thread, different threads may explore different parts

of the reachable state graph. In line 12, we modify the conditions for choosing which neighbour

to traverse. If one of the neighbour is found to be found in a SCC, we do not need to traverse

that state further. Line 5-8 add another checking condition that accommodate with the global

SCC found bit. If the current state is found to be in a SCC by another thread, we can stop

exploring that state. For the algorithm to be correct, all the states inside scc queue which has

greater index than the current state must be popped out. Each thread keeps a local copy of

the call stack S and scc queue. Each thread must also store an local index value and and local

lowlink value for each states. An additional bit for each state is required for the global SCC

found bit. In line 27, we process the SCC the same as the sequential algorithm with fairness

from (Sun et al., 2009). Thus, our algorithm also has the capability to verify models under

different fairness constraint. When a counterexample is found, all threads are stopped and the

counterexample is returned to the main thread.

In the worst case where there is only one SCC in the graph, or all threads find SCCs at the

same time, the graph will be explored N times by N threads. Therefore the worst case time

complexity of the algorithm is O(N ×M) where N is the number of threads. M is equal the

number of transitions in the model under no fairness, EWF, PWF or GSF, and is equal to the

product of the number of states and the number of transitions in the model under PSF or ESF.

Now we prove the correctness of the algorithm

Theorem 1. Algorithm PARALLEL TARJAN reports an accepting fair SCC if and only if there

is an accepting SCC in the model.

Proof. First we argue that the algorithm correctly detect SCCs in the model. In case the SCC

is found by only one thread, and no other thread has visited any states inside the SCC, we can

see it is similar to SCC detection in the sequential algorithm, thus the correctness is confirmed.

The only problem is when two or more threads are accessing one SCC, cause there may be the

case that the SCC may be left out undetected. However, as stated in the algorithm, a state is

marked as SCC found if and only if the whole SCC containing that state is either processed or
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is stored locally in one of the threads. This storing thread will later process the SCC, even if

all other threads stop traversing in this SCC. Thus, if the graph has any SCC, it will be found

by the algorithm.

Given a detected SCC, the fairness checking and pruning procedures are done independently

by the detecting thread without any communication, the correctness of these two procedures

are not affected by parallel settings.

Because the graph has finite number of states, in addition, there is no waiting statement in

this algorithm, it is easy to see that the algorithm will eventually terminate.
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Chapter 5

Experiments

In this section, we compare the performance of various model checking algorithms which have

been implemented in PAT during this project. The experiments are divided into two sections:

one for model checking under different notions of fairness, and the other for general model

checking algorithms.

5.1 Experiments for Model Checking with Fairness

In this section, 4 SCC-based algorithms without fairness constraint are experimented: the

sequential algorithm (TJ ) from (Sun et al., 2009), the parallel algorithm (PTJ1 ) from (Liu

et al., 2009), the swarm Tarjan algorithm (SV-TJ ) and the purposed parallel algorithm (PTJ2 )

Table 1 summaries the verification statistics on classic dining philosophers (DP) and recently

developed population protocols. The population protocols include leader election for complete

networks (LE C) for network rings (LE R) (Fischer & Jiang, 2006) and token circulation for

network rings (Angluin et al., 2008). We modify the DP model so that it is deadlock-free (i.e.,

by letting one of the philosophers to pick up the forks in a different order). The property is

that a philosopher never starves to death. The property for the leader election protocols is

that eventually always there is one and only one leader in the network. Correctness of all these

algorithms relies on different notions of fairness.
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Model Size EWF SGF

Res. TJ PTJ1
SV-

TJ
PTJ2 Res. TJ PTJ

SV-

TJ
PTJ2

DP 6 No 0.36 0.39 0.51 0.46 Yes 1.10 1.07 1.51 1.33

DP 7 No 1.68 1.63 1.42 1.49 Yes 4.27 4.17 5.06 3.42

DP 8 No 14.47 13.38 10.71 10.84 Yes 21.41 19.62 23.66 15.87

DP 9 No 164.15 162.96 128.55 130.37 Yes 95.38 89.51 101.4 77.08

LE C 5 Yes 1.54 1.51 1.97 1.76 Yes 1.62 1.6 2.24 2.1

LE C 6 Yes 8.63 8.31 10.39 8.03 Yes 8.97 8.61 10.96 7.74

LE C 7 Yes 44.54 43.32 49.86 40.25 Yes 44.67 43.09 51.27 41.58

LE C 8 Yes 206.49 202.69 215.32 195.17 Yes 209.22 196.98 223.16 176.61

LE R 3 No 0.09 0.10 0.24 0.27 Yes 1.40 1.23 1.51 1.21

LE R 4 No 0.27 0.3 0.41 0.43 Yes 17.43 15.04 20.71 12.6

LE R 5 No 0.71 0.72 0.74 0.77 Yes 203.21 185.47 246.82 154.65

Table 5.1: Experiment results on a PC running Windows 7 with 2.13 GHz quad-core Intel

720QM CPU and 3 GB memory on DP and population protocols

As we see from table 5.1, when the model is small, either TJ or PTJ1 is faster because

they are not penalized from the thread creation and destruction as in SV −TJ and PTJ2. For

bigger model, when the model does contain accepting fair SCCs, swarm verification SV − TJ

has the best performance. PTJ2 is a bit slower due to work sharing effects. TJ and PTJ1

nd accepting cycles roughly within the same time, which is expected. For big model without

counterexample, SV −TJ has the worst runtime because it has to travel to graph 4 times. The

overhead of SV − TJ is quite considerable, increases about from 10% to 50% compared to the

sequential algorithm TJ . PTJ2 has the best performance, followed by PTJ1.

Even though, PTJ1 and PTJ2 have certain speed up compared to the sequential algorithm,

they do not exhibit a good scalability in these models. For PTJ1, the reason is that these models
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contains a lot of trivial SCCs, and there are only few non-trivial SCCs. As a result, there is

little work that can be separated out for the worker threads to speed up the model checking, and

the communication overhead makes PTJ1 slower. For PTJ2, Table 5.2 shows some statistics

of the graph traversal for the parallel algorithm.

Model Size NoStates NoVisitedStates Stddev Ratio

DP 6 9841 10252 1891 4.17

DP 7 37761 39246 9718 3.93

DP 8 143501 147154 34752 2.54

DP 9 533681 543752 142516 1.74

LE C 5 2587 2710 682 4.75

LE C 6 7831 8141 2358 3.95

LE C 7 22058 22557 6910 2.26

LE C 8 58946 60179 17308 2.09

LE R 3 6946 7239 1391 4.21

LE R 4 65468 66893 17371 2.17

Table 5.2: Statistics of PTJ2 algorithm

In this table, NoStates denotes the total number of states in the graph, NoVisitedStates

denotes the total number of states in the graphs which are visited by the algorithm, Ratio

is equal to NoStates divided by NoVisitedStates, which is used to calculate the percentage of

redundant states that the parallel algorithm visited, Stddev is the standard deviation of the

numbers of visited states by each thread. Even though the Ratio is small, which means only a

few states are re visited, the Stddev is really big compared to the total number of states. This

only happens when most of the traversing work is done by about 2 threads. We illustrate this

problem by one example in Figure 5.1.
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Figure 5.1: A graph with fixed order of SCC-exploring

This model has 3 accepting SCCs (s1 → s2 → s1), (s3 → s4 → s3), (s5 → s6 → s5).

However, these 3 SCCs cannot be detected in parallel, instead there is a fixed order of detecting

these SCCs. The (s5, s6) SCC must be detected in order to detect the SCC (s3, s4), and similarly,

we have to detect SCC (s3, s4) before detecting (s1, s2). In this kind of model, even though

there are multiple SCCs in the graph, the parallel algorithm have little speed up compare to

the sequential algorithm, except the case when the SCCs are very big, and processing a SCC

takes a lot of time. From this example, we can see that our algorithm can only achieve excellent

speed up when the graph is sparse enough.

In order show the potential effectiveness of the parallel algorithm, we create two models

(PAR1, PAR2) such that the their state space contains several SCCs, each of which has a

big number of states. As a result, both PTJ1 and PTJ2 exhibit very impressive speed up.

The statistics are summarized in table 5.3. From the table, we see that both PTJ1 and PTJ2

performs more than 60% speed up for model without accepting cycles. For big model, the speed

up can be up to 90%. For big model with long counter example, swarm verification SV − TJ

has the best performance with more than 50% speed up in most of the cases.
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Model Size EWF SGF

Res. TJ PTJ1
SV-

TJ
PTJ2 Res. TJ PTJ1

SV-

TJ
PTJ2

PAR1 6 No 8.76 4.75 4.12 4.46 Yes 18.3 8.16 24.62 8.12

PAR1 7 No 14.43 6.72 6.51 6.79 Yes 67.23 26.85 75.03 26.91

PAR1 8 No 21.37 8.56 8.38 8.52 Yes 159.27 54.12 184.33 53.74

PAR1 9 No 35.1 12.71 11.46 12.15 Yes 462 127 499 126

PAR2 7 No 0.24 0.26 0.37 0.41 Yes 8.97 3.61 10.96 3.74

PAR2 8 No 0.29 0.28 0.43 0.44 Yes 24.12 11.09 28.46 9.91

PAR2 9 No 0.41 0.46 0.55 0.62 Yes 135.7 45.6 156.1 45.8

Table 5.3: Experiment results on a PC runnings Windows 7 with 2.13 GHz quad-core Intel

720QM CPU and 3 GB memory on sparse big SCC model

5.2 Experiments for Model Checking under no Fairness

In this section, we compare all the algorithm implemented in this project, and summarize the

result in table 5.4. Sequential Nested DFS (NDFS), swarm Nested DFS (SV-DFS) and parallel

Nested DFS (MC-DFS) fromalfons are added to compare with the SCC-based algorithms. With

the early detection in Blue DFS improvement, Nested DFS can find simple counter example

much faster compared to SCC-based algorithms. For example, PAR1 model contains a 2-states

SCC right at the beginning of the graph, which is detected very fast by Nested DFS- based

algorithms, but not so well by SCC-based algorithms. However, when there is no counterexample

in the graph, Nested DFS is a bit slower than SCC-based because it has to traverse each states at

most twice by the Blue DFS and Red DFS. The property for the DP below is that a philosopher

never eat twice in a row, and it is valid under no fairness constraint for the deadlock-free DP.

From the result with DP model, we see that MC-DFS also does not do well with non-sparse

graph, similar to our proposed algorithm. We create a new model PAR3 with sparse graph
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and a valid property to compare the effectiveness of these two algorithms on sparse graph. The

result shows that our algorithm is comparable with MC-DFS and scales very well with sparse

graphs.

Model Size Res. NDFS SV-NDFS MC-NDFS TJ SV-TJ PTJ1 PTJ2

PAR1 6 No 0.016 0.031 0.04 8.54 4.12 4.36 4.47

PAR1 7 No 0.017 0.033 0.041 13.98 6.69 7.85 7.15

PAR1 8 No 0.017 0.032 0.045 20.12 9.79 10.33 10.2

DP 8 Yes 9.81 12.14 7.38 9.63 11.73 7.95 7.52

DP 9 Yes 43.2 49.87 32.59 42.93 50.11 31.83 32.24

DP 10 Yes 187.76 211.3 143.9 185.89 215.6 146.13 147.5

PAR3 7 Yes 23.61 26.57 9.07 22.11 25.9 10.02 9.24

PAR3 8 Yes 176.3 199.8 49.61 161.69 191.82 48.41 47.72

Table 5.4: Experiment results on a PC running Windows 7 with 2.13 GHz quad-core Intel

720QM CPU and 3 GB memory with all algorithms
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Chapter 6

Conclusion

6.1 Contributions

We have proposed a new parallel algorithm for the model checking under fairness assumption

problem. It is a variation of the well-known Tarjan Strongly Connected Component dedicated

to multi-core and shared memory architectures. Although, it does not theoretically scale, our

experiments revealed that it can provide good accelerations on a variety of different models.

Moreover, the algorithm can detect accepting cycles on-the-fly under various fairness assump-

tions which few parallel algorithms designed so far are able to. At the same time, various

state-of-the-art algorithms have been implemented in PAT during the project which may prove

to be very helpful in further research.

6.2 Future Work

In the future, several extensions of the work presented here will be considered. First, in the

current implementation, the post-order of successori function is totally based on randomness. A

heuristic function might be of great benefit here in order to reduce the number of threads visiting

a given state. More experiments will be conducted in the future to see both the scalability and

limitations with more CPU cores. At the same time, as discussed in the chapter 5 an analysis of

graphs structures will help to determine which extent the proposed algorithm could be improved.
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